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Abstract

One of the original motivations for research in qualitative physics was the development of
intelligent tutoring systems and learning environments for physical domains and complex systems.
This article demonstrates how a synergistic combination of qualitative reasoning and other AI
techniques can be used to create an intelligent learning environment for students learning to analyze
and design thermodynamic cycles. Pedagogically this problem is important because thermodynamic
cycles express the key properties of systems which interconvert work and heat, such as power plants,
propulsion systems, refrigerators, and heat pumps, and the study of thermodynamic cycles occupies
a major portion of an engineering student’s training in thermodynamics. This article describes
CyclePad, a fully implementedarticulate virtual laboratorythat captures a substantial fraction of the
knowledge in an introductory thermodynamics textbook and provides explanations of calculations
and coaching support for students who are learning the principles of such cycles. CyclePad employs
a distributed coaching model, where a combination of on-board facilities and a server-based coach
accessed via email provide help for students, using a combination of teleological and case-based
reasoning. CyclePad is a fielded system, in routine use in classrooms scattered all over the world.
We analyze the combination of ideas that made CyclePad possible and comment on some lessons
learned about the utility of various AI techniques based on our experience in fielding CyclePad.
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1. Introduction

One of the central motivations for research into qualitative physics has been its potential
for the construction of intelligent learning environments. Qualitative reasoning provides
computational accounts of human reasoning about the physical world, ranging from what
the person on the street knows to the extensive expertise of scientists and engineers. Thus
qualitative reasoning should provide representation languages and reasoning techniques
that can be applied to helping people make the transition from novice to expert reasoning
about physical systems. Indeed, some of the earliest work in the field was directly aimed at
instructional problems (e.g., [9,25]). Over the last decade there have been several important
efforts aimed at using qualitative physics to help teach diagnosis, troubleshooting, and
operation of complex physical systems (e.g., [29,35,44]). Unfortunately, little effort has
been focused on using qualitative physics in classroom settings, to help undergraduates
learn principles of a domain (one rare exception is [40]).

In this paper, we describe CyclePad, anarticulate virtual laboratoryfor engineering
thermodynamics that is currently being used regularly by college engineering students
and others. We start in Section 2 by describing the idea of articulate virtual laboratories,
provide a brief overview of engineering thermodynamics, and describe the software
from a user’s perspective. Section 3 summarizes the architecture of CyclePad. Section 4
describes CyclePad’s knowledge base, highlighting the kinds of knowledge in it and
how it is represented. Section 5 discusses the analysis techniques used in CyclePad,
including how it extends constraint propagation to include table lookups and on-the-fly
reformulation of system equations. Section 6 describes CyclePad’s explanation system,
crucial to the program’s success, showing how astructured explanation systemcan provide
understandable, incrementally derived hypertext explanations of a student’s work. Section
7 describes thedistributed coachingmodel CyclePad uses, including coaching students
through contradictions, teleological reasoning to help them understand the meaning of
parameters, and case-based design help using analogical reasoning on a web-based design
library that can be extended by domain experts. Finally, Section 8 discusses how CyclePad
has been deployed and reflects on the implications of this work.

2. Motivation

2.1. Articulate virtual laboratories

Engineering is about creating useful artifacts and systems. Design is at the heart
of engineering, but unfortunately, typically not at the heart of engineering education.
Engineering education in the 1990s is oriented towards analysis rather than design.
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Students who arrive at college eager to create new things are instead put through many
courses of analysis. Design, if they get exposure to it at all, is reserved for “capstone”
design courses. The perceived irrelevance of what they are learning to what they want to
do is a major factor in the small incoming enrollments in (and large transfer rates out of)
engineering education. Design tasks are highly motivating, and tie classroom learning to
real-world concerns. Increased use of design tasks in education is now widely perceived as
a way to improve engineering education [1].

Unfortunately, there are many reasons why design does not permeate engineering
education. Design exercises historically consume tremendous resources (especially time)
to create, supervise, and evaluate. In many domains cost and/or safety concerns preclude
tackling many design tasks that would be illuminating (e.g., designing power plants or jet
engines). The sheer amount of detail work needed to produce a working artifact can be
important for integrative exercises, but it detracts from the value of design exercises aimed
at teaching just one principle. These factors are leading to an increasing role for software
in virtual laboratoriesthat enable students to “build” designs and try them out without
expense or danger. Examples of commercial software that can be used this way include
MultiSimTM [13] for electronic circuits and Working ModelTM [43] for mechanics. When
used properly, such programs provide valuable experiences for students. However, they
still do not solve many of the resource constraints involved in using design in teaching.
First, they do not provide explanations, relying on human instructors and lab assistants to
provide the scaffolding necessary for students. For example, such programs do not help
students understand exactly where and how their assumptions lead to problems. Second,
they do not providing coaching. For example, they do not help students tie their results
back to the phenomena of the domain, nor do they provide advice on how to improve a
student’s design. Third, they do not provide support for assessment—instructors still have
to grade every aspect of a student’s work by hand, a process which is often less convenient
for work submitted on-line than on paper.

These limitations can be overcome by using artificial intelligence techniques to create
articulate virtual laboratories, software that has a conceptual understanding of the domain
being taught and uses that understanding to scaffold students in design tasks. An articulate
virtual laboratory (hereafter, “AVL”) includes several components:
• A conceptual CAD systemthat enables students to construct designs from a collection

of parts.
• Analysis toolsthat enable students to understand the properties of their design and

how they arise from the consequences of their assumptions. These tools relieve
students of the burden of routine calculations, in much the same manner that
calculators are used in mathematics education. However, these design tools go beyond
calculators in a number of ways.
• Coachingthat scaffolds students in creating, analyzing, and improving their design.

CyclePad is an articulate virtual laboratory for learning engineering thermodynamics by
designing cycles. Students using CyclePad can design power plants, refrigerators, engines,
cryogenic systems, and other types of thermodynamic cycles. For readers not familiar with
this domain, we briefly review thermodynamic cycles in the next section.
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2.2. Engineering thermodynamics

A thermodynamic cycle is a system within which a working fluid (or fluids) undergoes
a series of transformations in order to process energy. Every power plant and every
engine is a thermodynamic cycle. Refrigerators and heat pumps are also examples of
thermodynamic cycles. Cycles play much the same role in engineering thermodynamics
as electronic circuits do in electrical engineering; a small library of parts (in this case,
compressors, turbines, pumps, heat exchangers, and so forth) are combined into networks,
thus potentially generating an unlimited set of designs for any given problem. Practically,
cycles range from four components, in the simplest cases, to networks consisting of dozens
of components.

The analysis and design of thermodynamic cycles is the major task that drives
engineering thermodynamics, aside from applications to chemistry. In thermodynamics
education for engineers, cycle analysis and design generally appears towards the end
of their first semester, or is even delayed to a second course, since understanding
cycles requires a broad and deep understanding of the fundamentals of thermodynamics.
Introductory engineering thermodynamics textbooks typically devote several chapters to
cycle analysis, and in more advanced books the fraction devoted to cycles rises sharply.
Indeed, some textbooks focus exclusively on cycle analysis (e.g., [32]). Aside from
their intrinsic interest, the conceptual design of thermodynamic cycles provides a highly
motivating context for students to learn fundamental principles more deeply than they
would otherwise.

One source of the complexity of cycle analysis stems from the complex nature of
liquids and gases, and the fact that subtle interactions between their properties must be
harnessed in order to improve designs. The purpose of cycle analysis is to determine the
overall efficiency of a system, how much heat or work is consumed or produced, and what
operating parameters (e.g., temperatures and pressures) are required of its components. An
important activity in designing cycles (or indeed in many engineering design problems)
is performing sensitivity analyses, to understand how choices for properties of the
components and operating points of a cycle affect its global properties.

To illustrate, consider a sequence of power plant designs. Fig. 1 shows a simple Rankine
cycle, which pumps a working fluid (e.g., liquid water), into a boiler to produce steam. In
the turbine the high-pressure steam expands, thus performing work. Heat is extracted from
the steam in the condenser so that the working fluid is again liquid. Finally, this liquid water
is pumped into the boiler (which requires work to be done in the pump) thus beginning the
whole cycle again. These processes happen continuously in steady flow around the cycle.

As it happens, the simple Rankine cycle trades efficiency for practicality. Fully
condensing the working fluid exiting the turbine enables the use of a pump, but at the
cost of discarding thermal energy that must be injected anew in the boiler. Operating the
boiler at higher temperatures and pressures improves this situation, but only to a point,
beyond which common materials cannot withstand the operating conditions.

Fig. 2 shows a more efficient design, which uses a second turbine to extract more energy
from the steam. The purpose of the reheater is to ensure that the steam does not begin to
condense in the latter stages of the second turbine, because water droplets moving at high
speed may damage the blades of the turbine. The extra energy required to reheat the steam



K.D. Forbus et al. / Artificial Intelligence 114 (1999) 297–347 301

Fig. 1. A Rankine cycle.

Fig. 2. Rankine cycle with reheat.

is more than balanced by the additional work gained from the second turbine. One can do
even better, however. Fig. 3 shows aregenerative feedwater cyclewhere some of the steam
from the outlet of the high-pressure turbine is routed back to the water feeding the boiler.
The heat of the steam tapped from the turbines and added to the boiler feedwater more
than makes up for the loss of work from that steam, thus increasing efficiency. Many power
plants use several stages of reheat and regeneration, although the increased efficiency must
be carefully balanced by the increased cost of introducing more parts.

2.2.1. Steady-flow versus closed cycles
The kinds of cycles described above are calledsteady flowcycles. Steady-flow

systems, such as Rankine cycles, involve changes of properties in a working fluid that is
continuously moving within a collection of components. Startup, shutdown, and transient
phenomena are not modeled and the system is presumed to be at steady-state, so that the
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Fig. 3. Regenerative feedwater cycle.

Fig. 4. A closed cycle example.

physical properties at each physical location within the cycle are constant over the time of
interest.

Another category of cycles consists ofclosed cycles, where a sequence of processes (per-
haps repeating) occurs in the same place. In a steady-flow cycle, the four essential thermo-
dynamic processes—compression, heating, expansion, and cooling—occur simultaneously
but at different locations (i.e., the pump, the boiler, the turbine, and the condenser) within
the cycle. In a closed cycle, such as an automobile engine, these same processes occur in
the same place (i.e., the cylinder) but at different times. Fig. 4 illustrates the Otto cycle
commonly used in automobile engines.

The ability to describe closed cycles also provides the ability to handle many
introductory types of problems involving single processes or a sequence of processes.
These assignments are given to students as a way for them to explore the fundamental
properties of fluids and processes.
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It is worth noting that, like most engineering domains (but unlike electronics), the
mapping from the detailed, physical artifact to the abstractions used to design and analyze
it is often complex. This is particularly apparent in closed cycles, where all the mechanisms
needed to achieve the physical processes (e.g., pistons, crankshafts, ignition system, fuel
system, etc.) are all abstracted away. This level of abstraction is standard and entirely
appropriate; if the fundamental thermodynamic properties of the cycle do not have the
required performance parameters, other perspectives are irrelevant.

2.3. What is hard about engineering thermodynamics

The design of CyclePad was driven by addressing the needs of instructors in teaching
engineering thermodynamics. A variety of problems arise when teaching students how to
design and analyze thermodynamic cycles:1

(1) Students tend to get bogged down in the mechanics of solving equations and
carrying out routine calculations. They avoid exploring multiple design alternatives
and avoid carrying out trade-off studies (e.g., seeing how overall cycle efficiency
varies as a function of turbine efficiency versus how it varies as a function of
boiler outlet temperature). Yet without making such comparative studies, many
opportunities for learning are lost.

(2) Students often have trouble thinking about what modeling assumptions they need
to make, such as assuming that a heater operates isobarically (i.e., no pressure drop
across it), leading them to get stuck when analyzing a design.

(3) Students typically don’t challenge their choices of parameters to see if their design
is physically possible (e.g., that their design does not require a pump to produce
rather than consume work).

(4) Students typically have no basis for relating the values they calculate to the physical
world and their everyday experience. The units of thermodynamic quantities, such
as kilowatts, are not as accessible as pounds or feet. This lack of intuition about,
for instance, whether 10,000 kilowatts is enough to light a room or a city causes
students to treat thermodynamics problems as abstractions divorced from practical
application.

These considerations drove the design of CyclePad. CyclePad handles routine calcu-
lations and is set up to facilitate sensitivity analyses, using truth-maintenance techniques
to provide explanations for its results. CyclePad helps students keep track of modeling
assumptions and their consequences. Finally, CyclePad detects physically impossible de-
signs, using a combination of qualitative constraints and numerical reasoning.

2.4. CyclePad in action

When a user starts up CyclePad, they have the choice of designing asteady flowsystem
or a closed cyclesystem. Steady-flow systems are specified by combining components

1 These observations are based on the experience of the second author, who teaches engineering thermodynam-
ics to undergraduates, and have been verified repeatedly by our instructor-collaborators at a number of universi-
ties.
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Fig. 5. Types of components used to model steady-flow cycles.

from a library (e.g., turbine, compressor, pump, heater, cooler, heat exchanger, throttle,
splitter, mixer) illustrated in Fig. 5. Closed cycle systems, such as Otto and Diesel cycles,
involve a sequence of physical processes operating on a piece of working fluid in the same
physical location. Closed cycle systems are specified by combining physical processes
from a library (illustrated in Fig. 6) to specify what happens to the working fluid over the
cycle. Closed-cycle designs can also be used to express many of the introductory, non-
design problems that occur in thermodynamics courses that explore the behaviors of fluids
under different processes.

Let us start by considering a steady-flow design. In a steady-flow system, components
are connected together bystuffs, which represent the properties of the working fluid at that
point in the system. (Stuffs are analogous to nodes in electronic circuits). The interface
helps the user put together a design by highlighting what parts remain unconnected and
providing simple critiques of the structure. Once the structural description of the cycle is
finished (e.g., there are no dangling connections or stuffs), CyclePad allows the user to
enter an analysis mode. In analysis mode, the particular properties of the system, such as
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Fig. 6. Types of components used to model closed cycles.

the choice of working fluid, the values of specific numerical parameters, and modeling
assumptions can be entered and explored.

CyclePad accepts information incrementally, deriving from each user assumption as
many consequences as it can. At any point questions can be asked by clicking on a
displayed item to show the set of questions (or commands) that make sense for it. In
addition to numerical parameters and structural information, all modeling assumptions
made about a component are displayed with it, and clicking on a component shows the
modeling assumptions that can legitimately be made about that component, given what is
known about the system so far. The questions and answers are displayed in English, and
include links back into the explanation system, thus providing an incrementally generated
hypertext. Fig. 7 illustrates.

In addition to numerical assumptions, selecting a component provides commands for
making or retracting modeling assumptions concerning that component. For example,
clicking on a turbine yields a menu of commands which offers the options of assuming
the turbine is adiabatic or isentropic. Such modeling assumptions can introduce new
constraints which may help carry an analysis further and new parameters (e.g., the
efficiency of the turbine) that must be set.

When CyclePad uncovers a contradiction, it changes the interface to provide tools to
resolve the problem by presenting the source of the contradiction (e.g., an impossible
fact becoming believed, or conflicting values for a numerical parameter) and the set of
assumptions underlying that contradiction. The hypertext dialog facilities can be used with
this display to figure out which assumption(s) are dubious and change them accordingly.

Sensitivity analyses are an important tool for building a student’s intuitions about how
physical principles contribute to the way an artifact works. CyclePad performs sensitivity
analyses by asking a student to select a dependent parameter first. It then offers a choice
of potentially relevant independent parameters, based on its analysis of the cycle. Given
an independent and dependent parameter, CyclePad derives an equation (including table
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Fig. 7. The CyclePad interface.

references, if needed) that describes the dependent parameter in terms of the independent
parameter, and plots the results. Fig. 8 illustrates.

Coaching is available on student request. The on-board analysis coach uses a teleological
analysis of the student’s design to identify the likely functional roles of each component,
and point out potential problems in choices of parametric values based on these assumed
roles. Explanations for functional roles can also be provided, as Fig. 9 illustrates. Students
can also access the CyclePad Guru, a server operating at Northwestern, for additional
assistance. For example, students can ask for help completing the analysis of their design
and for help in improving their design, as described in Section 7.

The design and analysis of closed cycles proceeds in the same manner, except that the
ontology of connection differs. The analog of state points for closed cycles is therefore
the time-slice, which, for simplicity, we term aslice. Reifying slices (a concept Hayes
introduced in [31]) enables us to portray a time-varying cycle in two-dimensional space,
as in Fig. 4.
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Fig. 8. CyclePad sensitivity analysis.

Even though the vocabulary of steady-flow cycles seems more closely tied to physical
components (pumps, turbines, etc.), here, too, significant abstractions are being made.
Turbines in high-capacity power plants, for instance, often have taps for bleeding off steam
between stages to be used in regeneration. Such turbines can be modeled in CyclePad by
combinations of turbines and splitters. Similarly, mixers in CyclePad are used to represent
certain kinds of heat exchangers, jet ejectors, and places in the cycle where flows are joined.
Since there is no standard graphical symbol vocabulary for cycle diagrams (unlike, say,
circuit schematics in electronics), we designed a vocabulary that maximizes expressive
power with a minimal number of symbols. This vocabulary is designed to fit naturally
with existing thermodynamics education and practice, while forcing students to confront
modeling issues in their choice of components and processes.

Although the level of design and analysis in CyclePad is abstract, it provides a
setting for design exercises that fits with thermodynamic practice. Conceptual design of
thermodynamic cycles emphasizes steady-state behavior and overall performance, rather
than the dynamics of the system, startup and shutdown procedures, plant geometry, or any
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Fig. 9. CyclePad uses teleological reasoning to identify intended functions of components.

of the more detailed design decisions that are required to design a physical artifact to the
level of detail that enables its construction. This abstraction does not remove the analysis
from real-world concerns. In engineering, issues like efficiency provide bounds on the
performance of the actual plant, and cost estimation procedures are used to determine the
feasibility of a project. CyclePad supports these analyses by including an economic model,
so that concerns such as capital costs and fuel costs can be considered when evaluating a
design, in addition to standard thermodynamic properties.

3. CyclePad’s architecture

CyclePad, as an articulate virtual laboratory, is designed to be more open-ended than
typical ITS’ (cf. [3]) but provide more scaffolding than traditional virtual laboratory
software. An open question in the design of educational software is the relative value of
student modeling (cf. [33]). The AVL architecture is agnostic on this question. In creating
CyclePad we have not found student modeling to be necessary, but this does not rule out
student modeling in AVLs in general.

The architecture of CyclePad is shown in Fig. 10. The CAD-like schematic editor used
for creating the structure of designs and the other parts of the user interface are similar to
other interactive engineering programs, so we lump all of those facilities into the Interface
Manager for this paper, to concentrate on the AI techniques used. The analysis facilities
are provided by the constraint propagator and sensitivity analysis, both of which rely
on property table interpolation. Scaffolding and coaching is provided by the structured
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Fig. 10. CyclePad’s architecture. Arrows indicate information flow.

explanation system and onboard contradiction and analysis coaches. The LTRE module
[23] is a logic-basedtruth maintenance system (TMS) coupled to a forward-chainingrule
engine, and serves as a blackboard, storing a design and the results of analyzing it.

The other modules are described in subsequent sections; here we comment on the design
of the LTRE, since it has been critical to the project’s success. The dependency network
in the TMS is used to provide explanations, guide inference, detect contradictory design
assumptions, and facilitate sensitivity analyses, as detailed below. We used a logic-based
TMS (LTMS) [36] in CyclePad because it offered the best tradeoff between inferential
power and economy. We ruled out a justification-based TMS (JTMS) because Horn clauses
are too clumsy for many of CyclePad’s inferential needs, including biconditionals (used
in definitional consequences of modeling assumptions, e.g., a compressor is operating
isentropically exactly when its isentropic efficiency is 1.0) and TAXONOMY constraints
[31] (used in implementing assumption classes). The ability of an assumption-based TMS
(ATMS) to provide rapid switching between very different contexts was not required
because, while frequent additions and retractions of assumptions are made in carrying out
an analysis, these changes are typically a small fraction of the working set of assumptions
in force.

The LTMS used is a variant of that described in [23], because we found that the TMS
dependency structures quickly consumed all available memory in caching the derivations
of numerical values. Initially, this is not a problem, and indeed is essential for CyclePad
to provide hypertext explanations of derived numerical values. However, when a CyclePad
user changes a numerical value, the conventional LTMS would preserve the dependency
structures for the old value and generate new (and virtually identical) structures for the new
value. As each assumed value may have many consequences, these structures can be quite
large.
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Observations of CyclePad in typical conditions indicated that, while the amount of
memory consumed rose linearly with the number of assume/retract cycles, the total time
taken for each cycle rose non-linearly. We identified two sources for the non-linear time
increase:

(1) there are more clauses to process on each iteration, because the dependency network
has grown, and

(2) as storage space begins to run out, the Lisp garbage collector and the virtual memory
system require a much larger fraction of the total time.

Our solution to this problem was to modify the LTMS to enable fact-level garbage
collection [16]. This enables us to designate certain classes of facts as eligible for deletion
when they become unknown. We preserve the integrity of the dependency network for
producing explanations of current beliefs at the cost of greater reliance on the inference
engine to rederive facts. This solution makes sense when one can identify classes of facts
in which

(1) it is unlikely that a particular fact will be believed again once it is retracted, and
(2) the cost of rederivation is small.

Numerical assumptions in CyclePad fit both of these criteria. Using a fact garbage collector
and designating statements of numerical values as collectible results in a significant
improvement in CyclePad’s performance. Empirically, we have assumed and retracted
1000 consecutive values at an average time per assumption/retraction cycle of 3.1 seconds
on a Pentium 133 MHz machine equipped with 32 MB of RAM. In contrast, CyclePad
running on the same computer with the conventional LTRE on the same example exhausted
the memory space at 48 changes, at which point the average retraction was requiring
46 seconds.

4. Domain theory

CyclePad’s domain theory was developed over a period of six years, with the bulk of
the work occurring in the first four years. It has been a collaborative effort involving
both mechanical engineering faculty and students and AI faculty and students, including
significant feedback and suggestions from other instructors and CyclePad users. The
development was guided entirely by the needs of engineering thermodynamics instruction.
Consequently, the validation consists of handling the kinds of problems that appear in
textbooks and the kinds of design exercises that students tackle in both introductory and
advanced courses.

The compositional modeling methodology [17,18,38] is used to organize the domain
theory. Compositional modeling provides formal representation and reasoning techniques
for formulating and reasoning about models. Briefly, compositional modeling works
as follows. Knowledge about an area is organized into adomain theory. A principle
component of domain theories aremodel fragments, which express some piece of
knowledge about the domain. Model fragments include the conditions under which they are
applicable, the types of individuals that they can be instantiated for, and what must be true
for them to be valid. Formulating a model for a specific problem consists of instantiating
fragments from the domain theory, taking into account the kinds of tasks the model is to
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be used for. The link between task information and the structure of the domain theory
is expressed in terms ofmodeling assumptions. Modeling assumptions encode control
information about what perspectives (including ontologies), granularity, and/or phenomena
make sense to consider or ignore. The construction of a model for a particular task is
generally automated, using amodel formulationalgorithm. Model formulation algorithms
use information about the physical situation and the task to select a consistent and coherent
set of modeling assumptions, and based on these assumptions, instantiate a collection of
model fragments from the domain theory to compose a model of that situation for the
intended purpose.

CyclePad’s domain theory encodes knowledge of thermodynamics relevant to reasoning
that goes on during conceptual design of thermodynamic cycles. Modeling assumptions
play a crucial role in organizing this domain theory. For instance, the choice of whether
to model a system as a steady-flow or open-cycle system is fundamental, leading to
a completely different set of primitives being available for a design. Indeed, learning
to make appropriate modeling assumptions is a key problem for students learning the
domain. On the other hand, the range of types of analyses used in conceptual design of
thermodynamic cycles is narrower than some situations where compositional modeling
has been used previously. As noted earlier, CyclePad does not cover dynamic phenomena,
since such phenomena are ignored in such analyses. Similarly, it does not cover fault
models, chemical effects (corrosion, working fluids consisting of multiple substances), and
other phenomena that lie outside what is needed to support engineering thermodynamics
education.

The modeling language used in CyclePad is similar to other implementations of
compositional modeling. CyclePad’s knowledge base currently consists of 52 conceptual
entities, 6 physical processes, 38 assumption classes, 195 equations, 184 pattern-directed
rules and 156 background facts about thermodynamics. The rest of this section outlines
the types of entities defined in CyclePad’s domain theory, and what CyclePad knows about
modeling assumptions, equations, and property tables.

Issue Steady-flow Closed-cycle

Role of components Explicit in structure of design;
Provides the notion of part.

Unspecified; any components that
achieve the desired process will do.

Role of physical processes Implied by the choice of com-
ponents.

Explicit in the structure of the de-
sign; provides the notion of part.

Connection between parts Stuffs (aka state points) de-
scribe properties of working
fluid between components.

Slices describe properties of work-
ing fluid before and after physical
processes.

Time Implicit episodes of indefinite
duration during which all op-
erations are viewed as steady.

Sequence of physical processes,
with repeating structure in case of
cycles.

Fig. 11. Comparison between steady flow and closed cycle ontologies.
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4.1. Types of entities

As with most kinds of engineering schematic notations, CyclePad uses a notion of part
and connections between parts to organize the structure of a design. However, as noted
previously, CyclePad supports both steady-flow and closed-cycle models. There are deep
conceptual differences between these ontological choices, but there are also substantial
overlaps between them. The differences are summarized in Fig. 11.

Process descriptions in closed-cycle representations always have a single before and
after slice. Component descriptions in steady-flow representations specify their inlets and
outlets. These participants are always expressed when the component or physical process is
instantiated. Equations for both types of entities are expressed in terms of the parameters of
that type of entity and the parameters of the stuffs or slices that participate in it. Qualitative
constraints on the participants are included in the entity descriptions. Figs. 12 and 13
show examples of definitions for steady-flow components and closed-cycle processes,
respectively.

(defentity (turbine ?self ?in ?out)
(work-converter ?self ?in ?out) ;;
(ss-thermodynamic-stuff ?in) ;; steady-state stuff
(ss-thermodynamic-stuff ?out) ;; ditto
(total-fluid-flow ?in ?out) ;; Process occurring inside
(expansion ?in ?out ?self) ;; Process occurring inside
(parameter (spec-shaft-work ?self)) ;; J/kg
(parameter (shaft-power ?self))
(parameter (mass-flow ?self))
( == (mass-flow ?in) (mass-flow ?self))
(parameter (delta-p ?self))
(parameter (delta-spec-h ?self)) ;; enthalpy, in J
(parameter (delta-spec-h-isentropic ?self)) ;; J
(parameter (delta-spec-s ?self))
(parameter (pr ?self)) ;; Pressure ratio
(parameter (Q-dot ?self))
(parameter (spec-q ?self))
(parameter (spec-shaft-work-isentropic ?self))
(parameter (Tout-isentropic ?self))
(parameter (spec-h-out-isentropic ?self))
((parts:cycle) has-member ?self) ;; Structural relationships
(?self instance-of turbine) ;; Curried for LTRE efficiency
(?self part-names (in out))
(?self IN ?in) (?in IN-OF ?self)
(?self OUT ?out) (?out OUT-OF ?self)

;; Contributions to global sets, which must be closed later
((possible-heat-flow-contributors:cycle) has-member

(Q-dot ?self))

((work-flows-out:cycle) has-member (shaft-power ?self)))

Fig. 12. Example of a steady-flow component definition (partial).
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(defentity (closed-system-process ?self ?in ?out)
(thermodynamic-stuff-slice ?in)
(thermodynamic-stuff-slice ?out)
(mass-transfer ?in ?out)
;; Structural relationships
((parts:cycle) has-member ?self)
(?self part-names (in out))
(?self in ?in) (?in IN-OF ?self)
(?self out ?out) (?out OUT-OF ?self)
(parameter (mass ?self))
(parameter (spec-Q ?self))
(parameter (spec-work ?self))
(parameter (Q ?self))
(parameter (work ?self)))

(defentity (polytropic-process ?self ?in ?out)
(closed-system-process ?self ?in ?out)
(parameter (n ?self)))

(defentity (polytropic-expansion ?self ?in ?out)
(polytropic-process ?self ?in ?out)
(expansion ?in ?out ?self) ;; process occurrence

((work-flows-out:cycle) has-member (work ?self))
;; Structural relationships
(?self instance-of polytropic-expansion))

(defAssumptionClass ((polytropic-expansion ?self ?in ?out))
(adiabatic ?self)
(:not (adiabatic ?self)))

(defAssumptionClass ((polytropic-expansion ?self ?in ?out))
(isentropic ?self)
(:not (isentropic ?self)))
(defAssumptionClass ((polytropic-expansion ?self ?in ?out))
(isothermal ?self)
(:not (isothermal ?self)))

Fig. 13. Example of a closed-cycle process definition (partial).

The explicit representation of physical processes occurring in components is a crucial
use of qualitative physics in CyclePad. Representing such processes explicitly simplifies
the knowledge base (i.e., the same definition of compression is used for pumps and
compressors, and the same definition of heat flow is used for heaters, coolers, and
heat exchangers), and enables explanations to be organized in terms of meaningful
mechanisms occurring inside components. As with other types of entities, qualitative
physics provides the medium for representing constraints on what is physically possible.
Fig. 14 illustrates.
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(defProcessEpisode (heat-flow ?src-start ?src-end
?dst-start ?dst-end)

( > (T ?src-start) (T ?dst-start))
(:not ( < (T ?src-start) (T ?dst-end)))
(:not ( > (T ?dst-end) (T ?src-end))))

(defProcessEpisode (compression ?in ?out ?worker)
( > (P ?out) (P ?in))
( < (spec-shaft-work?worker) 0)) ;; Eats work

(defProcessEpisode (expansion ?in ?out ?receiver)
( < (P ?out) (P ?in))

( > (spec-shaft-work?receiver) 0)) ;; Does work

Fig. 14. Part of CyclePad’s representation of steady-flow physical processes.

4.2. Modeling assumptions

CyclePad’s focus on thermodynamics for helping students learn about cycles simplifies
its knowledge base, but the need to represent and reason with modeling assumptions
is still critically important. Model formulation is in fact one of the central skills being
taught in using CyclePad, since students are not used to the level of thinking about
modeling assumptions that thermodynamics requires. A boiler, for instance, is typically
approximated as a heater for the purposes of cycle analysis. A flash chamber is modeled
as a splitter whose working fluid is saturated and with particular assumptions about
the dryness of the outlets. A multi-stage turbine is modeled as a sequence of turbines
and splitters. In most cases, detailed models are simply unavailable, and simplifying
assumptions are needed to make progress in an analysis. Assuming that heaters and coolers
are isobaric, or that turbines are isentropic, are examples of simplifying assumptions. The
modeling assumptions used in CyclePad are shown Fig. 15.

As usual in compositional modeling, CyclePad’s modeling assumptions are organized
into assumption classes[2,17]. Assumption classes are always associated with particular
classes of entities. The relevance of one assumption class can depend on the particular
choices made for another assumption class. For example, it only makes sense to consider
whether a compressor is isentropic if it is already known (or assumed) adiabatic.
CyclePad’s focus on thermodynamics for helping students learn about cycles simplifies
its knowledge base, but the need to represent and reason with modeling assumptions is still
critically important.

CyclePad’s interface is designed to scaffold students in working with modeling
assumptions. This scaffolding takes three forms. First, when starting a new design, students
must choose whether they are creating a steady-flow or an open-cycle model. This choice
must be made first since it determines what set of primitives is available for their design.
Second, modeling assumptions associated with each component and process are explicitly
shown along with other information about that entity. This is illustrated in Fig. 16.
As choices for modeling assumptions are made, other logically dependent choices may
become possible or become ruled out, and the display is updated automatically with this
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Component Modeling Process Modeling
Assumptions Assumptions

Turbine Isentropic Combustion heating Isobaric
Adiabatic Isochoric
Isothermal Isothermal

Compressor Isentropic Cooling Isobaric
Adiabatic Isochoric
Isothermal Isothermal

Pump Isentropic Polytropic expansion Adiabatic
Adiabatic Isentropic
Isothermal Isothermal

Heater Isobaric Polytropic compression Adiabatic
Isochoric Isentropic

Isothermal
Cooler Isobaric

Isochoric
Heat-exchanger Isobaric

Isochoric
Co-current
Counter-current

Mixer None
Splitter At-saturation

Isoparametric
Throttle None
Source None
Sink None

Fig. 15. Modeling assumptions that can be used in CyclePad.

information. We have found this explicit reminder of the need for modeling assumptions
to be very powerful in keeping students on-track. Third, the analysis tools in CyclePad
help students figure out if their choices of idealizations make sense. Modeling assumptions
appear in the explanations CyclePad generates, which enables students to easily see the
consequences of their assumptions. The mechanisms of assumption classes and logical
constraints between modeling assumptions helps students understand and appreciate the
consequences of their assumptions. For instance, students quickly discover that they cannot
assume a turbine is isentropic if different entropies have already been computed for its inlet
and outlet.

CyclePad does not provide direct assistance with formulating an idealized model from
an informal specification (e.g., natural language descriptions or sketches). Consequently,
automatic model formulation, which typically has been the focus of previous compositional
modeling work, has not been relevant for this application. We have deliberately not
provided support for this aspect of the task because it is sufficiently constrained in
educational settings that students will learn more from doing it themselves, using CyclePad
as an arbiter of whether or not their choices can be consistently realized.
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Fig. 16. Modeling assumptions are made explicit in CyclePad’s interface and explanations.

4.3. Equations

There are two kinds of equations in CyclePad:
• Local equationsconstrain the parameters of a particular entity, component, or physical

process.
• Global equationsare based on properties of multiple components in the cycle.
Two examples of local equations are shown in Fig. 17. The potential validity of local

equations is predicated by modeling assumptions. Local equations have the same temporal
extent as their subject; as long as it is part of the design, and the modeling assumptions for
the equation are valid, the equation is valid. Cycles themselves can have local equations.
For example, the net work of a cycle is the difference between the sum of the work done by
the cycle and the work done to the cycle, both of which are parameters of the entire cycle.

Global equations depend on the structure of the design. There are a number of global
equations for every cycle. For instance, four global equations determine the heat and work
flows into and out of the cycle. These inflows and outflows are then used to determine
the net heat flow and net work flow for each cycle in the design. They are formulated
based on closed-world assumptions about sets satisfying particular criteria. Returning to
the example of net work, the sum of work flows out of the cycle is a parameter of the cycle
defined by a sum of work over components that perform work, e.g., turbines in steady-flow
systems. Similarly, the sum of work flows out of the cycle is defined by the sum of work
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(defEquation Pump-P-ratio
((pump ?p ?in ?out))
( := (PR ?p) (/ (P ?out) (P ?in))))

(defEquation Reversible-pump-spec-work-1
((pump ?p ?in ?out)

(liquid ?in)
(isentropic ?p))

( := (spec-shaft-work ?p) (- (* (spec-v ?in) (delta-P ?p)))))

Fig. 17. Examples of local equations in CyclePad.

over components that absorb work from outside the cycle, e.g., pumps and compressors in
steady-flow systems. Other global equations are used to find the maximum and minimum
temperatures in the cycle.

An additional complication is that determining the participants in certain equations can
depend on the numerical values derived for certain parameters. An example in CyclePad
is considering the heat flows into and out of a cycle. Turbines, for example, can either
reject heat to their surroundings or absorb heat from them, depending on how they are
operating. Assuming that no heat exchange with its surroundings occurs is tantamount to
assuming that the turbine is adiabatic. Turbines are in fact commonly assumed adiabatic
in order to ignore such potential heat flows, but there are cases where it is important to
consider such imperfections (e.g., when a non-ideal isentropic thermal efficiency is given
for a component). When such heat flows are considered, they must be taken into account
in formulating global equations.

4.4. Tables

One source of complexity in engineering thermodynamics is that simple analytic
equations are inadequate to express the constraints that hold between properties of real
substances. In some cases, approximations such as ideal gases are valid. Air, for example,
can be treated as an ideal gas for many purposes. However, even air cannot be so treated
for cryogenic cycles, where the purpose is to liquefy and separate air into its constituent
substances. The more typical case, for working substances such as water, ammonia, and
refrigerant-12 (better known by its trade name Freon), is that extensive tables of property
data are needed to reliably calculate properties of working fluids.

For thermodynamics purposes, pieces of real substances exist in one of three phases:
• Saturatedfluids are in the process of becoming either a subcooled liquid or a

superheated gas. This is predicated on them being at their saturation temperature
(equivalently, saturation pressure), which in turn depends on the current properties
of the fluid. Fluids at saturation absorb and emit thermal energy with no change in
temperature (given a constant pressure).
• Superheatedfluids are on the gas side of the saturation boundary, i.e., they contain

more heat than they would have if they were saturated under their current conditions
of pressure or temperature.
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• Subcooledfluids are on the liquid side of the saturation boundary, i.e., they contain
less heat than they would if they were saturated under their current conditions of
pressure or temperature.

Each phase for every real working substance requires a property table. Since in principle
any two parameters completely constrain any thermodynamic substance, property tables
describe a (complex) 2D surface in the space of thermodynamic parameters. Since rich
data provide better accuracy, property tables can be quite large. CyclePad has property
tables for seven substances: water, nitrogen, ammonia, methane, and Refrigerants 12, 22,
and 134a. The largest of these, the one for superheated water, is 122 KB in size and contains
over 1900 lines of data (each line containing numerical values for six parameters.

4.5. Economic model

Economic constraints typically play an important role in design. In particular, the
thermal efficiency of a design must be weighed against its capital and operating costs.
CyclePad’s knowledge base includes an economic model whose ballpark calculations are
useful in evaluating the relative quality of designs. The total cost of a thermodynamic
cycle is a function of capital and operating costs. Capital costs represent the acquisition
and installation of the actual machinery, whereas operating costs represent the materials
and labor required during the lifetime of the system.

CyclePad incorporates standard engineering cost estimating functions (cf., [12]) that
extrapolate capital costs from a known cycle based on the size of the component, generally
estimated by mass-flow. Fig. 18 shows the cost function used for medium-pressure boilers
(the resulting curve fails to account for the capital cost of high-pressure boiler installations,
so we have a separate equation for boilers operating at high pressures). In this equation,
ModuleF is a module factor that estimates the cost of installation (e.g., pouring a concrete
mounting pad), PressureF is a pressure factor estimating the cost based on the pressure
at which the boiler is operating, and MaterialF is a material factor that depends on the
material used to construct the device.

CyclePad contains information about several different materials, including stainless
steel, nickel alloy, titanium, molybdenum, and unobtainium. Aside from unobtainium, each
material has limits on the temperatures (high and low, the latter for cryogenic applications)
that it can endure. Unobtainium is useful for suspending the economic constraints on a
particular device or subset of devices (albeit at extraordinary cost). CyclePad also estimates
the resulting mass of the cycle as a function of the materials employed, which may be a
critical constraint, for example, in the design of an aircraft engine.

CapCost=RefCostMedPrBoiler×
[

BoilerMassflow

RefMassflow

]SizeExpt
×ModuleF×PressureF×MaterialF

Fig. 18. Medium pressure boiler capital cost function.
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Operating costs include an allowance for maintenance, expressed as a percentage of
initial capital cost, and fuel cost. CyclePad contains information about the energy content
and cost of several different fuels, including natural gas, coal, coal gas, hydrogen, and oil.

For electrical power generating facilities, CyclePad estimates revenue as a function of
kilowatt hours produced, which enables the calculation of cycle profitability and net present
value based on assumed utilization and an assumed interest rate

Although quite basic, this model introduces real-world constraints that act in opposition
to purely performance concerns. The intention here is to make the student aware of the
context in which most engineering design occurs, and of the trade-offs in design that must
happen in practice.

5. Design and analysis

The process of designing a thermodynamic cycle, like most engineering design
problems, starts with a specification of what the cycle is supposed to achieve. Specifications
usually include some performance parameters that must be met (e.g., a minimum output of
work, a maximum cost, maximum heat flow transferred to the environment, weight, etc.)
An initial structure of the cycle is chosen, i.e., components selected and connected together
appropriately in the case of steady-flow designs, or the sequence of physical processes in
the case of closed-cycle designs. Assumptions and parametric choices are made, analyzed,
and revised. These revisions sometimes lead to changes being made in the basic structure
of the cycle itself. This process of elaborating and revising a design continues until the
result is satisfactory.

Although homework problems are simpler than real world design problems, within
CyclePad they require that the student approach them in the manner of an engineer.
Homework assignments use a variety of simplifications to scaffold students. For example, a
problem might focus on the parameters of a single component or process, the cycle diagram
(i.e., the “blueprint” for the cycle) might be specified as part of the problem, and economic
considerations are often ignored in introductory work. Creating CyclePad as a design-
oriented system has enabled its use both in introductory classes, where instructors provide
the necessary scaffolding by partially specified design files, and in advanced classes, where
students tackle problems that occasionally lead to published papers (cf. [45,46]).

This section describes how AI techniques are used in CyclePad to support design and
analysis. We start with reasoning about the topological structure of cycles, then describe
the equation formulation and constraint propagation algorithm used. Finally, the sensitivity
analysis and domain-specific graphing techniques are described.

5.1. Building and modifying the structure of cycles

While much of the reasoning about thermodynamic cycles is local, there are several
critical aspects of the reasoning that require global information:
• Topological analysis: The structural description language of steady-flow cycles

permits the creation of impossible cycles. Consider the cycle in Fig. 19. The working
fluid can flow into the loop formed by HTR2→ S20→ MXR4→ S19→ HTR2,
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Fig. 19. An impossible cycle.

but cannot leave it, because all flows are unidirectional (note the arrowheads on
the diagram). Such accumulations violate the presupposition of steady-flow analysis.
A student who inadvertently creates such a cycle must be informed about it.
• Formulation of global equations: As noted in Section 4.3, some of the equations

governing thermodynamic cycles are global, requiring knowing the structure of the
cycle and the sign of particular parameter values before they can be created.

To support these global analyses, CyclePad uses two distinct modes:
• In Build modethe student modifies the structure of the cycle, adding or removing

components or processes, changing connections, etc.
• In Analyze modethe student makes modeling assumptions, chooses parameter values,

etc.
Global operations on the structure of the cycle are carried out during the Build→

Analyze transition. For steady-flow cycles, a topological analysis is carried out to identify
fluid loops. Any loops which do not contain both an inflow and an outflow are flagged
as problematic and the student is so informed. The closed-world assumptions needed to
formulate the global equations are also made at this time.

5.2. Constraint propagation

A design is not finished until numerical values have been chosen for its parameters.
This is one reason why the overwhelming majority of thermodynamics textbook problems
require numerical answers.2 Combined with the desire to make a highly interactive
system, this suggested using constraint propagation as the primary analysis technique
in CyclePad. The overall structure of CyclePad was inspired in part by EL [42], an
experimental system for DC analysis of analog electronic circuits. EL was one of the first
systems to use constraint propagation and dependency networks to organize its reasoning,

2 In a typical textbook we surveyed, 90% of the exercises required numerical answers.
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and introduced the idea of dependency-directed backtracking. CyclePad’s domain is more
complex than EL’s, because thermodynamics involves greater use of modeling assumptions
than simple analog circuits, property tables must be used appropriately, and the number
and variety of equations that must be dealt with is larger. Nevertheless, the constraint
propagation techniques described here have been sufficient.

5.2.1. Formulating and using equations
When an equation is instantiated, it is automatically compiled into a set of constraint

rules. Each constraint rule corresponds to how that equation can be solved for one of its
parameters, given the rest. Every constraint rule includes3

• Equation: The equation it was derived from.
• Sets: The parameter it can be used to derive a value for.
• Uses: The parameters that must be known for the rule to be used in deriving a value.
• Test: A condition which must be true for the equation to be used. This is used to

avoid numerical errors, e.g., division by zero.
Constraint rules are used in two ways. First, they are used for antecedent reasoning, to
propagate the results of knowing theUses of a rule to calculate the value for theSets
of a rule, assuming that theTest is valid. Second, they are used to generate advice about
what a student might want to assume in order to derive a desired value.

Recall from Section 4.3 that equations are either local or global. The constraint rules
for local equations are precomputed and compiled into procedures for efficiency, whereas
the constraint rules for global equations are computed dynamically. Some global equations
can be computed during the Build→ Analyze transition, i.e., the equations for net work
flows into and out the cycle as a whole and its subcycles. Other global equations need
to be derived during constraint propagation, as the values of parameters become known.
Consider for example a turbine which is not adiabatic, i.e., it can exchange heat with its
surroundings. This heat flow must be taken into account when computing the heat balance
of the system—if it were negligible, the turbine could be assumed adiabatic. But until a
specific value is calculated for the heat flow, we cannot tell if it corresponds to a heat flow
into or out of the system. Thus we cannot formulate the equations for net heat flow into or
out of a cycle until such parameters are known.

5.2.2. Property table interpolation
Property tables comprise a critical source of information for CyclePad. Property tables

are woven into the constraint propagator via pattern-directed rules, operating under the
same protocol as the rules compiled for equations.

Due to the inherent loss of accuracy in interpolation, it is important, unlike equations,
to avoid using tables in every logically possible fashion. Given a superheated vapor, for
instance, knowing the pressure and temperature suffice to determine everything else (e.g.,
the specific enthalpy, specific entropy, etc.). However, CyclePad propagates all possible
values, so it could in principle redundantly compute, say, the pressure, from the specific
enthalpy and the temperature, and it is quite possible that the newly estimated pressure

3 This is basically the organization of rules used for antecedent constraint systems [23], although implemented
on top of a pattern-directed inference system for flexibility.
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value will be slightly different (given the accumulated inaccuracies in the interpolation
process), triggering a contradiction. Very clever interpolation techniques can minimize, but
not totally vanquish, this possibility. Consequently, redundant interpolations are avoided.

Minimizing the number of interpolations also improves the accuracy of the analysis.
This has two benefits. First, in complex cycles, contradictions can result from accumulated
inaccuracies, even when the cycle would be consistent when analyzed differently. Second,
the results of constraint propagation look more like the work a student would do, and
thus the explanations provided are a better model for the student. Consider two stuffs, S1
and S2, on either side of a turbine which is assumed to be isentropic. Suppose we know the
specific entropy at S1. The turbine being isentropic implies s(S1)= s(S2), therefore we can
derive a value for the specific entropy at S2. However, we might also know the temperature
and pressure at S2, and could derive its specific entropy via table lookup. Unless there is a
problem with the cycle these values will be consistent, but it may cost the user extra effort
to determine this; CyclePad may display 6.60 kJ/kg at the inlet and 6.60001 kJ/kg at the
outlet, for instance. We found that if CyclePad did not do the “obvious” propagation in
preference to interpolation, students trusted it less.

5.2.3. CyclePad’s constraint propagator
Constraint propagators work antecedently; given a numerical value, equations are used

to derive as many other values as possible, which in turn may support the derivation of
yet more values, and the process continues until quiescence. The nature of engineering
thermodynamics combined with the needs of students requires a more complex algorithm.
Recall from the previous two sections that

(a) some equations must be formulated dynamically,
(b) interpolations should be minimized, and
(c) derivations should serve as reasonable models for student work.

The structure of the propagation process addresses these requirements.
The propagation process services the following queues:
• NewQuantitativeQueue: Parameters that have received a numerical value.
• ConstraintRuleQueue: Constraint rules whose uses are known.
• NewUnknownQueue: Parameters that have lost their numerical value.
• TableLookupQueue: Opportunities for looking up property values via tables.
Whenever a numerical value is assumed or retracted, the parameter is added to

NewQuantitativeQueue or NewUnknownQueue as appropriate, and the constraint prop-
agator is invoked. The algorithm used is described in Fig. 20. Step 1 prevents the system
from wasting time deriving information from inconsistent assumptions. The ordering of
Steps 2, 3, and 4 help provide coherent problem-solving behavior and good explanations,
by deriving as much as possible from a given parameter (or by working as much as possible
on a newly unknown parameter) before moving to another.

Testing global equations to see if they can be used to derive values takes time linear
in the number of parameters mentioned in the global equations, unlike local equations,
whose constraint rules are only tested when there is some reason to believe that they have
changed. Consequently it makes sense to check global equations after as much as possible
has been derived from local equations. Reformulating balance equations, if necessary, is
postponed until after all other analytic derivations have been exhausted, to maximize the
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Algorithm CyclePadPropagate
1. If design is contradictory, halt
2. If ConstraintRuleQueue is not empty,

2.1 Let rule = pop(ConstraintRuleQueue)
2.2 If ¬Test(rule) go to 1
2.3 Let P = Sets(rule) and v = result of executing rule
2.4 ProposeNvalue(P,v,rule)
2.5 Go to 1

3. If NewQuantitativeQueue is not empty,
3.1 Let P = pop(NewQuantitativeQueue)
3.2 For each equation E using P,

3.2.1 For each constraint rule R for E such that Uses(R) are
all known,

3.2.2 Push(R,ConstraintRuleQueue)
3.3 Go to 1

4. If NewUnknownQueue is not empty,
4.1 Enqueue possible table lookup operations for the stuff/slice
4.2 For each equation E using P,

4.2.1 For each constraint rule R for E such that Uses(R) are
all known,

4.2.2 Push(R,ConstraintRuleQueue)
4.3 Go to 1

5. Check runtime equations
5.1 For each global equation E,

5.1.1 If no parameter mentioned in E has changed, return
to 5.1

5.1.2 If E can be used to derive some parameter P, ProposeN-
value(P,v,E)

5.2 If any values were proposed, go to 1
6. Reformulate balance equations

6.1 For each balance equation (heat flows in/out) in each cycle,
6.1.1 If signs for all heat flows in C are known

6.1.1.1 Formulate appropriate balance equation
6.1.1.2 Add to set of global equations

6.2 If any balance equations formulated, go to 1
7. If TableLookupQueue is not empty,

7.1 Let S = pop(TableLookupQueue)
7.2 Attempt property table lookup on S
7.3 Go to 1

Fig. 20. CyclePad’s constraint propagation algorithm.

amount of available information and thus the likelihood at succeeding. Table lookups are
relegated to Step 7 to implement the preference for analytic solutions over interpolation.

The procedureProposeNvalue is described in Fig. 21. The justification installed in
the LTMS is computed from the antecedent given, including both an expression for the
type of domain knowledge and method used to derive it (e.g., an equation in the case of
a constraint rule or global equation, or the property table used when interpolating) and
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Algorithm ProposeNvalue(p,v,ante)
1. If Known(p)

1.1 If CloseEnough?(Value(p),v) , return
1.2 Signal contradiction based on ante and antecedents of

Value(p)
2. LetValue(p) = v; Reason(p) = ante

Fig. 21. Algorithm ProposeNvalue.

the antecedent values it relied upon. Since the antecedent values have similar justifications
(or are themselves assumptions), and instantiated equations are justified in terms of the
properties of the cycle that justify them, the dependency structure that is built up by the
constraint propagator provides well-founded support for all numerical values in terms of
the structure of the cycle and the students’ assumptions about it.

To illustrate this procedure, suppose that a student is developing a model of a Rankine
cycle consisting of a heater, a turbine, a cooler, and a pump (cf. Fig. 1). From the given
information, the student knows the pressure at the outlet of the pump. The student assumes
this value (say, 100 bar), and then assumes that the heater is isobaric. Because the outlet of
the pump is connected to the inlet of the heater, this isobaric assumption causes the outlet
pump pressure to propagate to the outlet of the heater (i.e., there is no change in pressure
across the heater). Now the student would like to fix the state of the stuff exiting the heater,
so she assumes that the exit temperature is 500◦C. At this point, CyclePad has the values
of two state point variables, which enable the calculation of values for all other parameters
at this state point (in this case, via a lookup operation in the steam tables).

Let’s consider howProposeNvalue operates during the calculation of entropy for
this state point. First, a rule triggers on the existence of numeric value propositions for pres-
sure and temperature, and installs a property-table lookup on theTableLookupQueue .
At some point in the propagation, this queue will be examined, and this object will be
passed to the appropriate table lookup function. This function will use the numerical val-
ues of pressure and temperature contained in this object to execute a table lookup, and
it will then call ProposeNvalue on the resulting values, passing along the numerical
value propositions as the antecedents.

ProposeNvalue will first look for known numerical value propositions. If any exist,
their values are compared to the newly computed value. So long as these values lie within
an established tolerance (to allow for floating point rounding errors), ProposeNvalue does
nothing; the numerical value is already known by other means. If the values are not
close enough,ProposeNvalue asserts the new proposed numerical value as an
implication of its antecedents (in this case, the values for Pressure and Temperature). This
new proposition will trigger a contradiction-checking rule that disallows any parameter
to have more than one distinct numerical value, and the system will at that point halt
and signal a contradiction to the user. The interface will display the two contradictory
statements and enable the user to trace back from these statements to their root
assumptions. This is possible because the antecedents are part of the LTMS dependency
structure.
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In many cases, there will be no already-existing values, in which caseProposeN-
value will assert the new value as an implication of its antecedents. In this case, the two
antecedents are the numerical value propositions for the Pressure and the Temperature of
the stuff exiting the heater. Since they become part of the LTMS dependency structure,
the user may at any time investigate the reasons for the value of entropy at the exit of the
heater. In this case, the immediate reasons will be that (a) the user assumed that the Tem-
perature at the heater exit is 500◦C, and that the Pressure at the heater exit is 100 bar. This
value in turn rests on the assumed pump outlet pressure and the modeling assumption that
the heater is isobaric. Although many such chains of justification will be longer than in
this example, it is possible via this mechanism for the user to trace the derivation of any
calculated value in the system back to user assumptions.

The intricacies of CyclePad’s propagator do not change its computational complexity; it
remains linear in the number of parameters in the system. The number of new equations
that can be formulated is fixed as a function of the number of topological cycles in the
system (e.g., one equation for heat flows in and one for heat flows out for each cycle).

5.3. Sensitivity analysis

Exploring the sensitivity of a derived value, such as the cycle’s thermal efficiency, to
a particular numerical assumption is an important activity for developing intuitions about
thermodynamics. Although sensitivity analyses (often called “trade-off studies”) play a
central role in engineering design and their educational value is unquestioned, they are
rarely assigned because they are so tedious to perform. Consequently, CyclePad provides
tools for carrying out such analyses.

There are two subtleties with sensitivity analysis. First, there is ascertaining just how
the dependent parameter actually depends on the independent parameter. When working
with algebraic models, this is typically done for small examples by deriving an expression
for the dependent parameter in terms of the independent parameter, but in large examples
the complexity of the algebra can make this approach intractable. For complex systems,
numerical sensitivity analyses are now routine in engineering practice (the engineering
equivalent of “What if” analyses in financial spreadsheets).

The use of numerical techniques leads to the second subtlety; what happens if the range
of an analysis steps outside the bounds over which the model is applicable? The principle
way this happens in thermodynamics is when phase boundaries are inadvertently crossed.
CyclePad addresses these subtleties by providing two sensitivity analysis tools.

Slow but sure. This tool incrementally retracts and reassumes the independent parameter,
mapping it over the user-specified range. This method captures phase transitions accurately.
It also detects if a choice for the independent value leads to a contradiction, and does not
report the value of the dependent parameter for that choice. Unfortunately, this is simply
too slow for most sensitivity analyses, as it requires the recalculation of all derived values
for the cycle each time the independent value is changed. Although fact garbage collection
makes it possible, the overhead entailed in deleting and reestablishing clauses is high
enough that this option is rarely used.

Quick but heuristic. This tool uses the dependency network to construct an algebraic
expression for the independent parameter in terms of the dependent parameter. The
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Inputs: Dependent parameterD, Independent parameterI .
Output: Algebraic expression forD in terms ofI
Assumes:
• DerivingExpression(P) = algebraic expression used to derive value for P, calculated using

the dependency network.
• ParametersOf(E) = set of parameters occurring inE.
• Results of table interpolations are expressed as a special kind of algebraic equation.
• Subst(x,y,z) = traditional substitution operator.
• DependsOnParameter(E,P) is true whenE depends on the value ofP. This is calculated

using the dependency network.
• EquationToExpression(E,P) rewrites equationE into an algebraic expression which

computesP. P must be mentioned inE.

Algorithm DeriveExpressionIn(D,I)
(1) If D= I , returnI
(2) Let E= EquationToExpression(DerivingExpression(I),I)
(3) For eachP in ParametersOf(E)

3.1 If DependsOnParameter(Nvalue(P),D) then
Subst(DeriveExpressionIn(P,D),P,E)

3.2 Otherwise,Subst(Nvalue(P),P,E)
(4) ReturnE

Fig. 22. Constructing expressions for sensitivity analysis.

algorithm for constructing the algebraic expression is illustrated in Fig. 22. It exploits
the insight that, although the algebraic expression for any parameter is potentially huge,
those subexpressions which do not depend on the independent parameter can be treated as
numerical constants. This minimizes the complexity of the expression generated, making
sensitivity analysis very efficient even for complex cycles. The drawback, of course, is
that its results can be misleading if the chosen parameter range causes phase changes or
leads to contradictions. Our solution to this problem is pedagogical, not technological; we
encourage students to use sensitivity analysis as a rough guide, but to try out particularly
interesting values themselves to ensure that they are consistent. That way, students have
access to the usual analysis and explanation tools in CyclePad to explore their hypotheses,
rather than replicating this functionality in the sensitivity analysis system.

5.4. Domain-specific graphing

Graphical representations are an important means of describing, as well as analyzing
phenomena, and the field of thermodynamics has evolved several commonly used
representations to describe cycles, including the enthalpy-entropy, or Mollier, diagram, the
temperature-entropydiagram, and the pressure-volume diagram. Of these, the temperature-
entropy, or TS, diagram, is the most commonly used, so CyclePad has the capability to
generate such graphs corresponding to a student’s design.

A TS diagram for a simple Rankine cycle is shown in Fig. 23. The bell-shaped curve
is called the saturation line. At all points within it the working fluid will be saturated. To
the left and above the line, the working fluid is liquid, while to the right and above it the
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Fig. 23. An automatically generated temperature/entropy diagram.

working fluid is gas. The apex of the curve is called the critical point; at pressures higher
than this, the working fluid does not go through a phase transition between liquid and
gas, but simply behaves as a fluid. Contours of constant pressure, called isobars, are of
particular interest, as heating and cooling processes tend to move along them.

The lines in the diagram connecting points A through F illustrate the operation of the
Rankine cycle. The working fluid exits the pump and enters the boiler with relatively low
temperature and entropy, at point A in the lower left of the diagram. The fluid then rises
in temperature as heat is applied in the boiler, until it reaches the saturation point for the
pressure of the boiler (in other words, it moves along the isobaric segment AB that closely
tracks the left flank of the saturation line). At the saturation point, however, the working
fluid starts to change phase from liquid to gas, and no longer increases in temperature. This
process is represented on the diagram by the upper horizontal line that traverses the region
under the saturation line from points B to C. When this line intersects the right side of the
saturation curve the working fluid has been complete vaporized, and its temperature once
again starts to rise, to point D in the upper right.

At this point the working fluid enters the turbine, where it expands and its temperature
drops precipitously, as indicated by the vertical line running from D to E. Ideally, this
expansion is accomplished with no change in entropy (hence the vertical line segment
DE), but in practice there would be some rise in entropy, causing point E to lie to the right
of point D.

Notice that the vertical descent ends within the saturation region, indicating that the fluid
leaving the turbine has started to condense back into liquid. Too much condensation in the
back stages of a turbine can cause damage, a situation that would be readily apparent from
this diagram.

Finally, the water is condensed back into a liquid, moving from point E to point F.
Despite appearances, this is not quite where we started from, as we have yet to account
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for the state transformation that occurs within the pump. In fact, points F and A, although
they appear to be a single point, are separated vertically by about 0.5◦C, which is the
rise in temperature attributable to the action of the pump. The pump moves the working
fluid across isobars, and at this point in the diagram the isobaric contours are quite close
together. If the working fluid were a gas, we would see a large increase in temperature as
the pressure on the fluid increased.

Movement from state to state on this graph is constrained by the physics of the domain.
Compression and expansion processes cross isobars (i.e., the pressure changes during
these processes), enabling upward and downward movement, whereas heating and cooling
processes typically move along isobars (although there may be some change in pressure as
well). Traversal of the saturation region is isothermal (i.e., horizontal) unless the pressure
changes substantially, which is quite hard to do in practice.

Generating this graph therefore requires knowledge of the domain. We can extract the
temperature and entropy values for points A (boiler inlet), D (turbine inlet), E (condenser
inlet), and F (pump inlet) directly from the LTRE’s database of propositions, but simply
graphing these points would produce the triangle ADE. We also need to check for changes
in pressure and phase changes between each pair of points and insert new points (e.g., B
and C) where we find such changes.

Our algorithm checks for all six pairwise combinations of the three phases (liquid,
saturated, and gas) that could occur between the pair of points. To illustrate, suppose we
are processing points A and D, which correspond to the entry and exit points of the cycle’s
boiler. In this case, the working fluid is being boiled, then superheated. We use the pressure
at point A to determine, via a thermodynamic property table lookup, the temperature at
which the liquid will boil. This provides they-coordinate of the point at which the liquid
will cross the left flank of the saturation line. Thex-coordinate of this point is the entropy
of the working fluid given its pressure and the fact that we know it is saturated liquid (i.e.,
the point lies on the left flank of the saturation line). Together, these coordinates specify
point B in Fig. 23. We insert this point between the original pair of points. Because we
have now entered the saturation region, we have to insert a second point on the right flank
of the saturation line before we can move directly to D. This point, C in Fig. 23, will have
the same temperature as point B, since we are traversing the saturated region.

6. Explanations

Explanations are the heart of articulate software. An innovation developed for CyclePad
is the idea ofstructured explanation systems, an abstract layer between the reasoning
system and interface that mediates explanation generation. We first describe the idea of
structured explanation systems, and then outline how CyclePad’s implementation of this
idea works.

6.1. Structured explanation systems

Explanation generation is a very complex task (cf. [30,37]). A major source of
complexity is that it requires strong interactions between two systems that operate under
very different constraints:
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• Reasoning systems need to be optimized for efficient inference. This often means
leaving implicit information that is not changing over the course of the program’s
operation, and minimizing information about antecedents in a dependency system to
the bare minimum needed for correct operation.
• Interfaces need to be optimized for communication with the user. This often means

including background information that isn’t needed by the reasoning system, and
providing explanations that are conceptually clear and easy to explore.

Obviously these constraints are in conflict. Our solution is to introduce a mediating layer,
astructured explanation system, which reifies the information in the reasoning system in a
manner that simplifies creating good explanations in the interface. Structured explanation
systems use two kinds of techniques in this mediation:
• Suppression techniqueshide information found in the dependency network that is

either implementation-specific or is irrelevant to users.
• Reintroduction techniquesintroduce explicit items and dependencies representing

information that is needed to understand the system’s results but that are not found in
the dependency network.

The datastructures in a structured explanation system consist ofe-propositionsand
e-arguments. E-propositions correspond to the statements in the domain of discussion,
and are identified with elements of the underlying reasoning system. Each e-proposition
is justified by exactly one e-argument. E-arguments can refer to other e-propositions,
aside from the distinguished e-proposition they support. This structure is analogous to the
node/definite clause structure of a JTMS [23], but differs from it in two important ways.
First, unlike TMS structures, e-propositions and e-arguments in structured explanation
systems do not persist over time. Second, e-propositions and e-arguments are typed objects,
based on the semantics of the domain being explained. This typing enables the definition of
the explanation system in terms of generic operations (e.g., finding antecedents, generating
hypertext or field values) that behave appropriately for the entities in a domain and the
types of arguments used in it. This provides a natural way to implement presentation-based
interactions [10]. Specifically, they provide the basis for hypertext generation protocols,
enabling the dynamic creation of content from the reasoning system’s operations.

Conceptually, the structured explanation system can be thought of as managing a
dynamically generated rational reconstruction of the knowledge content of the dependency
network in the underlying reasoning system. They provide a natural foundation for creating
automatically generated hypertexts. To illustrate, we describe CyclePad’s structured
explanation system next.

6.2. CyclePad’s structured explanation system

The basic service provided by CyclePad’s structured explanation system is the
generation of hypertext in response to user queries. The starting points for user queries
are GUI elements in the cycle design, i.e., clicking on components or on parameters in
meters.

The types of e-propositions used in CyclePad are illustrated in Fig. 24. For each type of
e-proposition, the following two methods are defined:
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Fig. 24. E-propositions used in CyclePad’s structured explanation system.

• QuestionsFor( <e-proposition>,<design>) returns a list of questions that are
appropriate for<e-proposition> given the state of<design>. Each entry in this list
contains a string suitable for inclusion in a menu or web page describing the English
content of the question (e.g., “Why is S1 superheated?”) and a symbol indicating the
category of question (e.g.,:WHY).
• FindAnswer( <e-proposition>,<question>,<design>) creates an e-argument

that corresponds to asking<question> about<e-proposition> in the context of
<design>. For example, one might ask how a parameter was derived, which will
cause the generation of anumerical-value-via-equation, numerical-
value-via-table , ornumerical-value-via-propagation e-argument,
depending on the information recorded in the LTMS about how it was derived.

The inclusion of the design as an argument provides full access to the LTRE for that
design. This means that the list of questions can include commands, e.g., for assuming or
retracting numerical values.

For each type of e-argument, there are methods for producing text, hypertext, or values
suitable for displaying fields (selectable or not) that produce on the appropriate interface
medium the contents of the e-argument. The types of e-arguments used in CyclePad’s
structured explanation system are illustrated in Fig. 25.

The importance of the abstraction layer provided by structured explanations can
be seen by considering an example. The argument typenumerical-value-via-
table explains how a numerical value is derived via property-table interpolation. The
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Fig. 25. E-arguments used in CyclePad’s structured explanation system.

logical dependency for a numerical value derived from a table in the LTMS includes
an assertion that the state point is either a thermodynamic stuff or slice. This detail of
CyclePad’s representation is irrelevant to the student, and is therefore hidden. This hiding
is accomplished by a“can’t say, don’t tell” policy. Given any proposition in the database,
CyclePad can determine whether or not that proposition can be stated in English for the
user. Any antecedent that cannot be so articulated is not included in the antecedents for
the argument. When appropriate, the antecedents for the silent antecedent are themselves
promoted for potential inclusion. (Premises that are inarticulate are simply left out.) This
recursive process ensures that no aspect of the dependency structure is left out of the
explanation, if there is some way to state it.

We found the structured explanation system to be extremely helpful in developing
CyclePad, since it allowed us to optimize the content of explanations separately from the
means of displaying them. For example, early in the development process only textual
displays were available, whereas ultimately the software ended up tightly integrated into
the graphical Windows environment.4 However, most of the explanation code remained
unchanged through the user interface evolution, which went from Macintosh Common Lisp
to Lucid Common Lisp under UNIX before settling into the Windows world.

4 This was made possible by Franz, Inc.’s commercial Lisp environment, which provides a civilized interface
building environment in Lisp that makes extensive use of the native Microsoft Windows environment.



332 K.D. Forbus et al. / Artificial Intelligence 114 (1999) 297–347

7. Coaching

Coaching helps students understand how to operate in a domain, both in terms of
problem-solving skills and in relating their specific situation to the broader context of
thermodynamics. By virtue of its increased conceptual understanding of the domain,
articulate software can provide novel types of coaching. This section describes CyclePad’s
coaching facilities, including how it helps students resolve contradictions and makes
suggestions about parameter values based on an understanding of the intended teleology
of the system. We also describe a distributed coaching facility that provides more
sophisticated help with analysis and design, using an email-based agent and a web-based
design library.

7.1. Helping students understand contradictions

As soon as CyclePad detects a contradiction (e.g., the set of propositions in memory
lead to two different values for a given state point parameter), it halts and informs the
student that a contradiction has occurred. The set of contradictory facts is displayed, along
with all assumptions underlying these facts, as in Fig. 26. The student must resolve the
contradiction by retracting one of the implicated assumptions.

However, students often have difficulty understanding why a set of assumptions is
contradictory. The generative hypertext created by the structured explanation system
provides a tool for browsing the chains of reasoning that lead to the contradiction. It also
is useful in examining the consequences of the contradictory assumptions, to figure out
which of them might be better to retract.

CyclePad’s truth-maintenance system uses a stack of contradiction handlers [23]. This
enables additional handlers to be created to handle particular classes of contradictions. For
example, a common source of problems is choosing parameter values outside property
table bounds. The handler for this case presents a table-boundary diagram and a dot

Fig. 26. Contradictions must be resolved as soon as they occur.
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Fig. 27. Special cases of contradictions can be recognized.

showing the location of the out-of-bounds value, in addition to the usual information in
the contradiction dialog, as Fig. 27 illustrates.

7.2. The role of teleology

Many problems with cycle design are not apparent to students because their knowledge
of cycles is so limited. For example, an experienced designer will note that low quality in
the working fluid exiting a heat engine’s turbine is likely to cause damage to the turbine
blades and therefore attempt to adjust the system’s parameters to increase the exit quality,
or failing that, make a structural alteration to the cycle. To spot problems like this and
understand how to fix them requires knowledge of how function relates to structure. For
example, low exit quality is only a problem if the cycle is intended as a heat engine.
A Carnot cycle deliberately disregards the engineering challenges of expanding a saturated
fluid through its turbine in order to provide a theoretical benchmark for ideal performance,
and so by intention has low exit quality. A turbine may also be used in a cryogenic cycle
to cool the working fluid sufficiently to cause precipitation, because a resisted expansion
results in a greater drop in the working fluid temperature than a throttled expansion, so in
this situation we might be hoping for low quality. CyclePad incorporates Everett’s CARNOT

teleological recognition system [14] to provide advice about values of system parameters
based on its understanding of the intended function of the cycle.

CARNOT originally used dependency-directed search to infer function from structure
[15]. This was far too slow to be deployed. Also, it often produced a plethora of similar
solutions that varied only in minor details, making the principled choice of an interpretation
to use for generating advice problematic. CARNOT now uses evidential rules and Bayesian
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inference to suggest plausible functional roles for each component in a student’s cycle.
CARNOT’ S algorithm is quadratic in the size of the cycle, analyzing a 49 component cycle
(far larger than any student has attempted, to our knowledge) in about two minutes on a
low-end Pentium. CARNOT achieves broad coverage of the domain of single-substance,
closed thermodynamic systems with 107 evidential rules.

The notion of role is crucial in CARNOT’ S construal of function. Each type of
component in thermodynamic cycles can play between one and five functional roles. For
example, a mixer may act as a simple way to join flows, as a heat-exchanger, or as a
jet-ejector, in which a high-velocity jet of fluid entrains and compresses another inlet
stream. The evidential rules provide evidence either for or against a particular role. The
ability to suppress the likelihood of a role greatly enhances the expressive power of our
representation. Each piece of evidence has a subjectively assigned likelihood5 that is used
to update the prior probability of each role for each component. The evidential reasoning
is included in CyclePad’s explanation system, so that students can find out why (and with
what certainty) a particular role is believed and also get an explanation of why other
potential roles were rejected.

7.3. Understanding the meaning of parameters

CyclePad combines CARNOT’ S teleological inferences withnormsto generate advice
for adjusting parameters. A norm is a range for a component’s parameter that is
appropriate based on the component’s functional role. For example, the temperature of
the steam leaving a Rankine cycle boiler typically falls in the range of 300–600◦C.
Lower temperatures result in inadequate efficiency whereas higher temperatures require
uneconomically expensive materials in the downstream components. Likewise there is a
normal range of pressures. In contrast, the range of temperatures for the refrigerant leaving
the coils of a refrigerator (which are modeled as a heater) is quite different, typically in
the range of 5–15◦C. Inferring the role a component is playing is therefore essential to
providing relevant advice to the student. Our knowledge base currently contains eighteen
norms, between two and six per component depending on the number of potential roles
for that component. When the Analysis Coach is invoked, CARNOT infers the teleology of
the cycle. The functional roles assigned to each component are used to retrieve applicable
norms, which are checked against known parameter values. Any violations or suggestions
are noted using CyclePad’s explanation system, providing explanatory text associated with
each norm. In addition to being used to provide on-board advice, CARNOT’ S teleological
representations also play an important role in design coaching (see Section 7.5).

7.4. Distributed coaching

CyclePad is publicly available via the web. This has led to a geographically distributed
user base of uncertain size. Counting classrooms where we have direct knowledge (i.e.,
classes being taught by collaborators or that we physically visit), we know we have at least

5 Subjective assignment of these values turns out to be straightforward for a domain expert, and the introduction
of significant amounts of noise into these estimates does not materially affect the outcome.
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80 students using CyclePad per year. Based on informal samples, there are at least (for
1998) 600 more students. Systematic follow-up is difficult, since there have been 2593
distinct downloads6 from 63 countries between April 1997 and September 1999.

This highly distributed user base leads to several problems. Adding new coaching
facilities to the software requires distributing upgrades. For Northwestern students, we can
easily install upgraded versions in the local labs during an academic quarter. However,
instructors at remote sites are typically unwilling to download and install upgrades in
labs and local distribution sites once their class starts. To assess CyclePad’s educational
impact, we would like to gather more data about what students and instructors are doing
with CyclePad. We currently work with instructors from several remote sites to ensure
robustness, but expanding that pool is difficult. For instance, classroom adoptions include
a power plant course at Rutgers (NJ, USA) and a thermodynamics course in University of
Queensland (Brisbane, Australia). As the number of sites continues to grow, travel budgets
and time constraints preclude on-site data gathering. This poses a dilemma for gathering
the data needed by the educational aspect of this research.

As our user base expanded and instructors started relying on CyclePad more, another
dilemma arose. Feedback from our users indicates that they would like more coaching
facilities. However, they do not want to see memory requirements rise, and instructors who
rely on it daily are adamant about keeping it stable.

Our solution to these dilemmas was to make the CyclePad coaching architecture
distributed. The facilities described above remain embedded in the software. All new
coaching facilities are accessed via email, sent to a software coaching agent, theCyclePad
Guru. The email is sent via CyclePad, so that both the student’s request and the design that
is the subject of the request are included. (The requests the student can make are limited,
so as to be understandable by the Guru, using a form-based interface. Students can include
natural language comments on the side, which the developers may read, but the Guru does
not.) The email goes to the RoboTA Agent Colony [22] at Northwestern, which passes
all CyclePad-related queries on to the CyclePad Guru. The Guru processes the student’s
request, and uses the Post Office facilities in RoboTA to send a response to the student via
email.

The obvious disadvantages of this approach are that it requires students to have access
to email, and that responses take more time than from an on-board coach. However, it does
solve the problems our users raise: we can add complex new coaching facilities without
increasing the memory footprint on their machines, or indeed, requiring any changes to
their software at all. As a particular piece of coaching technology becomes solid enough, it
can be migrated to the onboard coach as appropriate. It also facilitates our data collection:
students get help with their work, in exchange for letting us examine their designs.

6 By distinct, we mean that we count each email address once, even though the same users download the system
multiple times, as upgrades become available. This only counts downloads from our web site; we know that mirror
sites exist, and most faculty we know download it once and redistribute it to their class locally. The breakdown of
users, based on self-reports when downloading, works out to be 1,200 students, 426 professors, 598 engineers, 19
corporate trainers, and 349 others. (Based on informal sampling, the others include students interested in science
fair projects, hobbyists, and those with a broad curiosity streak.)
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Fig. 28. CARNOT’s teleological reasoning is used to provide advice about parameter values.

The rest of this section outlines the kinds of help provided in the CyclePad Guru. The
case-based coaching is sufficiently novel that it merits discussion in a separate section,
which follows.

7.4.1. Analysis help
Students analyze their designs by making modeling assumptions and exploring choices

for parameter values. The complexity of even medium-scale cycles often makes it hard to
know what to do next. CyclePad provides on-demand coaching facilities that students may
invoke at their discretion.

The onboard CARNOT-based Analysis Coach is the student’s first resort, providing
advice linked to the intended purpose of the cycle. For example, students can have
CyclePad display the roles inferred for each device, which can provide useful feedback,
particularly if the system believes a mixer is acting as a flow-join rather than the open heat-
exchanger the student intends it to be. Norms can help students focus on problematic parts
of their cycle models.

The Guru provides complementary assistance with strategies for analyzing cycles. The
Guru has a domain-specific expert model of how to nudge students, based on observing our
instructor-collaborators. First, it checks to see if a working fluid has been chosen, and if
not, advises choosing a working fluid as a good first step. Second, it examines the design to
see what aspects remain unknown. It then presents a list of questions that the student should
consider in thinking about the design (i.e., if not all modeling assumptions have been made,
it suggests doing so). Since users often miss useful features in software, the Guru also runs
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the Analysis Coach on the student’s design to see if it can provide advice, and if so includes
instructions for using it. If none of these strategies is applicable, it responds with canned
text that espouses general principles, but does not make reference to the specifics of the
student’s problem.7

7.4.2. Design help
The Guru also accepts questions about design optimization, i.e., “how can Iin-

crease/decreasethe<parameter name> of <part>?”. Examples include increasing the
efficiency of the whole cycle, decreasing the operating cost of the cycle, or increasing
the quality of steam exiting a particular turbine. We have two goals in giving design ad-
vice. First, we want to nudge students in useful directions, rather than solving problems
for them. Consequently, the Guru provides plausible specific suggestions, but does not
attempt to validate those suggestions in the students’ context. Understanding why a sug-
gestion will or will not work in a particular circumstance is an important learning expe-
rience that we want students to have. Second, we want to motivate students to dig more
deeply into the nature of thermodynamics—ideally, to immerse themselves in the cul-
ture of engineering thermodynamics by studying real-world systems and how they are
connected to the assignments they are grappling with. Consequently, the Guru uses case-
based coaching to generate design advice, motivating the student to explore the case more
deeply by showing exactly how it might be relevant to the improvement they are trying to
make.

7.5. Coaching via analogy

Advice for design requests is generated by a case-based coach, using cognitively-
motivated analogical processing techniques [43]. Case-based coaching (cf. [34,41]) is
useful in educational software because it helps students tie their work to real-world
examples. For that reason, case libraries for education tend to be media-heavy. Such
systems have relied almost exclusively on hand-generated representations of cases. Cases
often consist solely of user-interpretable media (e.g., videos) with the only formal
representations being feature-based descriptors used for indexing. Cases are typically
encoded and woven into a case library by hand. This lack of rich formal representations
(e.g., proofs or causal arguments) limits the ability of a coach to show just how the
principles explained in the case could be applied to a student’s situation.

In the CyclePad Guru, we overcome these limitations in two ways. First, our cases
are generated automatically from instructor input by acase compilerthat uses CyclePad
to build the necessary representations. Second, we use analogical processing techniques,
drawn from Cognitive Science research, that can handle rich, structured representations. In
particular, we use MAC/FAC, a model of similarity-based reminding [21] to retrieve cases
relevant to a student’s design.

MAC/FAC produces remindings in a two-stage process. The first stage (MAC) is a
computationally efficient filter that selects from a large case memory a handful of cases for
further processing. MAC uses a specialized feature vector that is automatically constructed

7 Hence the name “Guru”.
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from the structured representations in a case memory. The dot product of these vectors
is an estimate of the size of match that the second stage will produce. The second
stage uses the Structure-Mapping Engine (SME) [20], an analogical matcher based on
Gentner’s structure-mapping theory [26]. SME compares each case produced by MAC to
the student’s design and returns the best structural match, plus one or two others, if close,
as remindings. When SME compares two descriptions, it produces one or two mappings
that consist ofcorrespondenceslinking particular items in the student’s design to the case,
andcandidate inferencesthat are statements in the case that may be transferable to the
student’s design. These inferences are used to generate specific advice about how the case
can be applied to the student’s design. While SME and MAC/FAC have been tested in
a variety of cognitive simulation studies (cf. [27,28]) to our knowledge this is their first
application in a fielded system.

When the Guru determines that the student’s request for design advice is reasonable
(i.e., the analysis has been completed and the design assumptions are non-contradictory), it
uses the structural and teleological aspects of its representation (as computed by CARNOT)
of the student’s design as a probe to MAC/FAC to generate candidate remindings. The
numerical aspects of the description are not used for retrieval because we found that
level of information to be basically irrelevant. A case includes a description of a design,
a problem with that design, and a transformation that modifies the original design in a
way that solves the original problem. Each case that MAC/FAC is reminded of has, as
part of that reminding, an analogical match between the student’s design and that case.
Since SME can generate multiple construals of a comparison (e.g., a plan to improve
efficiency by increasing turbine inlet temperature is applicable in three different ways to
a design that has three turbines), each reminding can generate several suggestions. Recall
that a candidate inference of a mapping is a statement in the base (here, the case) that
is suggested by the correspondences of the mappings as possibly holding in the target
(here, the student’s design). Candidate inferences are the source of advice. Fig. 29 shows
the candidate inferences when the Guru, given a Rankine Cycle, is reminded of a plan to
increase the boiler temperature and to add reheat.

Suggestions are filtered for relevance in two ways. First, the candidate inferences must
include the case’s design transformation—otherwise, there is no advice to give. Second,
the candidate inferences must include a statement of the form

(implies <structural/functional properties of cycle>

(applicable <plan of case>))

Each case is guaranteed to include a statement of this form (see below), and the
antecedents are exactly those things that must be true for the case’s transformation to make
sense. For example, neither of the cases retrieved in Fig. 29 would be relevant for cycles
lacking turbines. Therefore, a suggestion that does not include a candidate inference of this
form, and correspondences for each of the antecedents of this inference, cannot be applied
to the student’s situation.

Next, the suggestions are prioritized according to the complexity of the transformation
they suggest (with simpler transformations being preferred) and the structural quality of
the candidate inference [24]. Finally, at most 2 suggestions are selected to serve as the
basis for design advice, so that students are not deluged with advice. Sometimes the
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Suggestions for <Desc WM of Rankine Cycle >:

Suggestion <Use INCREASE-RANKINE-BOILER-T>:

1 step

support =.085 extrapolation = 0.66 ;; Support scores provide estimate

normalized = 0.45 overlap =.408 ;; of quality of advice.

combined =.944

<Mapping 153 Candidate Inferences >

(BOILER htr1)

(CONDENSER clr1)

(IMPLIES (AND (TURBINE tur1 s2 s3) ;; Applicability condition for this

(HEATER htr1 s1 s2)) ;; suggestion

(APPLICABLE (:SKOLEM:dsn-tr)))

(TRANSFORMATION-OF (:SKOLEM:dsn-tr)

(STEPS (ASSIGN (T s2) (:SKOLEM:+)))) ;; Qualitative value increase

Suggestion <Use REHEAT-RANKINE-CYCLE>:

16 steps

support =0.03 extrapolation =.846 ;; Shorter plans are preferred over

normalized =.404 overlap =.134 ;; longer plans

combined =.567

<Mapping 172 Candidate Inferences >

(BOILER htr1)

(CONDENSER clr1)

(IMPLIES (AND (TURBINE tur1 s2 s3) ;; Applicability condition for this

(COOLER clr1 s3 s4)) ;; suggestion

(APPLICABLE (:SKOLEM:dsn-tr)))

(TRANSFORMATION-OF (:SKOLEM:dsn-tr)

(STEPS (DISCONNECT (OUT tur1) (IN clr1) s3) ;; Removes stuff joining them

(INSERT-DEVICE (:SKOLEM heater) ;; Skolems for device types replaced

(:SKOLEM htr2)) ;; with same type, since these are

(CONNECT (OUT tur1) (IN (:SKOLEM htr2)) ;; within-domain analogies.

(:SKOLEM s5))

(INSERT-DEVICE (:SKOLEM turbine) ;; Skolems for device names lead to

(:SKOLEM tur2)) ;; introduction of unique new device.

(CONNECT (OUT (:SKOLEM htr2))

(IN (:SKOLEM tur2))

(:SKOLEM s6))

(CONNECT (OUT (:SKOLEM tur2)) (IN clr1)

(:SKOLEM s7))

(INVOKE-ASN (SATURATED (:SKOLEM s5))) ;; Non-structural assumptions

(ASSIGN (DRYNESS (:SKOLEM s5)) ;; required to complete analysis

(:SKOLEM 1.0)) ;; are also included as a source

(INVOKE-ASN (REHEATER (:SKOLEM htr2))) ;; of issues that the student

(INVOKE-ASN (ISOBARIC (:SKOLEM htr2))) ;; needs to consider.

(INVOKE-ASN (MATERIAL-OF (:SKOLEM htr2)

(:SKOLEM molybdenum)))

(INVOKE-ASN (FUEL-OF (:SKOLEM htr2)

(:SKOLEM natural-gas)))

(INVOKE-ASN (ISENTROPIC (:SKOLEM tur2)))

(INVOKE-ASN (MATERIAL-OF (:SKOLEM tur2)

(:SKOLEM molybdenum)))

(INVOKE-ASN (SATURATED (:SKOLEM s7)))

(ASSIGN (DRYNESS (:SKOLEM s7))

(:SKOLEM 1))))

Fig. 29. Candidate inferences for the retrieved cases.
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initial MAC/FAC results lead to fewer than two suggestions, because the case turned out
to not be applicable to the student’s design. In this case MAC/FAC is used iteratively,
with the previously retrieved cases temporarily removed from the case library. To avoid
exhaustive search, we place a tight bound on the number of iterations permitted, usually
two. This works well because MAC/FAC does a reasonable job at picking out relevant
cases.

Fig. 30 shows the advice generated from the candidate inferences in Fig. 29. The
advice generator splits out structural transformations from other suggestions, keeping other
assumptions separate as advice that may or may not be relevant to the student’s particular
situation. (Thinking about which of these suggestions is relevant is good exercise for the
student. For instance, Fig. 30 includes a suggestion to specify that certain devices be made
of molybdenum, which a student should recognize as unusual and expensive.) If the advice
is purely in terms of parameter changes, qualitative descriptions of relative change are
used in the plan and to generate advice. The Guru’s advice includes a URL describing the
general principles behind the design transformation, in addition to the specific instructions
on how to apply it to their situation.

A case compiler automatically generates new cases in the Guru’s design library. To
add a case, instructors provide two snapshots of a CyclePad design, one before and one
after their transformation. They also specify the goals of the transformation, in terms of
changes in parameter values (i.e., what parameters must have increased or decreased),
some strings to be used in templates, and a URL pointing to a detailed rationale for
that case. While we insist that the web page for the case include an explanation of the
case, this explanation is in natural language; case authors only need to be thermodynamics
experts, not AI experts. The case compiler uses CyclePad to analyze the before and after
design snapshot. It uses a record of user actions stored internally with each dumped design
to construct the description of the transformation that leads from one to the other, and
augments the case description with this plan, the problems it is intended to solve, and the
applicability condition described above. (It also checks to ensure that the transformation
actually achieves the claimed goals, since even experts can make mistakes.) Adding the
new case to the MAC/FAC memory is trivial, since no indexing is required: The structured
representations needed to support reasoning also suffice for retrieval.

Our case library currently consists of 13 cases, averaging 47 expressions involving 22
entities each. Retrieval and advice generation is very quick: less than five seconds on
the average, with no more than six seconds at most, on a 200 MHz Pentium Pro. This
performance comes from two factors. First, the MAC stage provides significant filtering,
with only two or three cases proposed for processing by SME each iteration. Second, SME
uses a polynomial-time greedy algorithm in its merge step, making its overall complexity
quadratic in the size of descriptions compared [20].

The potential value of a distributed coach becomes especially apparent when considering
the issue of extending and maintaining a case library. A large, rich case library with
lots of associated media (e.g., pictures of the real physical systems corresponding to the
CyclePad design) is probably best treated as a network resource, rather than installed on
each student machine. Instructors and thermodynamics experts can author new cases with
nothing more than CyclePad plus an HTML editor, since CyclePad and our case compiler
take care of generating the formal representations, and MAC/FAC handles retrieval. We
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From: robota@godzilla.cs.nwu.edu
Date: Mon, 20 Sep 99 00:49:47 -0600
To: forbus@nwu.edu
Subject: The CyclePad Guru’s response to your message: Need
help improving my Rankine cycle

You asked for help with your design.
I have 2 suggestions.
===============================================
Suggestion #1
Your problem reminds me of a method: increasing boiler tem-
perature in a Rankine cycle. Increasing the boiler temperature
increases the efficiency of the cycle.
You can find out more about this at <URL>.
Here is how you might apply this to your design:
1. Increase T(S2).
===============================================
Suggestion #2
Your problem reminds me of a method: reheat in a Rankine cy-
cle. Reheat adds another heater and another turbine. The second
heater, a reheater, heats up the working fluid at the turbine
outlet, and the second turbine extracts yet more work from
that. This increases efficiency because more heat is being
added when the steam is still at a reasonably high temperature.
You can find out more about this at <URL>.
Here is how you might do this with your design:
1. Disconnect the outlet of TUR1 from the inlet of CLR1.
2. Create a new heater, which we’ll call HTR2.
3. Connect the outlet of TUR1 to the inlet of HTR2. Let’s refer
to the properties of the working fluid there as S5.
4. Create a new turbine, which we’ll call TUR2.
5. Connect the outlet of HTR2 to the inlet of TUR2. Let’s refer
to the properties of the working fluid there as S6.
6. Connect the outlet of TUR2 to the inlet of CLR1. Let’s refer
to the properties of the working fluid there as S7.
You might find the following assumptions relevant or useful:
1. Assume that the working fluid at S5 is saturated.
2. Assume quality(S5) = 1.0000[0-1]
3. Assume that HTR2 is a reheater.
4. Assume that HTR2 works isobarically.
5. Assume that HTR2 is made of molybdenum.
6. Assume that HTR2 burns natural-gas.
7. Assume that TUR2 works isentropically.
8. Assume that TUR2 is made of molybdenum.
9. Assume that the working fluid at S7 is saturated.
10. Assume quality(S7) = 1.0000[0-1]

===============================================

Fig. 30. Design advice from the CyclePad Guru.
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are forming an editorial board for the web-based design library, to ensure quality control,
and encouraging submissions from CyclePad experts worldwide, much in the manner of
the Eureka community-maintained database of tips [8].

8. Discussion

CyclePad has moved out of the laboratory and into routine use in classrooms scattered
all over the world. Starting in 1995, collaborators at Northwestern University and the
US Naval Academy started using it with their students on an experimental basis. As it
became stable, we started distributing it via the Web (September 1997). At this writing
(September, 1999) we get on the average four downloads per day. Some of whom no doubt
never use the software or try it a few times and find it not to their liking, but some of
whom have turned out to adopt and adapt it to their teaching and learning. As mentioned
in Section 7.4, we have had over 2593 distinct downloads from 63 countries from our web
site alone. The foundation for distributed case-based coaching, in the form of RoboTA and
the CyclePad Guru, was in development and testing for eighteen months, and has been
available to students and instructors continuously since the end of 1998. CyclePad will
continue to be available as a set of Windows binaries, and the source will be made publicly
available through an open-source license in 2000, so that its evolution can be taken over
by the thermodynamics community. While the project is not yet over (see below), we have
already learned enough to draw some conclusions.

8.1. The value of articulate software for education

Our hypothesis was that articulate software—software that uses AI techniques to
understand the domain being learned, so it can provide better scaffolding to learners—
could be built. We think that CyclePad provides strong evidence for this hypothesis.
Moreover, there is mounting evidence (cf. [4–6]) that CyclePad can be valuable in
education, including:
• CyclePad has been adopted by instructors in a variety of educational institutions

for both introductory and advanced courses. Some institutions use it with traditional
textbooks, while others are developing new curricula around it.
• Advanced thermodynamics students at the US Naval Academy were able to tackle

more complex term projects than they were able to previously, resulting in some cases
in publishable technical papers (cf. [45,46]).

The design approach fits quite naturally into advanced thermodynamics courses. Although
in the US there is currently strong interest in using design tasks throughout the
engineering curriculum, this has not been the practice in introductory courses. Traditional
thermodynamics curricula are often analysis-centered, lavishing classroom time on
mathematical derivations of thermodynamic principles at the expense of helping students
understand the principles themselves and their implications. Many courses still focus on
teaching students how to do complex analyses, including table interpolations, with just
a simple calculator, even though practicing engineers tend to have more sophisticated
computer supports these days. The work that students typically do in these classes often
results in learning “formula picking” strategies rather than developing an understanding of
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(a) how thermodynamic principles relate to both the parts and the whole of a system,
and

(b) learning real-world design skills such as optimizing designs or working within
environmental constraints.

Introducing CyclePad into such courses can lead to a drop in student performance, since
students are being tested on mechanical calculation skills that in practice are automated.
One of the major problems we have found for instructors using CyclePad is incorporating
a design orientation into introductory courses [7].

This problem is analogous to the introduction of calculators in mathematics education,
where “drill and practice” on tasks that could be done automatically gave way to problems
that put these calculations to work in broader contexts. To gain the full potential benefits
of CyclePad will require rethinking what is taught in engineering thermodynamics. We
are currently carrying out such experiments. For example, we piloted an intervention at
Northwestern in the spring of 1999. The goal of the intervention was to integrate CyclePad
with the introductory course material so that students had a seamless experience of both
learning thermodynamics and the CyclePad software for the first time. In doing so, we
supported novices in learning basic thermodynamics concepts, vocabulary, relationships
and laws through doing CyclePad-based problems alongside the traditional textbook
problems. In using CyclePad, students were able to go beyond the textbook-type problem
and ask pertinent “why” and “how” questions about systems. For example, in one CyclePad
problem, students were asked to find the temperature of a specific state point. They were
next asked to explain why it was the same as the initial starting temperature. To do this,
students entered CyclePad’s explanation system to learn what formulas and assumptions
were involved in the calculation of the two temperatures. A second experiment is being
carried out in the fall of 1999, and should lead to some guidelines for curriculum designers
who want to incorporate articulate software.

One community for whom CyclePad is proving to be especially valuable is what in
the US is calledengineering technologyeducation, i.e., curricula aimed at producing
technicians rather than engineers. An analysis-heavy approach is not feasible with such
students, who often do not learn calculus until late in their education (if at all) and who
find complex algebraic manipulations to be difficult. CyclePad provides a “simulated
hands-on” experience for such students, helping them build solid, accurate intuitions
about thermodynamics. For example, at University of Arkansas, Little Rock, students use
CyclePad in laboratory exercises to experiment with systems that would be too expensive
or dangerous to physically build.

The articulate virtual laboratory architecture CyclePad embodies can, we believe, be
fruitfully applied to many other engineering domains. The nature of the analysis tools will
vary from domain to domain. AVLs for electronics or chemical engineering might end up
looking very much like CyclePad, whereas AVLs for mechanism design or computer pro-
gramming might be able to utilize similar structured explanation systems and distributed
coaching, but with very different analysis and design methods. With appropriately simpli-
fied domains, AVLs could also be used in science teaching; learning how animals work by
designing them could be a highly motivating task, but existing software relies on simple
case-based reasoning [11], and often provides minimal explanations and limited generativ-
ity.
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8.2. Technical innovations and surprises

CyclePad relies on a synthesis of existing AI techniques. However, it does incorporate
several extensions to the state of the art:
• The idea of structured explanation systems started with self-explanatory simulators

[19], which constructed the entire explanation system and its contents at simulator
compilation time. As Section 6.2 discussed, CyclePad demonstrates that structured
explanation systems can also be productively used with dynamically generated in-
ferences. The closest precursors are presentation-based interfaces [10] and automatic
hypertext generators [37].
• Everett’s teleological reasoning theory [14] was developed to support coaching in

CyclePad, and as described in Section 7.4, provides the basis for generating advice
about parameter values and in helping the design coach come up with relevant cases.
• CyclePad provides a robust demonstration that the ideas of compositional modeling

[17,18] can be used in analyzing complex systems, including large quantitative
knowledge bases (Section 4).
• Techniques for fact-level garbage collection in truth-maintenance systems [16] were

invented to support CyclePad (Section 3).
Some of our expectations about what technologies would be appropriate, or how they
would be used, turned out to be inaccurate. Some surprises were:
• Automatic model formulation, the primary focus of most research on compositional

modeling, is irrelevant for this task. What is important about compositional modeling
for this task is the ability to explicitly state and reason about modeling assumptions—
something we want to educate the user in doing, since understanding their appro-
priateness requires the deep understanding of thermodynamics that we want them to
have.
• Qualitative simulation was irrelevant for this task. Qualitative reasoning about

constraints imposed by physical processes, on the other hand, proved to be a crucial
source of knowledge for detecting physically impossible choices for parameters.
• Teleological reasoning proved to be essential, since it provides the context for many

kinds of advice.
• As suggested by [39], sophisticated natural language generation techniques were

inappropriate for CyclePad. The ability to automatically generate hypertext in
response to a user’s questions obviates the need for discourse planning, and the fixed
nature of the task means that issues such as selecting the appropriate level of detail
in an explanation are less pressing. Hypertext allows users to select how much they
want to know about a topic, and since the hypertext is only generated on demand,
many navigation problems common in fixed hypertexts are ameliorated.
• Some domain-specific extensions (i.e., table interpolation and automatic construction

of global equations) to simple constraint propagation provided sufficient algebraic and
numerical capabilities. The commercial world has developed many powerful symbolic
algebra packages, such as Mathematica, Maple, and Macsyma, and it has been argued
that AI software should rely on commercial software for such services. However,
relying on such commercial products would have increased the size and complexity
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of CyclePad, and made it impossible to distribute it via the web, which has been
crucial for our experiments.

We suspect that some version of these surprises will hold for many future articulate
educational software systems. For example, we suspect that reasoning about models will
be as important as automatic model formulation, if not more so. Qualitative simulation,
as traditionally practiced, will only rarely be useful, although other forms of qualitative
reasoning will continue to prove essential. Teleology will be increasingly important for
articulate software that places the phenomena under study into broader contexts, because
function provides the link between phenomena and intentions. Structured explanation
systems, dynamic hypertexts, and constraint propagation will be a “sweet spot” for
articulate educational software.

8.3. Learner support systems

We are also working on an additional incentive for instructors to send us data: helping
them with grading. We have deployed a grading support system to the CyclePad/RoboTA
system, designed with extensive input from our instructor-collaborators. In this system,
instructors use CyclePad to author assignments, using an additional wizard-style interface
that enables them to express constraints on the assignment. Examples of constraints include
requiring that particular substances be used as working fluids, establishing minimum and
maximum criteria for cycle parameters, and restricting the kinds of parameters about
which legitimate assumptions can be made (i.e., you can’t create a cycle of a particular
efficiency just by assuming that it has that efficiency). Students will then hand in their
assignments by emailing them to RoboTA, which will use the assignment’s constraints
to check the student’s work. The results will be provided to instructors by email or via
a private web site, as they choose. The grading support system will not assign grades—
that is the province of the instructor—but it will ensure that a student’s design is correctly
analyzed and determine how well it meets the specification of the assignment. This should
give instructors more time to focus on providing students with the higher-level feedback
usually made impractical by the time-consuming nature of checking numerical accuracy
in assignments (e.g., how elegant and creative are students designs? Do students repeat the
same mistakes or make more interesting ones?).

We believe this form oflearner support systemwill become a common pattern for
educational practice. By opening up the architecture, instructors can contribute cases,
assignments, and other materials customized to meet their needs. Distributed coaches could
provide extra encouragement for the formation of learning communities, by providing
opportunities for participants to author materials that are automatically woven into the
advice given to students. Instead of just browsing, AI techniques could enable software to
help bring participants together, based on shared interests.
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