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Abstract

Automatizing fault localization in programs has been an
interesting and active research field for several decades.
In order to increase efficiency at least tool support for
debugging would be highly required. This holds even
more for end-user programs like spreadsheets. In this
paper, we discuss three different models for spread-
sheet debugging where one relies on qualitative alge-
bra and deviations between the computed and the ex-
pected values of spreadsheet cells. The main objective
of this paper is to clarify the questions whether a quali-
tative model for debugging can replace a model captur-
ing the semantics of a spreadsheet. In order to answer
this question, we carried out an empirical evaluation
based on a publicly available spreadsheet corpus show-
ing that qualitative models allow for computing simi-
lar diagnoses but require a fraction of runtime. Hence,
qualitative models have the potential of being used for
fault localization under real-time conditions.

Introduction
Debugging, i.e., the localization of a fault causing a mis-
behavior and its repair, is a taxing task even for profes-
sional programmers. The situation seems to be even worse
when it comes to end-user programming where the cre-
ation of spreadsheets is one of the best-known examples.
Panko (2008) mentioned that there is a 3-5 % human er-
ror rate when writing formulas in spreadsheets. In addition,
there is almost no debugging support available in today’s
spreadsheet tools, besides simple mechanisms that allow in-
dicating maybe unwanted patterns in equations. Hence, there
is a need for providing debugging support for spreadsheet
programming and research in this area is highly required.

In this paper, we follow previous research of
Wotawa (2016) dealing with the development of quali-
tative deviation models for diagnosis. In (Wotawa 2016),
the author motivated research using an example from the
spreadsheet domain, introduced different models, and
provided first experimental results. In this paper, we want
to answer the question about the effectiveness of various
types of models for fault localization in spreadsheets. For
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this purpose, we took example spreadsheet programs used
for evaluating debugging tools for spreadsheets and applied
model-based diagnosis using different types of models. In
particular, we compare the outcome of a diagnosis engine
using a model that captures the behavior of a spreadsheet
directly (i.e., the value-based model), a model that relies on
data dependencies between references used in the spread-
sheet (i.e., the dependency-based model), and a model
that uses a qualitative algebra comprising <, =, and > as
values for handling functions used in spreadsheets (i.e., the
comparison-based model). In the latter model the values
<, =, and > capture the case where a computed value is
smaller, equivalent, or larger than the expected one.

We illustrate our approach by means of the spread-
sheet given in Figure 1. This spreadsheet is a simplified
and slightly modified version of the bugetone spreadsheet
from the EUSES spreadsheet corpus (Fisher and Rothermel
2005). For demonstration purposes, we have inserted faults
in the cells B7 and C7. These cells reference the cells B2 and
C2 instead of B3 and C3. Because of these faults, the operat-
ing income of the first and the second quarter are erroneous.
Coincidentally, the faults cancel each other when their com-
puted values are summed up in cell D7. As a consequence,
the total operating income given in cell D8 is correct.

All used models cannot identify a single cell as root
source of the observed misbehavior. The value-based and
the comparison-based model compute five double-fault
diagnoses as explanation: {B5,C5}, {B5,C7}, {C5,B7},
{B7,C7} and {B8,C8}. The dependency-based model com-
putes only one double-fault diagnosis, namely {B8,C8}.
This means that the dependency-based model fails to iden-
tify the real double fault whereas the comparison-based
model shows equivalent performance like the value-based
model. However, there is a huge difference in the computa-
tion time required for obtaining all double-fault diagnoses.
Whereas the value-based model requires 537 milliseconds
for computing the diagnoses, the dependency-based and the
comparison-based model require only three to four millisec-
onds. This indicates that a qualitative model would be both
capable of being precise in diagnosis and being fast in the
diagnosis computation.

The main contribution of this paper is to present and dis-
cuss first empirical results of different types of models used
for diagnosing spreadsheets. For the evaluation, we relied



(a) Value view of the faulty spreadsheet

(b) Formula view of the faulty spreadsheet

Figure 1: Running example. Correct output values are given
in green color, erroneous output values are given in red color.
There are two faulty cells: B7 and C7.

on artificial and also real-world spreadsheet examples from
a corpus that has been often used for evaluating different
kinds of debugging approaches.

We organize this paper as follows: First, we introduce
the basic definitions where we define model-based diagnosis
based on constraint solving. Afterwards, we discuss the dif-
ferent models to be compared and also define the mapping
of spreadsheets to their constraint representation. Further on,
we describe the empirical evaluation settings and the results
obtained. Finally, we discuss related research and conclude
the paper.

Basic definitions
In order to be self-contained, we briefly recall the basic
definitions of model-based diagnosis relying on constraints
taken from (Wotawa 2016): A constraint system is a tu-
ple (VARS,DOM,CONS) where VARS is defined as a finite
set of variables, DOM is a function mapping each variable
to its domain comprising at least one element, and CONS
is a finite set of constraints. Without restricting generality
we define a constraint c as a pair ((v1, . . . , vk), tl) where
(v1, . . . , vk) is a tuple of variables from VARS, and tl a set of
tuples (x1, . . . , xk) of values where for each i ∈ {1, . . . , k}:
xi ∈ DOM(vi). The set of tuples tl in this definition declares
all allowed variable value combinations for a particular con-
straint. For simplicity, we assume a function scope(c) for a
constraint c returning the tuple (v1, . . . , vk), and a similar
function tl(c) returning the set of tuples tl of c.

Using the definition of constraints we can define the con-
straint satisfaction problem. For this purpose, we introduce
the assignment of values to variables. Given a constraint sys-
tem (VARS,DOM,CONS), and variable v ∈ VARS, then
v = x with x ∈ DOM(v) is a single assignment of a
value x to the variable v. We further define a value as-

signment as a set of single assignments where there is at
maximum one single assignment for each variable. A con-
straint c with scope (v1, . . . , vk) fulfills a value assignment
{. . . , v1 = x1, . . . , vk = xk, . . .}, if there exists a tuple
(x1, . . . , xk) in the constraint tl(c). Otherwise, we say that
such a value assignment contradicts the constraint.

Example 1. Cell B5 contains the formula B3 · B4.
We can model this by using the following constraint:
((B3, B4, B5), {(a, b, a · b)|a, b ∈ N}).

A constraint satisfaction problem for a given constraint
system can be defined whether there exists a value assign-
ment that fulfills all given constraints. If there is such a
value assignment, the constraint satisfaction problem is said
to be fulfilled. Solving a constraint satisfaction problem is
basically a search procedure for a value assignment that
fulfills all constraints. This search for constraint systems
having only constraints with finite tuple lists is exponen-
tial and its corresponding problem is NP-complete. For de-
tails about algorithms and heuristics we refer the interested
reader to (Dechter 2003).

In the following, we discuss the diagnosis problem and
show how constraint solving can be used to solve the clas-
sical diagnosis problem. According to Reiter (1987), a di-
agnosis problem is a tuple (COMP, SD,OBS) where COMP
is a set of components, SD a logical sentence describing the
behavior of the system, i.e., the system description, and OBS
a set of observations. In our constraint-based representation
of the diagnosis problem, we assume a constraint represen-
tation of the system and additional constraints specifying
the observations. The constraint representation of a diagno-
sis problem (or the diagnosis problem for short) is a tuple
(VARS,DOM,CONS∪COBS) where (VARS,DOM,CONS)
is a constraint representation of a system comprising vari-
ables abC for every component C of the system, and COBS
is the constraint representation of all observations OBS.

Example 2. (Continuation of Example 1) Assuming that
the values of B3 and B4 are correct, then B5 ei-
ther computes the desired output or its formula is
faulty. We can model this by using the following con-
straint: ((abB5, B3, B4, B5), {(F, a, b, a · b)|a, b ∈ N} ∪
{(T, a, b, c)|a, b, c ∈ N}).

We can create such constraints for all formula cells. This
set of constraints builds the system description SD. The for-
mula cells build the set of components COMP, i.e. COMP =
{B5, B7, B8, C5, C7, C8, D2, . . . , D8}. The set of obser-
vations contains the information about the correct and er-
roneous output as well as the input cells and their values:
OBS = {B8 = 1000, C8 = 4200, D8 = 5200, B2 =
200, B3 = 100, . . .}.

The constraint representation of this diagnosis prob-
lem is as follows: The set of variables comprises the in-
put cells and the formula cells (B1, . . . , D8), some aux-
iliary variables for interim results (t1, . . . , tn) and an ab-
normal variable for each formula cell (abB5, . . . abD8):
VARS = {B2, . . . , D8, t1, . . . , tn, abB5, . . . abD8}. The do-
main for the abnormal variables is Boolean, (∀(w) ∈
{abB5, . . . abD8} : DOM(w) = {true, false}); the
domain of the other variables is Integer (∀(w) ∈



{B2, . . . , D8, t1, . . . , tn, }} : DOM(w) = N). The set of
constraints CONS = SD ∪ COBS where COBS is a con-
straint representation of OBS.

The results of a diagnosis problem, i.e., the diagnoses, are
subsets of the set of components COMP. We obtain these
subsets from the solutions of the corresponding constraint
problem via taking one value assignment that is a solution,
and putting all components C for which the corresponding
variable abC is set to T into a set, i.e., if s is a solution of
the constraint representation of a diagnosis problem, then its
corresponding diagnosis is ∆s = {C|(abC = T ) ∈ s}.
When computing all solutions from the constraint represen-
tation, we obtain all possible diagnoses. As usual, we define
a diagnosis to be minimal if there exists no subset, which is
itself a diagnosis.

We are interested in only computing minimal diagnoses in
the most efficient way. In the following, we discuss a diagno-
sis algorithm that computes minimal diagnoses of increasing
size. This can be achieved via restricting the number of abC
variables to be set to true using constraints. In this way we
are able to compute diagnoses up to a pre-specified size. The
necessary additional constraints are added during diagnosis
computation in diagnosis algorithms like ConDiag (see Al-
gorithm 1). Nica and Wotawa (2012) introduced the Con-
Diag algorithm that computes minimal diagnoses up to a
predefined size using a constraint representation of the diag-
nosis problem. Nica et al. (2013) compared ConDiag with
other diagnosis algorithms showing a good overall runtime.

Algorithm 1 ConDiag((VARS,DOM,CONS ∪
COBS),COMP, n)

Input: A constraint model (VARS,DOM,CONS ∪ COBS)
of a system having components COMP and the desired
diagnosis cardinality n
Output: All minimal diagnoses up to the predefined
cardinality n

1: Let DS be {}
2: Let M be CONS ∪ COBS
3: for i = 0 to n do
4: CM = M ∪ {|{abC |C ∈ COMP ∧ abC = T}| = i}
5: S = P (CSolver(VARS,DOM, CM))
6: if i is 0 and S is {{}} then
7: return S
8: end if
9: Let DS be DS ∪ S.

10: M = M ∪ {¬(C(S))}
11: end for
12: return DS

The ConDiag algorithm computes all diagnoses starting
with cardinality 0 to the predefined size n that has to be pro-
vided as parameter. In each step, we are searching for solu-
tions that have exactly a size of i (Step 4). All these solutions
are added to the set of solutions in Step 9. In order to pre-
vent the computation of non-minimal diagnoses additional
constraints saying that we are not interested in superset di-

agnoses are added (see Step 10). ConDiag returns all min-
imal diagnoses up to size n and the empty diagnosis if the
system works as expected.

Example 3. When calling ConDiag with the sets described
in Example 2 and n = 3, we obtain 5 double fault diagnoses
and 12 triple fault diagnoses: In the first and second iter-
ation (i=0 and i=1), the solver cannot find any solution. In
the third iteration (i=2), the solver returns the set {{B5,C5},
{B5,C7}, {C5,B7}, {B7,C7} and {B8,C8}} as solution. We
now have to add blocking clauses (¬(abB5 = T ∧ abC5 =
T ), . . .) for all found diagnoses to the set of constraints (see
ConDiag Line 10). This prevents the solver from reporting
supersets of these diagnoses as a solution. In the fourth it-
eration (i=3), the solver returns 12 solutions. If we would
not block the double fault diagnoses, the solver would re-
turn 63 triple fault solutions.

Models for diagnosis
For debugging spreadsheets we need constraint models. In
particular, we are going to discuss the three different models
discussed in (Wotawa 2016), (Hofer and Wotawa 2014) and
(Hofer, Hoefler, and Wotawa 2017). The value-based model
(V) relies on the concrete functions. The dependency-based
model (D) makes use of dependencies among variables, and
the comparison model (C) is a deviation model considering a
comparison between the expected and the real behavior of a
spreadsheet. For all three models, we briefly outline their ba-
sic principles and show how spreadsheets can be converted
into them. Without restricting generality, we assume that a
spreadsheet comprises a set of cells each uniquely identifi-
able using the row and the column. Rows are usually denoted
using integer values and columns using combinations of let-
ters alphabetically ordered, i.e., starting from A, B, . . . , Z,
AA, AB, . . . . Each cell may comprise a value or a function.
In the latter case, the value of a cell is equivalent to the value
computed using the function. For simplicity, we restrict our-
selves to integer values and functions like +, -, *, and /
having two arguments as inputs where the inputs can only
be references to other cells. These restrictions to integers
and simple arithmetical operators can be easily overcome
but would require additional definition overhead.

Models are constraint systems comprising a set of vari-
ables VARS, a domain function DOM mapping a domain
to each variable, and a set of constraints CONS. For each
non-empty cell XY in a spreadsheet where X indicates the
column and Y the row, we add a constraint variable vXY

to VARS, and define DOM(vXY ) accordingly to the type of
model. In addition, we need abnormal variables for stating
that some of the cells are correct or not correct. For this pur-
pose, we add a constraint variable abXY to VARS for each
non-empty cell XY storing a function. For such variables,
DOM(abXY is defined as being Boolean {T, F} comprising
true (T ) and false (F ) as values. The conversion of the cells
lead to the set of constraints CONS. For all three models,
this conversion is done for each non-empty cell separately
considering the underlying modeling concept V , D, and C.

Let us first start with the value-based model V . In a value-
based model V, the constraints corresponding to one cell



XY represent a value or function. Cell values have to be
of domain INTEGER. Hence, we assume DOM(vXY ) =
INTEGER for each non-empty cell XY . Regarding the con-
straints, we do not add any constraints for cells storing only
values. For a cell XY with a function of the form op(x, y)
where op ∈ {+,−, ∗, /} is an operator and x, y are refer-
ences, we add ((abXY , vXY , vx, vy), {(F, a, b, c)|a, b, c ∈
INTEGER∧a = b op c}∪{(T, a, b, c)|a, b, c ∈ INTEGER})
to CONS. Because the INTEGER domain is finite, the num-
ber of value tuples of this constraint are also finite. For the
experiments we restrict number values to even smaller do-
mains.

Example 4. The constraints described in Example 2 corre-
spond to the value-based model V.

For the dependency-based model D, we make use of the
following underlying idea. Given a function op(x, y) with
references to cells x and y. If both cells x and y are cor-
rect, and assuming the equation to be correct, we are able to
derive that the result of the function has to be correct. Ac-
cordingly to (Hofer, Hoefler, and Wotawa 2017), this model
can be improved when assuming that masking of failures
does not occur, meaning that there is no coincidental cor-
rectness and a correct return value of a function would also
imply correct input values when assuming the function to be
correct. When considering integer domains, failure masking
only occurs in very specific circumstances, e.g., in case of
multiplication where one input value is zero. For modeling
using modeling concept D, we do no longer have INTEGER
domains. Instead, we use the values ok and ¬ok for stat-
ing that a certain value is correct or not correct respectively,
i.e., DOM(vXY ) = {ok,¬ok}. The modeling for a cell with
the underlying model concept D is done as follows: (i) For
a value x stored in cell XY , we do not add any constraint
to CONS. (ii) For functions op(x, y) with referenced cells x
and y, we add the constraint ((vXY , vx, vy), TD) to CONS
where TD is a set comprising the following elements:

abXY vXY vx vy
F ok ok ok
F ¬ok ¬ok ok
F ¬ok ok ¬ok
F ¬ok ¬ok ¬ok
T . . .

In the above table the “.” entries in the last row stand for
value ok or ¬ok. Hence, in case of a fault, every value tuple
is possible to occur.

Example 5. The dependency-based constraint representa-
tion of our running example is as follows:

VARS = {B2, . . . , D8, abB5, . . . , abD8}

∀(w) ∈ {abB5, . . . , abD8} : DOM(w) = {true, false}
∀(w) ∈ {B2, . . . , B8}} : DOM(w) = {ok,¬ok}

CONS = {((B5, B3, B4), TD), ((B7, B2, B6), TD), . . .}.
For the comparison model (C), we introduce a three value

domain for each cell XY comprising <, =, and > indicat-
ing that the value of this cell is smaller, equivalent, or larger

than the expected value. Hence, for all non-empty cells XY
we define DOM(XY ) = {<,=, >}. For the operators, we
specifically define constraint tables. For example, if we add
two numbers and one number is larger than expected and the
other is equivalent, the outcome must also be larger. Similar
rules can be obtained for other values and also operators.
Similar to D, we do not have constraints for cells only stor-
ing values, and for functions op(x, y) with referenced cells
x and y, we add the constraint ((vXY , vx, vy), Ti) to CONS
where Ti is a set of tuples comprising the following elements
for operators ∗,+ on the left (T1) and −, / on the right side
(T2) respectively:

abXY vXY vx vy
F = = =
F < < =
F < = <
F < < <
F > > =
F > = >
F > > >
F = < >
F < < >
F > < >
F = > <
F < > <
F > > <
T . . .

abXY vXY vx vy
F = = =
F < < =
F > = <
F < < <
F = < <
F > < <
F > > =
F < = >
F < > >
F = > >
F > > >
F < < >
F > > <
T . . .

Again, the “.” indicates all values <, =, >.
Example 6. The comparison-based constraint representa-
tion of our running example is as follows:

VARS = {B2, . . . , D8, abB5, . . . abD8}

∀(w) ∈ {abB5, . . . abD8} : DOM(w) = {true, false}
∀(w) ∈ {B2, . . . , B8}} : DOM(w) = {<,=, >}

CONS = {((B5, B3, B4), T1), . . . , ((B8, B5, B7), T2), . . .}.
In addition to the constraints representing the function-

ality of the cells, we have to add observations. In the case
of spreadsheets, we have to add constraints for the non-
empty cells comprising values only. Usually, input cells, i.e.,
cells that are used as references but that do not reference
any cells, are assumed to have the expected values. Output
cells, i.e., cells that are never used as references, may com-
prise expected or unexpected values. For the value-based
model V, cells XY may comprise their values or any other
expected value. For such non-empty cells storing a value
x, we add ((vXY ), {(xe)}) to the constraint representation
of the observations COBS. There xe indicates the expected
value. For the dependency-based model D, we either add
((vXY ), {(ok)}) or ((vXY ), {(¬ok)}) to COBS depending
whether the value stored in XY is correct or not respec-
tively. For the comparison model C, we add ((vXY ), {(<
)}), ((vXY ), {(=)}), or ((vXY ), {(>)}) to COBS depend-
ing whether the value of cell XY is smaller, equivalent, or
larger than the expected value.
Example 7. For the value-based model V, the con-
straints of the observations are COBS = {((B2, B3,



. . . , B8, C8, D8), {(200, 100, . . . , 1000, 4200, 5200)})}.
For the dependency-based model D, the constraints
of the observations are COBS = {((B2, B3, . . . ,
B8, C8, D8), {(ok, ok, . . .¬ok,¬ok, ok)})}. For the
comparison-based model C, the constraints of the observa-
tions are COBS = {((B2, B3, . . . , B8, C8, D8), {(=,=
, . . . <,>,=)})}.

Empirical Evaluation
This empirical evaluation compares the comparison-based
model with the value-based model and the improved
dependency-based model w.r.t. runtime and diagnostic ac-
curacy. For solving the constraints, we used Minion (Gent,
Jefferson, and Miguel 2006), an out-of-the-box, open source
constraint solver that supports arithmetic, relational, and
logic constraints over Boolean and Integers.

As evaluation basis, we used the Integer spreadsheet cor-
pus (Ausserlechner et al. 2013)1. This corpus contains both,
real life spreadsheets as well as artificially created spread-
sheets. Each spreadsheet contains up to three artificially
seeded faults. We used only a subset of spreadsheets because
our prototype does not support the conversion of IF and
MAX expressions to constraints. Please note that this is a
limitation of the prototype, not a limitation of the approach.
We additionally excluded 16 spreadsheets, because Min-
ion did not solve the value-based constraint system within
20 minutes. Finally, 48 spreadsheets remained for evalua-
tion. The evaluation was performed on an Intel Core pro-
cessor (2.90 GHz) with 8 GB RAM and Windows 8 (Win-
dows 8.1 Enterprise, 64 bit) as operating system. We used
Apache POI (https://poi.apache.org/) for parsing the spread-
sheets and Java for converting them into constraints. For
solving the constraints, we used MINION version 1.8. We
applied the principle of early termination during the evalua-
tion, i. e., double faults were only computed when no single
faults could be found, and triple faults were only computed
when no double faults could be found.

Table 1 shows the results for the 48 faulty spreadsheets.
The solving time is the time Minion requires to parse and
solve the given constraint system. For diagnoses of cardi-
nality 2 and 3, the solving time is the sum of the solving
times required for computing the single, double, and triple
faults. The indicated times are the arithmetic mean over 10
runs. Whenever we have indicated 0 as solving time, Min-
ion required less than 0.5 ms and therefore returned 0 ms as
solving time. The value-based model requires significantly
more time than the dependency-based and comparison-
based model. This can be explained with the different do-
main sizes: While the dependency-based model reasons only
over Boolean values and the comparison-based model re-
stricts the variables’ domains of Minion to {<,=, >} (rep-
resenting <, =, and > respectively), the value-based model
reasons of Integer values ranging from -2,000 to 50,000.
Surprisingly, the comparison-based model requires even
less computation time than the dependency-based model
on average. This can be explained by the different Min-

1online available http://spreadsheets.ist.tugraz.at/index.php/corpora-
for-benchmarking/integer-corpus/

ion constructs that were used: We used tables as reason-
ing mechanism in the comparison-based model while we
used ‘watched-or’ for the dependency-based models. In fu-
ture work, we are going to evaluate if the comparison-based
model will still be faster when modeling the constraints in a
different way or when using a different solver.

When investigating the diagnostic accuracy of the models,
we see that for half of the spreadsheets (i.e. 24 spreadsheets),
all models compute the same amount of diagnoses. For
20 spreadsheets, the comparison-based and the dependency-
based models compute the same diagnoses, while the value-
based model computes less diagnoses. For two spreadsheets,
the value-based model computes more diagnoses than the
other models, because the value-based model does not find
any single fault diagnoses, but the other models do. The
combination of cells to double fault diagnoses increases
the amount of diagnoses. For example, the comparison-
based and the dependency-based model give three single
fault diagnoses ({D4},{D5}, and {D6}) for the spreadsheet
arithmetics01 3 1; the value-based model gives supersets of
these diagnoses ({D4,J3},{D5,J3},{D6,J3}) as well as some
additional diagnoses (e.g.{F3,J3}}. For one spreadsheet,
namely arithmetics01 2 2, the comparison-based model
computes less diagnoses than the dependency-based model
and the value-based model. For another spreadsheet (arith-
metics02 2 1), the comparison-based model computes more
diagnoses than the dependency-based model (90 vs. 7). The
reason for this is that the dependency-based model identifies
single fault diagnoses, while the comparison-based model
cannot find single fault diagnoses, but double fault diagnoses
which are combination of the single faults with other cells.

When using the value-based model, 16 out of 22 double
faults have been identified as single faults (i.e. one of the
two faulty cells was reported as an explanation for the ob-
served misbehavior); one of the five triple faults has been
identified as single fault and three as double faults. For the
comparison-based model, 18 double faults and two triple
faults have been identified as single faults and another two
triple faults have been identified as double faults. For the
dependency-based model, 19 double faults and two triple
faults have been identified as single faults and two triple
faults have been identified as double faults. The more ab-
stract a model is, the more likely higher order faults will be
reported in single fault diagnoses.

Because the value-based model represents the semantics
of a spreadsheet in a direct fashion, it is the most accu-
rate model in terms of computing all diagnoses that really
can explain the given misbehavior. Hence, in the evaluation
the value-based model can be seen as reference model. The
other two models have a good performance compared to the
value-based model. There is no clear winner when compar-
ing the dependency-based model with the comparison-based
model. The required diagnosis computation time is low in
both cases allowing to use both models under real-time con-
ditions. In our comparison there is a slight advantage for the
comparison-based model w.r.t. diagnosis time. When com-
paring the diagnosis output of both models there is only one
case where the comparison-based model behaves more sim-
ilar to the value-based model, i.e., arithmetics02 2 1. The



Solving time [ms] Diagnoses* Cardinality Observations Faulty
V C D V C D V C D Incorrect Correct cells

arithmetics00 1 1 141 0 1 7 8 8 1 1 1 1 0 1
arithmetics00 1 2 145 1 0 3 5 5 1 1 1 1 1 1
arithmetics00 1 3 138 0 3 5 5 5 1 1 1 1 1 1
arithmetics00 2 1 245 0 1 15 1 1 2 1 1 2 0 2
arithmetics00 2 2 195 1 1 8 8 8 1 1 1 1 0 2
arithmetics00 2 3 144 1 3 4 5 5 1 1 1 1 1 2
arithmetics01 1 1 38 1 4 1 4 4 1 1 1 1 1 1
arithmetics01 1 2 91 0 4 4 4 4 1 1 1 1 1 1
arithmetics01 1 3 585 1 1 11 11 11 1 1 1 1 0 1
arithmetics01 2 1 326 1 1 10 11 11 1 1 1 1 0 2
arithmetics01 2 2 1150 1 6 36 1 3 2 1 1 2 0 2
arithmetics01 2 3 115 0 1 4 4 4 1 1 1 1 1 2
arithmetics01 3 1 122 1 6 6 3 3 2 1 1 2 0 3
arithmetics02 1 1 18944 1 0 13 16 16 1 1 1 1 0 1
arithmetics02 1 2 379 1 1 7 8 8 1 1 1 1 1 1
arithmetics02 1 3 500 1 6 7 7 7 1 1 1 1 1 1
arithmetics02 2 1 5319 0 1 81 90 7 2 2 1 2 0 2
arithmetics02 2 2 462 3 4 5 7 7 1 1 1 1 1 2
cake 1 1 147048 9 34 44 65 65 1 1 1 1 1 1
cake 2 1 143435 7 38 43 64 64 1 1 1 1 2 2
cake 2 2 139707 10 38 20 65 65 1 1 1 1 1 2
cake 2 3 140937 7 43 17 65 65 1 1 1 1 1 2
cake 3 1 737542 29 87 96 186 186 2 2 2 2 2 3
fibonacci 1 1 1843 1 19 2 2 2 1 1 1 1 1 1
fibonacci 2 3 629 4 13 5 8 8 1 1 1 1 1 2
oscars2012 1 4 826 1 3 10 10 10 1 1 1 1 2 1
oscars2012 1 5 504 6 6 1 11 11 1 1 1 1 1 1
oscars2012 2 2 517 1 4 1 11 11 1 1 1 1 1 2
prom calculator 1 1 341 1 3 13 13 13 1 1 1 1 1 1
prom calculator 2 1 422 1 3 13 13 13 1 1 1 1 1 2
prom calculator 2 2 340 0 4 13 13 13 1 1 1 1 1 2
prom calculator 2 3 349 3 1 13 13 13 1 1 1 1 1 2
prom calculator 3 1 340 0 0 10 13 13 1 1 1 1 1 3
shares 1 1 963 3 9 1 1 1 1 1 1 1 11 1
shares 1 2 1263 1 10 1 1 1 1 1 1 1 11 1
shares 1 3 1323 3 9 1 1 1 1 1 1 1 11 1
shares 1 4 1588 1 10 1 1 1 1 1 1 1 11 1
shares 1 5 1256 1 7 1 1 1 1 1 1 1 11 1
shares 2 1 41598 6 24 16 17 17 2 2 2 2 10 2
shares 2 2 5681 6 18 2 2 2 2 2 2 8 4 2
shares 2 3 41888 0 24 17 17 17 2 2 2 2 10 2
shares 3 1 49918 15 45 16 17 17 3 3 3 3 9 3
shopping b1 1 1 521 1 9 15 15 15 1 1 1 1 2 1
shopping b1 1 2 510 6 9 15 15 15 1 1 1 1 2 1
shopping b1 2 1 529 3 7 15 15 15 1 1 1 1 2 2
shopping b1 2 2 513 3 6 15 15 15 1 1 1 1 2 2
shopping b1 2 3 510 1 7 16 16 16 1 1 1 1 2 2
shopping b1 3 1 4624 19 24 240 240 240 2 2 2 2 1 3
Average 31177.2 3.4 11.6

Table 1: Results for Integer Corpus with V representing the value-based model, C representing the comparison-based model and
D representing the improved dependency-based model. The cardinality columns indicate the smallest size of found diagnoses.



reason might be that in most cases there is only one output
cell with a wrong value. In this case, there seems to be no
real advantage about knowing the deviation of values instead
of only knowing that an output cell’s value is wrong. In order
to clarify the initial question whether the comparison-based
model is better than the dependency-based models w.r.t. di-
agnosis accuracy further studies have to be carried out.

Related Work
Jannach and Engler (2010) used constraint solving for
spreadsheet debugging. Jannach and Schmitz (2014) ex-
tended this work by developing an add-on for Excel, the
EXQUISITE debugging tool. Abreu et al. (2015) devel-
oped a model-based debugging approach for spreadsheets
which converts a spreadsheet into a value-based constraint
satisfaction problem (CSP). In contrast to Jannach and
Schmitz’s approach, this approach relies on a single test
case, and directly encodes the reasoning about the correct-
ness of cells into the CSP. Hofer et al. (2014; 2017) pro-
posed to use dependency-based models for spreadsheet de-
bugging. They additionally showed how to improve the diag-
nostic performance of dependency-based models. The work
presented in this paper directly builds on these value-based
and improved dependency-based models.

Ruthruff et al. (2003) proposed to use Tarantula, a
spectrum-based fault localization (SFL) technique for de-
bugging spreadsheets. Later on, Hofer et al. (2015) em-
pirically evaluated the performance of different similar-
ity coefficients for SFL on spreadsheets. Abraham and
Erwig (2007) developed a spreadsheet debugger, named
GoalDebug, which computes repair suggestions for faulty
spreadsheets.

There exist many more debugging and quality assurance
techniques for spreadsheets. We refer the interested reader
to Jannach et al.’s survey paper (2014) which provides an
exhaustive overview on different techniques and methods for
detecting, localizing, and repairing spreadsheets.

Conclusion
In this paper, we presented a first evaluation of a quali-
tative algebra model used for fault localization in spread-
sheets. The model is based on deviations between computed
values and expected values using the qualitative values <,
=, and >. For the evaluation, we used some spreadsheets
from a public available corpus and compiled them into three
different types of models, i.e., the value-based model, the
dependency-based model, and the comparison-based model,
which relies on qualitative algebra and deviation models.
We performed the empirical evaluation using constraint rep-
resentations of the spreadsheet models. We carried out the
constraint solving using the constraint solver Minion.

The empirical evaluation based on 48 faulty spread-
sheets showed that the value-based model is the slowest
one, followed by the dependency-based model, and the
comparison-based model. Hence, the diagnosis runtime of
the comparison-based model was the lowest and was also
never exceeding 30 ms, allowing its use for real-time debug-
ging applications in practice. The diagnosis output in terms

of diagnoses was similar. The comparison-based model and
the dependency-based model provided diagnoses close to
the ones coming from the value-based model, which serves
as reference model. Hence, a further more detailed study has
to be carried out using more spreadsheet examples.
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