
Sketching for Military Courses of Action Diagrams

Kenneth D. Forbus Jeffrey Usher Vernell Chapman
Qualitative Reasoning Group

Northwestern University
1890 Maple Avenue,

Evanston, IL, 60201 USA
847-491-7699

forbus@northwestern.edu

ABSTRACT
A serious barrier to the digitalization of the US military is that
commanders find traditional mouse/menu, CAD-style
interfaces unnatural. Military commanders develop and
communicate battle plans by sketching courses of action
(COAs). This paper describes nuSketch Battlespace, the
latest version in an evolving line of sketching interfaces that
commanders find natural, yet supports significant increased
automation. We describe techniques that should be
applicable to any specialized sketching domain: glyph bars
and compositional symbols to tractably handle the large
number of entities that military domains use, specialized
glyph types and gestures to keep drawing tractable and
natural, qualitative spatial reasoning to provide sketch-based
visual reasoning, and comic graphs to describe multiple states
and plans. Experiments, both completed and in progress, are
described to provide evidence as to the utility of the system.
Categories & Subject Descriptors: H.5.2 User Interfaces –
Interaction styles, I.2.4 Knowledge Representation Formalisms and
Methods, I.2.10 Vision and Scene Understanding – perceptual
reasoning,

General Terms: Algorithms, Human Factors, Design

Keywords: Sketch understanding; multimodal interfaces;
nuSketch; qualitative reasoning; analogy; spatial reasoning

INTRODUCTION
Sketching provides a natural means of interaction for many
spatially-oriented tasks. One task where sketching is used
extensively is when military planners are formulating battle
plans, called Courses of Action (COAs). This paper
describes a system we have built, nuSketch Battlespace
(nSB), which provides a sketching interface for creating
COAs. It is based on the nuSketch architecture for sketching
outlined in [14,18], but represents a generational advance
over the system described in [9]. We start by outlining the
problem and our approach to it, contrasting our

understanding-based approach with the more traditional
recognition-based approach for multimodal interfaces. Next
we describe the engineering techniques that enable us to
avoid using recognition technologies. Then we discuss two
of the more powerful features of nuSketch Battlespace: Our
spatial reasoning system and the comic graph visual
representation. Experiments with military users are then
summarized, and implications and future work are discussed.

The problem
 A COA consists of a sketch and a textual statement. The
sketch conveys a number of crucial properties of the situation
and the plan. First, it includes a depiction of what terrain
features are considered important. (Sometimes COAs are
drawn on acetate overlays on maps, sometimes the basic
terrain description itself is simply sketched.) The results of
analyzing terrain, such as possible paths for movement
(mobility corridors, avenues of approach) and good locations
for different kinds of operations are identified. The
disposition of troops and equipment, both for friendly (Blue)
forces and what is known about the enemy (Red) forces is
shown by means of unit symbols, a vocabulary of graphical
symbols defined as part of US military doctrine. This
graphical vocabulary also includes symbols for tasks, such as
destroy, defend, attack, and so on. The COA sketch indicates
a commander’s plan in terms of the tasks that their units are
assigned to do. The COA statement provides a narrative,
describing why units are being assigned the tasks that they are
(“Alpha will defend the Toofar Bridge in order to prevent
Red from moving reinforcements across it”) and timing
information that would be difficult to express in the sketch.

Currently COAs tend to be created on pencil and paper, or on
acetate overlays on maps with grease pencils, post-its, and
pushpins. For larger echelons in unhurried situations,
PowerPoint slides are sometimes generated later for
communication. There has been no shortage of attempts to
make computer software to speed the process of COA
generation, but on the whole these systems have not been
accepted by military users (cf. [23]). In all of our discussions
with military personnel, they cite as a major problem the
awkwardness of mice and menus for what is more naturally
done by sketching.

Systems like QuickSet [2] and Rasa [23,24] provide strong
evidence that multimodal interfaces could provide more

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To
copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.
IUI’03, January 12–15, 2003, Miami, Florida, USA.
Copyright 2003 ACM 1-58113-586-6/03/0001…$5.00.

forbus
Forbus, K., Usher, J., and Chapman, V. 2003. Sketching for Military Courses of Action Diagrams. Proceedings of IUI’03, January, 2003. Miami, Florida.

acceptable interfaces. QuickSet was used to describe the
layout of forces in setting up simulated exercises, and was
shown to be faster than using traditional CAD-style
interfaces. Rasa was used to help command post staff track
the positions of units (friend, foe, and neutral) based on field
reports, and Marines preferred it to their traditional purely
paper-based system. However, both simulation setup and
unit tracking are simpler tasks than COA generation, which
involves representing and reasoning about qualitative
properties of terrain, hypotheses about enemy intent, and
planning. Can multimodal technologies scale to the more
complex problem of COA creation? Also, both of these
systems involve the overhead inherent in today’s recognition
technologies: Significant investments in data collection are
needed to train statistical recognizers for glyphs and for
speech, users must be trained to use specific grammars and
vocabulary (e.g., choosing a list of names that phase lines can
be drawn from in advance1). Today’s speech systems have
serious problems in noisy environments, especially when
operators are under stress. In our conversations with many
active-duty military personnel, we hear repeatedly that if a
system requires speech recognition, they simply will not use
it. Can we find ways to provide the naturalness of sketching
without speech? Our experience with nuSketch Battlespace
indicates that the answer to both questions is yes.

THE nuSketch APPROACH
Most multimodal interfaces (cf. [1,2,19,22,23,26,27]) focus
on recognition. Typically they combine input from several
noisy channels (e.g., speech and gesture), using task context
and mutual constraints between channels to disambiguate the
input. For example, someone drawing a unit symbol for an
armor battalion, while saying “armor battalion”, might lead a
system like QuickSet to create a new entity, coded as an
armor battalion, in a database. This is clearly an important
approach, and has been demonstrated to provide more natural
and usable interfaces to a variety of legacy computer systems
[1,2,23]. Progress in this approach includes improving
recognition techniques for each modality and finding better
ways to combine cross-modal information.

The nuSketch approach [14,18] is very different. Our focus
is on visual and conceptual understanding of the user’s input.
We engineer around the recognition issues, since they are not
our primary concern. Instead, we concentrate on enabling
users to specify the spatial and conceptual aspects of some
situation, in sufficient detail to support subsequent reasoning
by AI systems on this input. Progress in our approach
includes improving the visual processing and reasoning
techniques and supporting richer reasoning about what is
sketched.

1 In [24] training times of 15 minutes were obtained, but by

the system designers specifying the names of all the
entities used (which means they would be in the
grammars) rather than using names generated
spontaneously generated by the operators.

These two approaches are of course complementary, and in
the long run it would be useful to have the best of each in a
combined system. However, we have found that it is possible
to do surprisingly well with sketch-based interfaces that
engineer around the need for recognition. The next section
describes how we do this.

Figure 1: nuSketch Battlespace interface

INTERFACE OVERVIEW
Figure 1 shows the nuSketch Battlespace (nSB) interface.
Many of the elements are standard for drawing systems (e.g.,
widgets for pen operations, fonts, etc.) and need no further
comment. The crucial aspects that make the basic interface
work are layers to provide a functional decomposition of the
elements of a sketch, glyph bars for specifying complex
entities, gestures that enable glyphs to easily and robustly be
drawn, and intent dialogs and timelines to express a
significant portion of the information in a COA narrative.
We describe each in turn.

Layers
COA sketches are often very complex,
and involve a wide range of types of
entities. The use of layers in the
nuSketch interface (Figure 2) provides a
means of managing this complexity.
The metaphor derives from the use of
acetate overlays on top of paper maps
that are commonly used by military
personnel. Each layer contains a
specific type of information: Friendly
COA describes the friendly units and
their tasks, Sitemp describes the enemy
(Red) units and their tasks, Terrain
Features describe the geography of the
situation, and the other layers describe
the results of particular spatial analyses.
(nSB also sometimes produces new

Figure 2

layers that summarize its response to a query.) Only one
layer can be active at a time, and the glyph bar is updated to
only include the types of entities which that layer is
concerned with. Clutter can be reduced by toggling the
visibility of a layer, making it either invisible or graying it
out, so that spatial boundaries are apparent but not too
distracting. The chosen layer also controls the grammar used
by the multimodal parser, which is used to both process input
from the glyph bar and (optionally) spoken input2.

Avoiding the need for recognition in glyphs
Glyphs in nuSketch systems have two parts. The ink is the
time-stamped collection of ink strokes that comprise the base-
level visual representation of the glyph. The content of the
glyph is an entity in an underlying knowledge representation
system that denotes the conceptual entity which the glyph
refers to. Our interface uses this distinction to simplify
entering glyphs by using different mechanisms for specifying
the content and specifying the spatial aspects. Specifying the
conceptual content of a glyph is handled by the glyph bar,
while the spatial aspects are specified via gestures. We
describe each in turn.

Glyph bars
Glyph bars (Figure 3) are a standard
interface metaphor, but we use a
system of modifiers to keep it
tractable even with a very large
vocabulary of symbols. The idea is
to decompose symbol vocabularies
into a set of distinct dimensions,
which can then be dynamically
composed as needed. For example,
in nSB there are (conceptually) 294
distinct friendly unit symbols and
273 distinct enemy unit symbols.
However, these decompose into
three dimensions: the type of unit
(e.g., armor, infantry, etc., 14
friendly and 13 enemy), the echelon
(e.g., corps to squad, 7 in all), and
strength (regular, plus, minus, or a
percentage). Our glyph bar specifies
these dimensions separately.
Templates stored in the knowledge
base for each dimension are
retrieved and dynamically combined
to form whatever unit symbol is
needed.

Modifiers are also used to specify
the parts of complex entities. Tasks, for
example, have a number of roles such as

the actor, the location, and so on. Widgets are added to the

2 We have left the speech interface hooks in the system, to

be ready for improved technology when it is available.

glyph bar whenever a glyph with parts is chosen. They
include combo boxes and type-in boxes for simple choices
(e.g., echelon), with drag and drop supported for richer
choices also (e.g., the actor of a task). This simple system
enables users to quickly and unambiguously specify roles.

One unanticipated advantage of this approach is that we
discovered that almost all of our military experts hated
drawing unit symbols. They strongly preferred having a neat
symbol drawn where they wanted it. Those who had tried ink
recognition systems particularly appreciated never having to
redraw a symbol because the computer “didn’t get it”.

Gestures
Multimodal interfaces often use pen-up or time-out
constraints to mark the end of a glyph, because they have to
decide when to pass strokes on to a recognizer. This can be a
good interface design choice for stereotyped graphical
symbols. Unfortunately, many visual symbols are not
stereotyped; their spatial positions and extent are a crucial
part of their meaning. Examples include the position of a
road, a ridge line, or a path to be taken through complex
terrain. Such glyphs are extremely common in map-based
applications. Pen-up and time-out constraints are also
problematic when the user is participating in conversations
with other people, not just focusing their attention on the
software. Our solution is to rely instead on manual
segmentation. That is, we use a Draw button that lets users
indicate when they are starting to draw a glyph. There are
two categories of glyphs where pen-up constraints are used to
end glyphs, but in general we require the user to press the
Draw button (relabeled dynamically as Finish) again to
indicate when to stop considering strokes as part of the glyph.

Types of glyphs
For purposes of drawing, glyphs can be categorized
according to the visual implications of their ink. There are
five types of glyphs, each with a specific type of gesture
needed to draw them, in nSB: location, line, region, path, and
symbol. We describe each in turn. In all cases, the start of
the gesture is marked by pressing the Draw button, and most
gestures require pressing the Draw button again to indicate
when they are finished.

Location glyphs: The only visual property that matters in a
location glyph is the centroid of its bounding box. Military
units are an example of location glyphs: Their position
matters, but the size at which they are drawn says nothing
about their strength, real footprint on the ground, etc. Since
such glyphs are drawn via templates, a gesture consisting of a
single ink stroke is used to indicate where and how large they
should be. (Users can of course move, resize, and rotate
glyphs after they are drawn if desired.) Most other template-
based glyphs (e.g., bridges, towns) are drawn as if they were
location glyphs, although their size is considered significant
in subsequent visual computations.

Line glyphs: Line glyphs represent one-dimensional entities
whose width of their content, while important, is not tied to

Actor

Location

Object

Can add more

Figure 3

the width of their ink. Roads and rivers are examples of line
glyphs; while their width is significant, on most sketches it
would be demanding too much of the user to draw their width
explicitly. The gesture for drawing line glyphs is to simply
draw the line. Optionally, the line can be drawn as a number
of distinct, disconnected segments, with gaps filled in via
straight line segments. Our users found this ability to tacitly
express a straight line very useful, since few of them are
artists but prefer their diagrams neat.

Region glyphs: Both location and boundary are significant for
region glyphs. Examples of region glyphs include terrain
types (e.g., mountains, lakes, desert…) and designated areas
(e.g., objective areas, battle positions, engagement areas, …).
The gesture for drawing a region glyph is to draw the outline,
working around the outline in sequence. Multiple strokes can
be used, with straight lines being used to fill in gaps.

Path glyphs: Paths differ from line glyphs in that their width
is considered to be significant3, and they have a designated
start and end. This information is used for queries in the
spatial reasoner, since what is ahead or behind on a path can
be of considerable importance in this domain. Path glyphs
are drawn with two strokes. The first stroke is the medial axis
– it can be as convoluted as necessary, and even self-
intersecting, but it must be drawn as one stroke. The second
stroke is the transverse axis, specifying the width of the path.
Based on this information, nSB uses a constraint-based
drawing routine to generate the appropriate path symbol,
according to the type of path. (For example, main attacks use
a double-headed arrow, while supporting-attacks use a single-
headed arrow.) We used to require users to draw the outline
of the arrow themselves, but this was intensely unpopular
compared to them specifying only what was necessary and
having our code fill in the details.

Symbolic glyphs: Symbolic glyphs don’t have any particular
spatial consequences deriving from their ink. They mainly
are used to serve as a visual referent for abstract entities.
Military tasks are an example. In some cases there are spatial
implications intended by the person drawing it that would be
missed with this interpretation, i.e., a defend task is often
drawn around the place being defended. Unfortunately, the
use of such conventions is far from uniform across the pool of
experts we have worked with. Consequently, the most robust
approach we have found is, as noted earlier, to use the glyph
bar to specify the participants in a task, and not draw other
spatial implications from the ink used to depict it. Symbolic
glyphs can be drawn with whatever ink strokes the user
desires4.

3 Often widths are specified to prevent moving units from

being hit by friendly artillery and air strikes.
4 While there are specific visual symbols specified by

doctrine for each task, we do not try to force users to use
the “right” symbol. We view this as an opportunity to
gather data on what spatial implications different users

Entering Other Kinds Of COA Information
In the military, courses of action are generally specified
through a combination of a sketch and a COA statement, a
structured natural language narrative that expresses the intent
for each task, sequencing, and other aspects which are hard to
convey in the sketch. In response to user feedback, we have
provided facilities in nSB that provide some of this
functionality.

Figure 4

The Intent Dialogs (Figure 4) enable the purpose of each task
(both friendly and enemy) to be expressed. Intent is
important in military tasks because it tells those doing it why
you want it done. If, during execution, they decide that the
task they were ordered to do won’t accomplish that purpose,
or that there is a better way, they will not do the specific task
they were ordered to do but instead do something that better
accomplishes the intent. Thus intent statements are a crucial
part of a task specification. In orders, the general form is
“<task specification> in order to <intent for that task>”
After much consultation with military officers, we found that
the following generic template successfully captures a
surprisingly wide range of intents:

“<modal> <actor> <operation> < object>”

where <modal> = enable, prevent, maintain

<actor> = a unit or side (e.g. Alpha Brigade, Red)

<operation> = a list of event types, e.g., destroying,
attacking, controlling, …

and <object> = another COA entity, e.g., Red, Alpha
Brigade, Foo Bridge, etc. The intent dialog enables such
statements to be made for each friendly and enemy task5.
Multiple <actor>s <object>s can be specified to handle
conjunctions.

might communicate through the way they draw their
glyphs.

5 These must be symmetric to support war-gaming. The
same is true of the timeline. The astute reader will notice
that the red and blue units are slightly different; this is a
doctrinal distinction made by the US military, whose
generic Red side is based on a Soviet model.

The Timeline (Figure 5)
enables temporal
constraints to be stated
between friendly tasks
and between enemy
tasks. Constraints that
cross sides cannot be
stated, since typically
one is not privy to the
other side’s planned
tasks6. One tasks can
be constrained to start or end
relative to the start or end of another task, or at some absolute
time point. Estimates of durations can also be expressed.

SPATIAL REPRESENTATIONS AND REASONING
nSB is designed to be an interface to battlespace reasoning
systems, built both by us and by others. Spatial reasoning is a
crucial component in most battlespace reasoners [16].
Consequently, we incorporate a suite of visual computations
in nSB that use sketched input to provide a combination of
domain-specific and domain-independent qualitative spatial
reasoning [10,17].

The nuSketch architecture currently uses two visual
processors for spatial reasoning. The ink processor carries
out basic operations when a glyph is created or updated. For
example, the ink processor computes a bounding box, axes,
and area of all glyphs when they are first created, and updates
this information if the glyph is resized or rotated. Qualitative
topological relationships (using the RCC8 vocabulary [3]) are
automatically computed between a new glyph and every other
glyph on its layer. The vector processor carries out more
sophisticated spatial analyses, such as those involving
position-finding and path-finding. It maintains a set of
Voronoi diagrams [6] for specific types of glyphs (e.g.,
terrain, terrain+friendly units, etc.) that are used in a variety
of on-demand queries. Both processors are threaded, to take
advantage of idle time and keep
responsiveness high. Two “eyes” on the
interface (Figure 6) let users know when
spatial reasoning is occurring, and the number of events in the
queue for each processor is also shown, as a form of progress
indication.

Most of the spatial reasoning facilities are accessed on
demand, by other reasoning systems7. All conclusions are
justified through a logic-based truth maintenance system [12],
to facilitate explanation generation and to retract conclusions
appropriately when the diagram is updated. Most queries
either confirm a relationship, when none of their arguments

6 This does limit our ability to express conditionals, e.g.

“don’t fire until you see the whites of their eyes”.
7 The built-in knowledge inspector also has an ASK

window for developers, but other reasoners provide their
own interfaces for Q/A.

are (logical) variables, or find the set of entities that satisfy
the relationships, when one of the arguments is a variable.
The types of queries supported are:

Location: Asking whether an entity is at or inside a region,
based on RCC8 relationships.

Positional: There are two kinds of positional relations.
Compass-based positional relations are the standard
northOf8, southOf, etc. There are two versions of compass
positional relations, one based on centroids and the other
which takes relative sizes of glyphs into consideration. The
latter is closer to intuitive psychological judgments, but, like
them, is not always defined for every pair of glyphs, e.g., if
they overlap or one surrounds the other. Centroid-based
relations are always defined, except in the extremely rare case
where both centroids are identical. Path-based positional
relations concern whether an entity is on a path (e.g., axis of
advance, avenue of approach) and its relative position along
the path (e.g., ahead or behind).

Preposition-like: These are close analogs to what are
intuitively treated as spatial prepositions in natural languages,
specifically near, adjacent, and between. We use Voronoi
diagrams to compute these, based on [6]. How close these
are to human intuitions is still an open question; it is known in
other domains that function as well as geometry is important
to accurately model human use of spatial prepositions [4,8].
So far these approximations have been reasonable.

Position-finding: Terrain analysis often involves identifying
places that satisfy specific functional constraints. For
example, a hiding place for an ambush must not be visible
from any enemy vantage point (cf. Figure 7). We provide a
query for
finding all
places in the
diagram that
satisfy
constraints
such as
concealment,
cover, and
terrain type.
Places are
constructed by
polygon set
operations over the sketch, using a simple domain theory
about the cover, concealment, and trafficability properties of
different terrain types for categories of units.

Path-finding: Many queries involve finding paths (e.g.,
which of these two units could reach Objective Slam
sooner?). Following [5], we use a path-planner based on
quad trees, using constraints specified as part of the query
(i.e., speed, stealth) to construct a constraint diagram that

8 We use the DARPA subset of Cyc KB contents plus our

own domain theories in our knowledge base.

 Figure 5

Figure 6

Figure 7

divides the sketch into regions of constant cost, a dynamic
query-specific qualitative representation.

COMIC GRAPHS
Plans are often complicated, involving sequences of states
and conditionals. Military planning is often done under great
uncertainty, making it necessary to take into account alternate
hypotheses about what is happening and why. Both of these
factors suggest that a sketching tool to support military
planning should enable users to construct and relate
descriptions of multiple states. nSB uses comic graphs for

this purpose. A sketch can have multiple subsketches, each
corresponding to a qualitatively distinct state of affairs (cf.
Figure 8). If everything were certain, one could view an
unfolding sequence of states almost like a comic strip, with
each panel (subsketch) leading to the next. Unfortunately,
our knowledge of the world, and of the future, are only
partial. Thus we must introduce alternative states
corresponding to different interpretations of observations, and
different outcomes of events. We believe that this branching
structure provides a valuable alternative to animation in
visualizing complex plans and their outcomes, although
experiments to prove this point are work for the future.

In qualitative physics, an exhaustive set of such states would
be an action-augmented envisionment [10], but since comic
graphs are user-generated we require neither completeness in
the contents of a state nor for the set of states. While we
expect future battlespace reasoners to produce comic graphs
as one form of output, our users report it is already valuable
in organizing their own thoughts. We plan to mine the corpus
of sketches we are gathering for heuristics to guide
development of automatic generation and presentation
techniques.

Comic graphs are implemented using the metalayer
mechanism introduced in sKEA [18]. That is, a sketch
consists of a set of subsketches, each of which represents a
particular state of affairs. Each subsketch appears as a glyph
in a special layer, the metalayer. States can be given
classifications from a small, intuitive collection (e.g.,
observed, hypothesized, intended, etc.). Relationships

between states are indicated by drawing arrows, labeled with
the semantics of the relationship (e.g., hypothesis, intended
next state, etc.). Comparison is an important operation on
sketches [20]. States can also be compared to each other by
analogy, via a drag and drop interface that invokes our
analogy software [7,13] to compare them (Figure 9). These
comparisons can be used to reflect on alternate choices, and
work is in progress to hypothesize enemy intent based on
historical precedents.

USER EXPERIMENTS AND FEEDBACK

nSB has benefited from substantial formative feedback from
experts in three different venues. We discuss each in turn.

Integrated Course of Action Critiquing and Elaboration
System Experiment: This experiment was conducted at the
Battle Command Battle Laboratory at Ft. Leavenworth in FY
2000. An early version of nuSketch Battlespace (COA
Creator) was combined with three other modules to create a
crude prototype end-to-end system that started with a sketch
and generated a synchronization matrix (a Gantt-chart style
representation used by the military for detailed battle plans).
The other modules were: (1) an Active-Templates style NL
system to provide COA statement information, from
AlphaTech, (2) a fusion system that combined COA Creator
output with the statement information from Teknowledge,
and (3) the CADET system from BBN to generate detailed
plans and schedules from this output.

As reported in [25], this system enabled active-duty officers
to generate COAs three to five times faster than by hand, with
the same quality of plan produced. Four hours were needed
to train officers to use this crude prototype9; it was estimated
that with professional software integration the training time
would be closer to one hour, due to the naturalness of the
sketching system. This is an important datum, since the US
Army’s experience with digital media has generally been
dismal10.

9 The officers had to be taught to transfer files from one

component to another, and and about situations that
would lead to crashing, for example.

10 An anonymous opposition-force commander at the
National Training Center claims that “Digital technology
is a force multiplier … for the enemy”
http://dtsn.darpa.mil/ixo/cpof%2Easp

Figure 8

Figure 9

Greybeard usage in DARPA’s Command Post of the Future
Program. We have been fortunate to have a number of
retired military officers testing our software, which has been a
valuable long-term source of formative feedback. In our
experience, we can have generals doing analogies between
battlespace states within an hour of sitting down with the
software for the first time.

Interface component in DARPA’s Rapid Knowledge
Formation Program. nSB was adopted by both RKF teams
as part of the interfaces for their integrated systems. The
purpose of these systems is to enable experts to extend and
maintain knowledge bases with minimal intervention by AI
experts. The KRAKEN system, by Cycorp and its
collaborators, relies on natural language dialogue to interact
with experts. The SHAKEN system, by SRI and its
collaborators, relies on concept maps to interact with experts.
Both teams are using nSB as part of their interface for this
domain, enabling domain experts to combine sketching with
their other modalities of communication. nSB provides a
KQML server that enables external systems to access sketch
information, perform spatial reasoning, and control nSB’s
interface to set up context for questions. Furthermore, the
UMass group is also using output from nSB to set up
situations for their Abstract Force Simulation system [21],
which provides COA critiques using qualitative summaries
compiled from Monte Carlo simulation. In this year’s
evaluation, supervised by an independent evaluation
contractor during the first two weeks of October, retired
military personnel used nSB to enter COAs as part of the
knowledge capture process. Only 1-2 hours of training via
teleconference was required for them to achieve reasonable
fluency. The combined systems were successfully used by
the experts to add and test new knowledge about COA
critiquing.

 All three of these experiences suggest that we have
succeeded in making an interface that is natural for the
intended user population. The ICCES experiment suggests
that the representations we produce are useful for subsequent
reasoning, and our experience in the RKF experiments, where
two radically different AI systems successfully used it as an
integral component, lends strong additional evidence in this
regard.

 DISCUSSION
We believe that nuSketch Battlespace provides a solid
demonstration of the utility of the nuSketch approach to
multimodal interfaces. By focusing on understanding rather
than recognition, we have created an interface that users find
natural and that enables them to work more efficiently.
Clever interface design, backed by careful design of visual
processing and reasoning, enables military users to carry out
sophisticated analyses and generate plans. Much remains to
be done, of course, but the basic mechanics of nuSketch
Battlespace appear to be a stable platform for future
development of more sophisticated battlespace reasoners and
visualization systems.

We believe that these techniques can be applied to any
domain-specific sketching system. Moreover, the major
differences between this domain-specific system and our
open-domain sketching system sKEA [14] are (1) the use of a
domain-specific glyph bar instead of allowing arbitrary KB
collections and (2) some domain-specific spatial reasoning.
This suggests that one could have the best of both worlds, by
combining domain-specific glyph bars for areas of frequent
use, and rely on more general mechanisms for extensibility.

Most of our planned extensions concern embedding more
sophisticated battlespace reasoning within nSB. First, we
plan on using our MAC/FAC model of similarity-based
retrieval [15] as part of an enemy intent recognition system.
We believe that such a system could be a valuable adjunct in
war-gaming, given the medium of comic graphs for
communicating its results. Second, we are exploring
collaborations with the US military to use a version of nSB
for training, extended with built-in coaching and critiquing
functionality. This will enable us to greatly extend our case
library, which will raise some interesting interface issues for
browsing and maintenance of a semantically rich graphical
case library. Finally, we are exploring the use of nSB as an
interface for computer wargames, where players would issue
commands by assigning tasks to (computer controlled)
subordinates. This brings up interesting issues concerning
real-time operation and updates, as well as the potential to
significantly increase the number of users of multimodal
interfaces.

ACKNOWLEDGMENTS
This research was supported by the DARPA Command Post
of the Future and Rapid Knowledge Formation programs.
We thank Thomas Hinrichs and our military collegues for
valuable feedback.

REFERENCES
1. Alvarado, Christine and Davis, Randall (2001).

Resolving ambiguities to create a natural sketch based
interface. Proceedings of IJCAI-2001, August 2001.

2. Cohen, P. R., Johnston, M., McGee, D., Oviatt, S.,
Pittman, J., Smith, I., Chen, L., and Clow, J. (1997).
QuickSet: Multimodal interaction for distributed
applications, Proceedings of the Fifth Annual International
Multimodal Conference (Multimedia '97), (Seattle, WA,
November 1997), ACM Press, pp 31-40.

3. Cohn, A. (1996) Calculi for Qualitative Spatial
Reasoning. In Artificial Intelligence and Symbolic
Mathematical Computation, LNCS 1138, eds: J Calmet, J A
Campbell, J Pfalzgraf, Springer Verlag, 124-143, 1996.

4. Coventry, K. 1998. Spatial prepositions, functional
relations, and lexical specification. In Olivier, P. and Gapp,
K.P. (Eds) 1998. Representation and Processing of Spatial
Expressions. LEA Press.

5. Davis, I. 2000. Warp Speed: Path Planning for Star
Trek: Armada, AI and Interactive Entertainment: Papers

from the 2002 AAAI Spring Symp., AAAI Press, Menlo
Park, Calif.

6. Edwards, G. and Moulin, B. 1998. Toward the
simulation of spatial mental images using the Voronoi
model. In Olivier, P. and Gapp, K.P. (Eds) 1998.
Representation and Processing of Spatial Expressions.
LEA Press.

7. Falkenhainer, B., Forbus, K., Gentner, D. (1989) The
Structure-Mapping Engine: Algorithm and examples.
Artificial Intelligence, 41, pp 1-63.

8. Feist, M. and Gentner, D. 1998. On Plates, Bowls and
Dishes: Factors in the Use of English IN and ON.
Proceedings of the 20th annual meeting of the Cognitive
Science Society

9. Ferguson, R.W., Rasch, R.A., Turmel, W., & Forbus,
K.D. (2000) Qualitative Spatial Interpretation of Course-of-
Action Diagrams. Proceedings of the 14th International
Workshop on Qualitative Reasoning. Morelia, Mexico.
June, 2000.

10. Forbus, K. 1989. Introducing actions into qualitative
simulation”, Proceedings of IJCAI-89, August.

11. Forbus, K. 1995. Qualitative Spatial Reasoning:
Framework and Frontiers. In Glasgow, J., Narayanan, N.,
and Chandrasekaran, B. Diagrammatic Reasoning:
Cognitive and Computational Perspectives. MIT Press, pp.
183-202.

12. Forbus, K., and de Kleer, J. 1993. Building Problem
Solvers, MIT Press.

13. Forbus, K., Ferguson, R. and Gentner, D. (1994)
Incremental structure-mapping. Proceedings of the
Cognitive Science Society, August.

14. Forbus, K., Ferguson, R. and Usher, J. 2001. Towards a
computational model of sketching. IUI’01, January 14-17,
2001, Santa Fe, New Mexico

15. Forbus, K., Gentner, D. and Law, K. 1995. MAC/FAC:
A model of Similarity-based Retrieval. Cognitive Science,
19(2), April-June, pp 141-205.

16. Forbus, K., Mahoney, J.V., and Dill, K. 2001. How
qualitative spatial reasoning can improve strategy game
AIs: A preliminary report. 15th International workshop on
Qualitative Reasoning (QR01), San Antonio, Texas, May.

17. Forbus, K., Nielsen, P. and Faltings, B. “Qualitative
Spatial Reasoning: The CLOCK Project”, Artificial
Intelligence, 51 (1-3), October, 1991.

18. Forbus, K. and Usher, J. 2002. Sketching for knowledge
capture: A progress report. IUI'02, January 13-16, 2002,
San Francisco, California.

19. Gross, M. (1996) The Electronic Cocktail Napkin -
computer support for working with diagrams. Design
Studies. 17(1), 53-70.

20. Gross, M. and Do, E. (1995) Drawing Analogies -
Supporting Creative Architectural Design with Visual
References. in 3d International Conference on
Computational Models of Creative Design, M-L Maher and
J. Gero (eds), Sydney: University of Sydney, 37-58.

21. King, Gary W., Brent Heeringa, Joe Catalano, David L.
Westbrook, and Paul Cohen. Models of Defeat.
Proceedings of the Second International Conference on
Knowledge Systems for Colation Operations 2002. pp. 85-
90.

22. Landay, J. and Myers, B. 1996. Sketching storyboards
to illustrate interface behaviors. CHI’96 Conference
Companion: Human Factors in Computing Systems,
Vancouver, Canada.

23. McGee, D. R., Cohen, P. R. (2001) "Creating tangible
interfaces by augmenting physical objects with multimodal
language," in the Proceedings of the International
Conference on Intelligent User Interfaces (IUI 2001), ACM
Press: Santa Fe, NM, Jan. 14-17, pp. 113-119.

24. McGee, D.R., Cohen, P.R., Wesson, M., and Horman, S.
2002. Comparing paper and tangible multimodal tools.
Proceedings of the Conference on Human Factors in
Computing Systems (CHI’O2), ACM Press, Minneapolis,
MI, April 20-25 2002

25. Rasch, R., Kott, Al, and Forbus, K. 2002. AI on the
Battlefield: An experimental exploration. Proceedings of
the 14th Innovative Applications of Artificial Intelligence
Conference, July, Edmonton, Canada.

26. Stahovich, T. F., Davis, R., and Shrobe, H., "Generating
Multiple New Designs from a Sketch," in Proceedings
Thirteenth National Conference on Artificial Intelligence,
AAAI-96, pp. 1022-29, 1996.

27. Waibel, A., Suhm, B., Vo, M. and Yang, J. 1996.
Multimodal interfaces for multimedia information agents.
Proc. of ICASSP 97

