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Abstract

On-board diagnostic systems play an important role in
the current generation of cars and will play an increas-
ingly important role in the next future . The design of
on-board diagnostic systems is a challenging problem
under several points of view . In this paper we dis-
cuss the experience we made on such a problem within
the VMBD project . In particular, we discuss an ap-
proach which tries to reconcile two goals : satisfying
all the requirements and constraints imposed by the
on-board application, and exploiting the advantages of
the model-based approach as much as possible . The
approach is based on qualitative deviation models for
the automatic derivation of on-board diagnostics based
on decision trees . In the paper we use a specific ap-
plication, the Common Rail fuel defivery system, as a
concrete example, briefly discussing the on-board diag-
nostics we designed for such a system and its prototype
implementation and demonstration .

Introduction
The aim of this paper is to discuss the experience we
made, within the VMBD project, on the design of on-
board diagnostic systems for automotive applications .
VMBD aims at demonstrating the utility of model-
based diagnosis in the automotive domain for both
on-board and off-board diagnosis . This goal has been
achieved through the definition of a general formalism
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for building a library of (qualitative) models of com-
ponents, the definition of an architecture for off-board
and on-board diagnostic problem solving, and the ex-
perimentation on three guiding applications . Within
the VMBD project, our group mainly focused on on-
board diagnostic problem solving, which is interesting
under several points of view . First of all, there is a
fixed set of sensors, and tests can hardly be performed .
Further, the on-board context imposes specific hard-
ware requirements (memory and computing power) on
the design of the diagnostic system . However, the re-
sponse time should be short, especially for safety critical
systems, and should concentrate on taking the appro-
priate action, without necessarily identifying the fault .
Finally, systems to be diagnosed on-board are in al-
most all cases dynamic feedback systems with an ac-
tive control which is in most cases performed by the
ECU (Electronic Control Unit) software, which can of-
ten compensate for faults .

Thus, these systems are a. challenging application
for testing state-of-the-art model-based diagnostic tech-
niques . In the paper we analyse how the requirements
sketched above can be taken into consideration in the
design of a diagnostic architecture for on-board systems
with the following goals :
1 . producing a diagnostic system that can be conceiv-

ably used on-board, given the technologies that will
be feasible on cars in the next few years ;

2 . exploiting the advantages of the model-based ap-
proach as much as possible .
As a running example we use one of the guiding ap-

plications in the VMBD project : the Common Rail fuel
delivery system . It has all the features discussed above
(safety critical, real time recovery, dynamic feedback
with active control) and is interesting for both on-board
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diagnosis (performing recovery actions in the presence
of malfunctions) and off-board diagnosis . Moreover, the
Common Rail involves hydraulic, electric and electronic
components, which are, at least in part, similar to those
used in other systems . Thus, generic models of these
components can be reused in different systems (as re-
gards VMBD, the Common Rail has a number of com-
mon components with another application, the Distrib-
utor Type Injection) . In the paper :
1 . We first introduce the Common Rail system used as

a guiding application, and the models based on qual-
itative deviations we adopted for it, motivating the
suitability of this kind of models for our goals .

2 . We then discuss the diagnostic approach we adopted .
In particular, we briefly recall a sirnuIation-based ap-
proach to deal with dynamic behavior ; we then anal-
yse the problem of on-board diagnosis, motivating
and discussing an approach which uses the model-
based system for automatically synthesizing efficient
on-board diagnostics in the form of decision trees .

3 . We finally provide an example of model-based diab
nosis results used in the generation of on-board di-
agnostics for the Common Rail and we sketch the
prototype demonstration on board of a Lancia car .

The Common Rail system
The Common Rail fuel injection system (Stumpp &
Ricco 1996) for direct injection diesel engines is de-
signed in order to be able to control the injection pres-
sure, as well as injection timing, which allows better
engine performance and lower noise and emissions . To
this end, pressurised fuel is stored in the rail and its
pressure is controlled by the Electronic Control Unit
(ECU) through a pressure regulator .
In more detail, the purpose of the main components

(see figure 1) is as follows . The high pressure pump
delivers fuel to the rail, which, together with the high
pressure pipes between the high pressure pump and the
injectors, behaves as an accumulator . The pressure reg-
ulator, an overflow valve controlled by the ECU, varies
pressure in the rail . When the driving current is in-
creased, the regulator closes an orifice . This determines
a decrease of the overflowing fuel amount and a conse-
quent increase of the pressure in the rail . The overflow-
ing fuel is returned to the tank .
The ECU controls the fuel injection system . The tar-

get pressure value for the fuel pressure is determined
given the engine operating conditions . If the rail pres-
sure, measured by the pressure sensor, deviates from
the target value, the command to the pressure regulator
is varied in order to reduce the difference between the
measured pressure and the target value . Injectors also
receive commands from the Electronic Control Unit,
which computes both the amount of fuel to be injected
and injection timing . In case of faults, possible actions
to be taken by the ECU are :
" limiting performances, i .e . lowering the maximum

value for the rail pressure (which also limits theachievable acceleration) ;
" switching to a "limp home" mode where the sys tem

variables are forced to be in idle mode . In this waythe rail pressure is low, and the engine speed is keptconstant, while still allowing the driver to reach e .g .a service bay ;
" stopping the engine when some dangerous fault issuspected .
The fuel delivery subsystem has been modified in thetest car in the following ways :

" A sensor in the low pressure subsystem (between the
filter and the high pressure pump) has been intro-
duced ; it detects whether the pressure is sufficient to
deliver fuel to the high pressure pump.

" The effect of introducing a "virtual" (i .e ., software)
sensor based on engine speed has been considered .
Such a type of sensor has been developed by Cen-
tro Ricerche FIAT for torque measurement (to de-
tect anomalous injection amount and timing), i .e . for
computing whether a cylinder provides a significantly
different torque with respect to other cylinders . This
is a "virtual" sensor since it provides an indirect mea-
sure based on actual measures . In principle, there
would be no need for such a concept of virtual sen-
sor in a model-based diagnostic system ; this one, in
particular, could be substituted with just the engine
speed sensor and models of combustion and of the
engine dynamics . But since such models would be
much more complex than the rest, the virtual sensor
abstraction has been preferred as a more viable solu-
tion . Admittedly, this is an ad-hoc abstraction ; gen-
eral and principled ways of abstracting models have
not been the purpose of this work .

" Hardware has been included for introducing in the
system some of the faults considered in the models ; in
particular, for switching off the electric pump in the
low pressure subsystem, for switching pff the P`VM
(pulse width modulation) command to the pressure
regulator (so that it rernains open), or for supplying
or not supplying one injector with current, so that it
remains always open, or always closed, regardless of
the opening commands from the ECU.

Qualitative deviation models
Applying model-based diagnosis to dynamic controlled
systems is one of the main focuses ofresearch in the field
(e.g . (Chantler et al . 1996 ; Loiez & Taillibert 1996 ;
Mosterman & Biswas 1996 ; 1997 ; Malik & Struss 1996 ;
Struss 1997)) . In (Malik k Struss 1996), in particu-
lar, an approach based on qualitative deviations has
been used . The system is modeled in terms of differen-
tial equations that include appropriate parameters for
components, whose values correspond to different (cor-
rect or faulty) behavior modes of the component . From
these equations, corresponding equations for qualitative
deviations are derived :



" for each variable x, its deviation Ax(l) is defined as
Ax(t) = x(t) - x, ef(t), where x,ef(l) is a reference
behavior ;

" from any equation A = B, the corresponding equa-
tion AA = AB is derived ;

" finally, the corresponding qualitative equation [AA]
= [.AB] is derived ; it equates the signs of the two de-
viations . There are rules for expressing this equation
in terms of signs of deviations of individual variables
rather than expressions .
Similar ways for deriving qualitative models from

quantitative equations have been proposed in (Gallanti
et al . 1989 ; Biswas, Kapadia, & Yu 1997) . This form
of qualitative modeling has been chosen for this sys-
tem, especially because the fuel pressure in the rail is
rapidly varying, according to the position of the accel-
erator pedal and a number of other inputs, therefore
a normal range of values cannot be given . This means
that reasoning in terms of absolute values would be very
difficult . A main problem in applying this approach
is however the choice of the reference behavior . The
choice in (Malik & Struss 1996), which is shown to be
useful at least in some cases, is to have a. steady state
as the reference behavior . We regarded the reference
behavior as the evolution of the system when all com-
ponents are not faulty. As we will discuss later, this
choice has strong influences on the way diagnosis is ac-
tivated, i .e . how it is detected that there is a fault in the
system . The model used for our experiments is shown

Figure l : The Common Rail fuel injection system for the 5-cylinder car used for demonstration, with an additional
pressure sensor in the low pressure part . One of the 5 injectors is enlarged for better readability .

in the block diagram in figure 2 ; some simplifications
have been done with respect to a model that would be
derived from models of individual components :
" the low pressure part of the system has been ab-

stracted to a single component ; similarly for the rail
and the high pressure pipes ;
the "torque measurement" virtual sensor has been at-
tached directly as an output to the injector compo-
nent, rather than introducing the engine component .
Variable names on the arcs correspond to pairs of

interface variables of components, which are imposed
to be equal by the connection . The meaning of such
variables is the following :
" flowp: flow from the low pressure subsystem (into

the high pressure pump)
" plowp: pressure in the low pressure subsystem
" lowp-obs : sensor reading for the low pressure subsys-

tem
" f-pump: outflow of the high pressure pump
" p-rail : pressure in the rail
" p-obs : reading of the pressure sensor in the rail

" PIVM : actuation command to the pressure regulator
" f-pr : flow through the pressure regulator
" f-inj : flow through the injectors
" lrn : torque measurement (virtual sensor)



As an example of qualitative deviation modeling,
the following qualitative deviation equation is included
in the model of the high pressure pipes and rail :
aAp-rail = [ofpump] - [ofpr] - [Af-inj] - [Afleak]
where :
. fleak is the flow through possible leaks ; it is a pa-

rameter of the component and its reference value is 0 ;
the "ok" mode for the component imposes [0f-leak]
= 0, that is, there are no leaks, while the only fault
mode considered for the component, "leaking", im-
poses [A fleak] = -1- ;

. aAp-rail is the derivative of the deviation (or, equiv-
alently, the deviation of the derivative) of the rail
pressure . The equation implies that if the balance
of flows becomes different (e .g . smaller) from the
expected one (e.g ., due to a smaller- than-expected
inflow from the pump, or a higher-than-expected out-
flow through the regulator, or the injectors, or a leak),
then the derivative of the rail pressure deviates (e.g .
becomes smaller) . This will make the rail pressure
itself deviate (e.g . become smaller) with respect to
the expected trend .
The list of fault modes considered for the components

comes from the system FMEA and is the following .
The high pressure pump (hp-pump) has fault modes

blocked, with obvious meaning, and insuff which
means it has a reduced efficiency. The high pres-
sure pipes and rail (hp-pipes-rail) have leak as the
only fault mode . The pressure regulator (p-regulator)
has the fault modes blocked closed and blocked open .
The injectors have fault modes blocked open and
blocked closed, as well as recycle low and recycle high
which correspond to an abnormal amount of fuel re-
turned to the tank (part of the fuel flowing through

ECU pressure
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Figure 2 : Diagram of the model of the Common Rail .

the injectors is in fact going back to the tank) . The
low pressure subsystem (lp-system) has the only fault
mode insuff which means it does not deliver enough
fuel ; this includes a fault of the electric fuel pump . For
the sensor in the low pressure system no fault modes
are considered, for the sensor in the high pressure part,
the faults low, high and blocked are considered . Usu-
ally, sensor faults can be identified by an implausible
sensor reading, i .e . through a range check . This could
be modeled introducing additional qualitative values for
deviations, but in the running example it has not been
done for the sake of simplicity (as a consequence, in
the diagnostic results discriminating sensor faults from
some other faults will not be possible) .

Diagnostic strategies
As we noticed before, we are interested in both off-
board and on-board diagnosis . While offboard diagno-
sis can take full advantage of the model-based approach,
on-board diagnosis requires some further considerations
and taking into account some important practical con-
straints . First of all, in the on-board case the diag-
nostic system must react promptly to anomalies and
must run fast in order to interpret the anomalies and,
which is most important, in order to take an appropri-
ate recovery action . This means also that the on-board
diagnostics should be focused only on performing re-
covery actions, rather than on the actual isolation of
the fault(s) . However, keeping track of more detailed
information about the fault(s) that occurred can be ex-
tremely important, as it is a valuable information to
be passed to the diagnostic system that will be used in
the workshop to actually locate and identify the fault .
Moreover, only a few measurements can be available on-
board and the possibility of performing tests/probes is

f lowp Low pressure
subsystem lowp obs

p lowp
f-purnp Low pressure

sensor



very limited . Finally, even though integrating the diag-
nostic system within the ECU is not one of the goals of
VMBD, we must build a diagnostic system that takes
into account the kind of hardware that is available on
board (or that will be presumably available in the next
years) . For example, the total amount of memory avail-
able on the ECU (for both control and diagnosis) of the
test car is 64K . Therefore, we must, reconcile two goals
that are, at. least partially, conflicting :
1 . the aim of showing that the model-based technology

provides interesting advantages and can be exploited
and have an impact also for on-board applications ;

2 . the constraint of not requiring a major revolution in
the hardware (and software) technologies currently
used on-board .
Such requirements show that, the direct adoption of

model-based diagnosis on board can be problematic .
Moreover, using the full power of the model-based ap-
proach on board could be unnecessary, especially as
regards selecting measurements and tests, since little
space for performing additional measurements and tests
is available .
The on-board diagnostic task can be better per-

formed using simpler technologies, such as "pattern-
action" rules or decision trees . Such technologies in fact
can be easily implemented on current ECUs and could
thus be practically used immediately . However, we be-
lieve that the model-based approach can nevertheless
play a fundamental role in automatically synthesizing
the simpler knowledge base and diagnostic strategy to
be implemented on-board .
In the two following sections we discuss the defini-

tion of diagnosis for dynamic systems we adopted and
how such a definition can be exploited for compiling
automatically the on-board diagnostic system .

Diagnosis of dynamic systems
In (Theseider Dupre & Panati 1998) several alternatives
are considered for defining diagnosis of dynamic sys-
tems, including state-based diagnosis (Malik & Struss
1996 ; Struss 1997) and some simulation-based defini-
tions which take into account the discontinuity in the
behavior associated with abrupt faults, i .e . the sudden
transition of a component from the correct mode of be-
havior to a faulty behavior . It is shown that, given ad-
ditional knowledge on causality in the system, reason-
ing on such transitions and using simulation can lead
to reducing the set of state-based diagnoses, under in-
creasingly restrictive assumptions on the observabilit.y
of the system, i .e . on fault detection .
The assumptions on fault detection are important .

Differently from (Malik & Struss 1996), we assumed as
a reference behavior the correct behavior of the sys-
tem ; that is, a deviation should be detected (and then
diagnosis activated) when the system deviates from its
expected behavior . But, given noise in measurements
and imprecise knowledge about the quantitative behav-
ior of the system under correct behavior, it cannot be
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assumed that. arbitrarily small deviations can be de-
tected . Moreover, some assumptions must be done,
based on observation on the real system, on the rel-
ative speed on which deviations of different variables
can be detected .
As we shall briefly describe in the final section, in

the Common Rail application different. approaches have
been applied for detecting deviations for the different
variables .
The simulation-based approach in (Theseider Dupre

& Panati 1998) has been used as a definition of diagno-
sis, and it has been assumed that all deviations can be
detected "at. the same time", in the sense that no qual-
itative state is missed by fault detection (this is similar
to the "gapless observations" in (Malik & Struss 1996)) .

Therefore, diagnosis is activated for the first. qual-
itative state where non-zero deviations are detected .
Given the set of observations OBS for such a state, the
consistency of a mode assigmnent F with OBS (i .e . its
being a state-based diagnosis for the observations) is
not sufficient, to consider F a diagnosis . In fact, it is
also imposed that this state (S� in figure 3) must be
reachable from an initial state (So) where all compo-
nents are "ok" and all deviations are zero, through a
sequence of states satisfying the following conditions :
" The first. state (S1 ) derives from causal knowledge

about the system that gives the result of "inject-
ing" the fault F into the initial state . For exam-
ple, consider the sample equation given above for the
rail component : 8Ap-rail = [Af-pump] - [Af-pr] -
[A f-inj] - [Afleak] If the rail starts leaking, i .e . the
value of [A fleak] changes from 0 (in So) to positive
(in Sl), some other change must occur in order for
the equation to hold in St ; but due to the causality
in the system, the only change that can occur in the
first state is 8,,p-rail becoming negative, which will
make [Ap-rail] negative (i .e . the rail pressure smaller
than expected) in S2 .
Changes to the other variables will occur later due to
feedback in the system : in fact, flows depend on pres-
sure, and therefore they will actually change (or, bet-
ter, deviate from their expected value), but only after
the pressure itself deviates . Note that flows depend
on pressure both "naturally" and due to the pressure
control system : the ECU will command the pressure
regulator to close more than it should (and then re-
duce the outflow) when the pressure (read through
the pressure sensor) deviates negatively .

" The subsequent states, up to the final state (Sn ) con-
sistent with the observations, are each one a succes-
sor state of the previous one according to qualitative
simulation .

" The sequence Si, . . ., S,,-, cannot contain qualitative
states with deviations that would have been detected
before the one (or ones) that actually activated di-
agnosis . What this actually means depends on the
assumptions on fault detection . In principle, it could
mean that no deviation of observable variables should
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In practice, this strong con-
dition should be relaxed, at least to allow in the se-
quence qualitative states with observable deviations
if they are states that only hold for a time point and
not for an interval . An example of such a state is
the one mentioned above where OAp-rail is negative
but [Op-rail] is zero . Moreover, since detecting de-
viations requires elaboration of actual data, the time
necessary for detecting deviations of different vari-
ables may be different .

For a formal description the reader is referred to
(Theseider Dupre & Panati 1998) .

Compiling on-board diagnostics

We already discussed the problems that have to be faced
in the design of on-board diagnostic systems and we
motivated the choice of precompiling knowledge for the
on-board system .

In this section we discuss in more detail how the
compilation can be performed taking advantage of the
model-based diagnostic approach discussed in the pre-
vious section . Examples will be provided in the next
section . As we noticed before, the basic : type of knowl-
edge needed in the on-board system is a set of associ-
ations between patterns of values of observable param-
eters and recovery actions . We decided to implement
such associations and the classification process to be
used for selecting the best action in a given situation as
decision trees . In fact, a decision tree interpreter can be
implemented very efficiently and easily on any hardware
support, using little memory : therefore, these method-
ologies could be easily used on current ECUs . More-
over, there are well known and established algorithms
for building trees from examples (see e.g . algorithms
such as ID3 (Quinlan 1986)) . In our case an example
is an association between a pattern of values of the ob-
servable parameters and the corresponding action (and
diagnoses) . What is most interesting is that the set
of examples can be produced automatically using a di-
agnostic engine that is directly based on models, and
could be the same one used for of board diagnosis . We

Figure 3 : Simulation-based diagnosis .

state consistent
with fault F

and observations

1

	

Sn

qualitative simulation

thus have the following scheme for the generation ofthe
on-board diagnostic system :
1 . Determine a set of significant cases that must be faced

on-board . In case the number of parameters and the
set of qualitative values of the parameters are small,
one may even consider an exhaustive set of cases .

2 . Run the off board model-based diagnostic system on
each one of the cases, computing the set of candi-
date diagnoses for each case and the corresponding
recovery action .

3 . Use a learning algorithm to derive the decision trees
from the examples produced in the previous items .
Let us analyse in more detail the last step above . The

input to the learning algorithm is a table with one row
for each one of the significant cases selected in step (1) .
The columns correspond to the observable parameters
that will constitute the nodes of the decision tree ; two
special columns store the decision (recovery action) and
the set of candidate diagnoses for each one of the cases,
computed in step (2) . The decision tree is built by se-
lecting, at each step, the observable whose values best
discriminate between the possible decisions (a measure
of the discrimination power is computed dsing entropy) .
At the initial step the selection is made on the whole ta-
ble and this leads to selecting the observable A which is
the root of the tree . Such a node has one descendant for
each possible value of A . The descendant correspond-
ing to the value ai of A is a decision in case all the
examples in the table for which A = ai correspond to
the same decision . Otherwise, a subtree is built using
as examples those for which A = ai .
The decision tree representation has some advantages

with respect to other forms of associational knowledge .
In case all the values for the observations are known
to the ECU, the decision tree is anyway more compact
than a lookup table . Pattern-matching rules could also
be used . However, the decision tree is better generalized
to the case (which is conceivable, even if not widely
used in ECUs in the automotive domain) where some
decision requires an active test to be performed . In
fact, the decision tree can provide an order on data to



Table 1 : Combinations of observations with corresponding single fault diagnoses and recovery actions . The selected
action is shown in boldface font .

be used and, more importantly, the tests are performed
only when actually necessary, i .e . when values of other
data are not sufficient for discriminating between the
recovery actions . Cost of tests could be used, together
with entropy, to select the best observation at each step
in the tree generation .

An example
In this section we provide an example of the process
for compiling decision trees according to the strategy
defined in the previous section . -We consider the three
following observables in the common rail model : the
rail pressure, the pressure in the low pressure subsystem
and the torque measurement . In particular, we consider
the qualitative values for the deviations of these mea-
surements, i .e ., respectively, [Op_obs], [Alowp-obs] and
[Atm].
We then consider (see table 1) the combination of

qualitative values for these variables with the corre-
sponding single fault diagnoses computed with the dy-
namic diagnosis approach described before, and the re-
covery action corresponding to each one of the cases .
Cases not listed have no single fault diagnosis . When
there is more than one candidate diagnosis associated
with a set of observations (which means that the can-
didates cannot be discriminated with the available ob-
servables), the recovery action associated with the set of
candidates (the one in boldface) is the most critical one,
that is the one associated with the most critical fault .
The cases considered include the 4 fault's that can be ar-
tificially introduced in the demonstrator car, which are :
lp-system insuff ; pressure-regulator blocked open ;
injectors blocked open ; injectors blocked closed . No-
tice that in three cases the actual fault can be identified
as the only single fault diagnosis ; in other cases, there
are multiple diagnoses but all of them are sensible di-
agnoses for the given observations .

It is important to notice that the use of the dynamic

diagnosis approach outlined in a previous section is es-
sential to the results in table 1 .

In fact, applying state-based diagnosis (in the same
context, i .e . with the same interpretation of deviations)
provides some unexpected solutions : e.g . for the sec-
ond case in table 1, i .e . Alowp-obs = 0, Ap_obs =
[-], Atin = 0 : Pressure-regulator blocked-closed,
Sensor high, Injectors recycle-low, and the empty
diagnosis (all the components ok) .
The presence of spurious diagnoses could lead

to selecting an unnecessary restrictive action : in
the example, Stop would be selected instead of
Limp home, because of the spurious diagnosis
Pressure-regulator blocked-closed .

Moreover, the fact that the "all ok" mode is consis-
tent would contradict fault detection : some "abnormal"
observation is detected, but the system can anyway and
it would be assumed to be ok by any sensible preference
criterion for diagnoses ; e .g . we have used cardinality,
preferring single fault diagnoses, and this would make
the "all ok" candidate the preferred diagnosis .
Given this table, the process for compiling the deci-

sion tree can be started . The result is the decision tree
shown in figure 4, which indeed captures the intended
behavior for the on-board diagnostic system .

It is worth noting that in this case the diagnostic sys-
tem is better than the diagnostic procedures currently
used in the Common Rail system, which, however, can-
not use the measurements of the pressure in the low
pressure system and the torque (but uses other pieces
of information and plausibility checks concerning the
values of internal variables in the ECU) . This is an in-
teresting result of the adoption of our approach since
the experimentation with the model allowed us to study
the effect of adding additional sensors . The example
shows a compromise in which better on-board discrim-
ination on the recovery action to be performed can be
obtained with additional sensors .

Observations Diagnoses Actions
owp-o s -Ap-obs trn

- - 0 Lp-system insuff Performance limitation
0 - 0 Pressure-regulator blocked-open Performance limitation.

Hp-pipes-and-rail leak Limp home
Hp-pump blocked Performance imitation.

p-purn.p insu, Performance imitation
Sensor low Open loop

Sensor blocked Open loop
Injectors recycle-high Performance limitation-

0 - + Injectors blocked-open Stop
0 0 - Injectors blocked-closed Go
0 + 0 Pressure-regulator blocked-closed Stop

Sensor loin Open To-op
Sensor blocked o pen loop

Injectors recycle-low o



Prototype implementation and
demonstration

In this section we briefly discuss the implementation
of the diagnostic system described in the previous sec-
tions . In order to have a first prototype at an early
stage and make experiments as regards both model-
ing and the diagnostic strategy, we implemented a first
version of the diagnostic system using ECLiPSe, a con-
straint logic programming language . These kinds of
languages are in fact well suited for rapid prototyping,
and constraint propagation for simulating models can
be implemented very easily . One strategy has also been
implemented in C++ . As regards the generation of the
on-board decision trees we used an implementation of
the standard ID3 algorithm (Quinlan 1986) .

For the demonstration, a prototype Lancia car with
a pre-series 2 .4 Litres Common Rail engine has been
equipped with appropriate hardware and software for
data acquisition (see figure 5) . ETI{ is a hardware in-
terface attached to the ECU, providing access to the
controller data bus ; MAC is a protocol conversion box ;
INCA- PC (by ETAS) is the software for acquisition and
display of data, running on a portable PC together with
the on-board diagnostic system developed for VMBD .
We regard this system as "on-board" even if it does

not run on the ECU itself ; this solution was out of the
scope of the project, but it is already feasible, even given
the current ECU hardware limitations . Such a system
includes :
" A module for the conversion of signals (acquired by
INCA) into qualitative deviations ; this is easily done
for the sensor in the low pressure part of the system,
where the pressure has a nominal range of values .
while for the pressure sensor in the high pressure part
a comparison is made on the desired pressure com-
puted by the ECU, relying on an approximation on
the expected behavior of the actual pressure .

" The decision tree interpreter .
Experiments on the demonstrator system were suc-

cessful in checking that, when one of the faults was
introduced in the system, the appropriate values for

Figure 4 : Compiled decision tree .

qualitative deviations were acquired . Therefore, since
table 1 contains sensible diagnoses for each case, the
system can suggest the most appropriate action .

Conclusions
In this paper we discussed our experience in the design
of on-board diagnostic, systems for automotive domains .
We analysed the peculiarities of on-board applications,
discussing their requirements and the consequences that
the requirements have on the design of the diagnostic
system . In doing that we took into account a further
main goal : trying to exploit as much as possible the
advantages of the model-based approach also for on-
board applications . The results discussed in the pa-
per is a compilation-based approach : the model-based
approach is used for simulating diagnostic situations ;
the results of simulations (diagnoses and actions corre-
sponding to a set of observations) are used by a learning
algorithm to derive the decision trees that will form the
on-board diagnostic system .
We claim that this approach has significant advan-

tages on other ones . With respect to the adoption of
on-board model-based systems, our approach has the
advantage of being close to be implemented with cur-
rent ECU technology, even for a dynamic, controlled
system . With respect to a manual generation of the
decision tree (as it is currently done in many diagnostic
systems), on the other hand, we have all the advantages
coming from relying on reusable models, which can sig-
nificantly reduce the effort in generating the tree for a
new system . Moreover, the experimentation with the
model-based approach can lead to studying how to im-
prove the diagnosability of the system, e .g . by adding
extra sensors (as it is indeed shown by our example) .
The idea of compiling diagnostic rules from examples

has been used in other approaches, even if with some
differences . In (Price et at. 1996), which shares sev-
eral characteristics of our approach, models are used
for generating FMEA, which is in turn used for gen-
erating diagnostic trees for offboard diagnosis . Pre-
vious approaches used qualitative models for running
a set of simulations and induce diagnostic rules from
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the results of the simulations (see, e.g ., (Mozetic 1991 ;
Pearce 1988)) . Thus there are two main differences with
respect to the approach presented in this paper : they
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