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Qualitative Kinematics in Mechanisms

Boi Volkert Faltings, Ph. D.
Department of Electrical and Computer Engineering
University of lllinois at Urbana-Champaign, 1987
Kenneth D. Forbus, Advisor

Qualitative Kinematics is the qualitative analysis of the possible geometric interactions of physical
objects. This thesis investigates the problem of reasoning about the kinematic interactions between
parts of a 2-dimensional mechanism as a first step towards a general theory of qualitative kinematics.
We introduce the concept of place vocabularies as a generative symbolic description of the possible
motion of the parts of a mechanism. Place vocabularies are particularly useful to describe higher
kinematic pairs such as ratchets and escapements.

We examine the requirements for the representation and introduce a definition of place vocabularies
that satisfies them. We show how this representation can be computed from metric data about the
shapes of the parts of a mechanism and used as a basis for qualitative envisionments of its behavior. In
particular, we give implemented algorithms for computing place vocabularies for 2-dimensional higher
kinematic pairs. The objects involved in the pair can have arbitrary shapes, but their boundaries must
consist of straight lines and arcs, and each object must have one degree of freedom only. Complete
mechanisms are analyzed as compositions of kinematic pairs.

The algorithms for computing place vocabularies fall within the qualitative reasoning paradigm.
They are based on splitting the computation into 2 parts: a purely symbolic reasoning part and a
metric diagram. The metric diagram is an abstract device that gives access to information about

quantities by evaluating predicates on them. We propose that this division is a plausible model of

tii
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human reasoning. When quantitative information is incomplete, the metric diagram defines a set
of landmark values for unknown metric parameters. The resulting place vocabulary changes only at
these landmark values, and an exhaustive list of all place vocabularies that can be achieved by varying
the parameters is found by computation at representative points in each interval. We show how the
mechanism design problem of picking suitable values for parameters can be solved by searching the list,
and give an implemented example. The exhaustive list forms an ambiguous but complete prediction
of the possible behavior. This proves that contrary to common belief, it is in principle possible to

reason about kinematics with limited or no knowledge of the metric dimensions of the objects.

iv
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Chapter 1

INTRODUCTION

The question of how to describe the physical world in a discrete, symbolic manner is fundamental for
Artificial Intelligence. Intelligent beings must solve problems in the physical world. Artificial Intel-
ligence has developed a large body of computational theory at the symbolic level, but the important
question of how precisely this symbolic level relates to the physical world has not yet been answered
satisfactorily. This problem is important, as the physical world is continuous, while the symbols used
for reasoning are discrete.

This thesis is about a computational theory of how symbolic reasoning can be based on physical
data. We investigate the problem of qualitative kinematics ( [FNF87,FALT86,FALT87|), meaning
reasoning in a symbolic manner about the kinematic interactions of rigid objects. We restrict the
investigation to the domain of rigid-body mechanisms. Our goal is to investigate methods for con-
structing a description of the qualitative behavior of a mechanism which is useful for understanding
its function within the framework of naive physics ( [FOR84,FOR81,DKL79,HAY79,DKL75}). Our
solution for the special case of mechanisms points out a possibility that could be generalized to other
cases. At the same time, the limitations we find also apply to the general case.

Besides its fundamental value for Al, this work also has practical applications. Reasoning about the
function of mechanical devices allows us to automatically verify and design mechanisms. Kinematic
verification becomes possible because we can automatically identify the function of a mechanism and

compare it to the desired one. We will show later liow the theory we develop allows us to automatically
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solve simple mechanical design problems.

In current technology, there are two commonly used ways to manipulate information about the
continuous physical world: (i) numerical solutions and (ii) reasoning with a finite symbolic represen-
tation. Numerical solutions exploit the mapping of all parameters of the system into the same domain
(the number system) to achieve greater efficiency, but this fact also limits their power. The result of
the computation is given as a set of numbers, with no further information about why the particular
result was obtained. But this latter information is often very important for problem solving: it tells
us where to look for the solution. With numerical techniques, all we can do is simulate the effect of
changing the system in various ways and see if the result happens to be what we desire. The numer-
ical techniques also have another drawback. Because they are based on evaluating the description
of the system at points in parameter space, the technique is necessarily incomplete: the point where
undesired behavior occurs may not be among those evaluated. There has to be an explicit choice
of parameter values for the computation, which makes it very difficult to reason with incomplete
or uncertain information. Much work has gone into this problem, the most successful results being
Fuzzy Logic ( [ZADEHT79]) and the Shafer-Dempster theory ( [SHAT76]), but the solutions are still
unsatisfactory. An application of numerical methods to geometric problems has been studied in the
ACRONYM system ( [BRO81]).

In certain restricted domains, methods have been developed to reason symbolically about the
interactions of objects. For example, a CAD system might have a finite set of symbols to describe
the standardized types and sizes of nuts and bolts and rules that state how these can fit together.
An example of this type of approach in Al applications is ( [STA83]). In the domain of mechanisms,
Andrew Gelsey ( [GELSEY87]) has recently developed a system that determines the function of a
mechanism whose parts are taken from some predetermined vocabulary, including joints, gears and
simple cams. While such techniques are often very useful and efficient, they can not deal with cases;

"that fall outside the finite symbol set. This limitation is hard to overcome because the geometric
properties of genex:al objects depend on the metric dimensions in ways that can not easily be captured
by a simple set of rules. What we must look for is a generative system powerful enough to analyse
objects it has never seen before.

What are the requirements for such a generative system? Generativity requires that the reasoning
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can be based on a general geometric description of the objects, capable of representing arbitrary
shapes. Unfortunately, finding such a representation is itself an unsolved problem. The difficulty
lies in the fact that any arbitrary small feature of a physical object may become important in its
interaction with others. A symbolic representation groups objects into equivalence classes, losing
information about the features that vary among objects in the same class. But these features may be
the ones that determine their interaction! For example, representing the diameter of pegs and holes
by a set of intervals makes it impossible to determine whether a peg will fit into a hole whose diameter
falls within the same interval. A key idea of this thesis is that symbolic representations should be
constructed for pairs of objects, not single objects themselves. This determines the important features
of the objects and allows us to take just those features into account in the symbolic representation.
The idea itself is not new: In 1875 Franz Reuleaux ( [REU75,REU76)) proposed that the elementary
parts of mechanisms are not the objects themselves, but the interactions between pairs of them. A
possible drawback of this approach is that it requires a separate representation for each pair of objects,
a much larger number than the number of objects itself.

The representation we propose for representing the possible interactions of pairs of objects is called
a Place Vocabuiary. The idea is that the space of parameters describing the positions and orientations
of the objects can be broken up into a finite number of regions, called places. All points of the
parameter space within a place are considered equivalent in the understanding of the mechanism. The
places thus define a symbolic vocabulary in which the configurations of the mechanism can be expressed.
The possible motions of the mechanism are represented as changes in its configuration. In the place
vocabulary, they are expressed as transitions between places, given by the adjacencies between the
regions that define them. As the place vocabulary covers the space of all legal configurations, it
provides a complete representation of all possible kinematic behaviors of the mechanism. The place
vocabulary idea itself was first proposed by Ken Forbus in ( [FOR81,FOR80]|). This thesis generalizes
the original concept, which was defined for motion of points, to the general case of geometric objects.

In the rest of the introduction, we first define the mechanism domain and outline its particular
implications for our theory. We then give a brief overview of qualitative reasoning and show what
the requirements for place vocabularies are. We then go on to define place vocabularies, and finally

discuss some pertinent issues important to their computation from information about the shapes of
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the objects.

The rest of the thesis is organized as follows: Chapter 2 analyzes the mathematics of mechanism
kinematics necessary for the understanding of the place vocabulary theory. Chapter 3 discusses the
theory of how place vocabularies can be computed, and Chapter 4 gives details of the actual imple-
mented algorithms. Chapter 5 discusses the implications of the research for qualitative kinematics,
and Chapter 6 gives examples of place vocabularies. Finally, Chapter 7 reviews other related work,

outlines further research issues and gives the conclusions.

1.1 Mechanisms

As the general problem of qualitative kinematics is too unconstrained to be analyzed in general, we
have restricted the domain of our theory to mechanisms in 2 dimensions. There are several reasons

for this choice of domain:
e Mechanisms exhibit interesting and complex kinematics.
e Mechanisms have been studied since ancient times, so it is a well-understood domain.
o There is practical interrest in reasoning about mechanisms.

o Mechanisms are man-made devices. Their kinematics are such that people are good at analyzing
them. Techniques which are useful for mechanisms might thus lead to the “correct” theory of

human spatial competence.

Following the classic work of Reuleaux ( [REU75,REU76]), we define a mechanism as an implemen-
tation of a kinematic chain. In simple terms, a kinematic chain is a device that transmits the motion
of and force acting on an input element through the chain to an output element. An obvious example
is a gearbox in which the motion and forces are transmitted from an input gear to an output gear.
A kinematic chain is made up of kinematic pairs. A kinematic pair consists of 2 objects which can
touch and thus influence each other. Reuleaux makes the distinction between higher pairs and lower
pairs. If the objects can touch at pairs of surfaces only, the pair is a lower pair; if contacts between
a vertex and a surface are also possible, the pair is a higher pair. The lower pairs represent what
are commonly called joints: One object is free to move with respect to the other object in one or

more directions. There exist only 6 possible lower pairs, namely revolute, prismatic, helical, cylindric,
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spheric and planar joints between objects ( [REU75,REU76]). Their symbolic representation is thus
straightforward, and there exists an exact mathematical analysis ( [DEHA55]) that can be used as a
basis for reasoning about them.

Most of the intex:resting functions in mechanisms are performed by higher pairs, such as gearwheels,
escapements, ratchets and so on. An important feature of higher pairs is tha.t'. motion of the objects can
change the contact configuration. There are infinitely many possible higher pairs, 2nd their symbolic
representation thus requires a generative language. In this thesis, we propose place vocabularies as
such a representation language. As the analysis of lower pairs is a very different problem from the
analysis of higher pairs, and furthermore has already been solved by Reuleaux, we restrict our theory
to the analysis of higher pairs only.

An important feature of higher pairs is that both of the objects involved are somehow attached by
joints such that they can only move in a single degree of freedom. Motion in one degree of freedom
can be either rotation around some fixed point in space or translation along a fixed straight line.
For example, in gears, both parts can only rotate, and in cams, one part can rotate while the other
can only translate in one particular direction. This property is important because it means that the
configuration of the kinematic pair can be specified by 2 parameters.

While the kinematic pairs make up the elementary elements of a mechanism, its function is ac-
complished by the kinematic chains. A kinematic chain is formed by rigid connection between parts
involved in successive kinematic pairs. The configurations of the pairs are related by the position
parameter of the shared object. This makes it possible to analyze the chain by composing analyses
for the constituent kinematic pairs. Our theory is split into 2 parts: the analysis of the kinematic
pairs, which is the main body of the theory, and the composition of the place vocabularies derived
for kinematic pairs. The composition turns out to be a simple problem of 1-dimensional interval
intersections. It can be handled by established techniques of qualitative reasoning.

A mechanical device may consist of more than a single kinematic chain, and the individual chains
may influence each other via common elements. The possible chains can be identified in the mechanism
by constructing a graph whose nodes are the parts of the mechanism and the edges represent all
possible kinematic pairs between them. Each path in this graph is a kinematic chain. Importantly,

because each chain determines motion and force of each of its elements, most practical mechanisms
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have no cycles in this graph. In a cycle, the motion of each element would be determined by at least 2
kinematic chains simultaneously. If each object has only one degree of freedom, both chains determine
the same single motion parameter. Besides being redundant, the influences from the 2 chains will have
to agree exactly, which is true only in singular cases. While there are mechanisms that have such
cycles, such as differentials, they have parts with more than a single degree of freedom and are not
covered by our current theory. Thus, for any pair of parts, there exists at most one kinematic chain
relating them. The influence that the 2 parts have on each other can be analyzed by analysis of that
single kinematic chain.

Finally, in order to make the problem more tractable for research, we consider mechanisms in
2 dimensions and restrict the boundary curves of the parts considered to straight lines and arcs
only. The main reason for the restriction to 2 dimensions is that it allows inspection of the problem.
Human intuitions for 3 dimensions are very poor, and this makes it Gifficult for the researcher to
analyze the problem correctly. Furthermore, because people are not capable of analyzing 3-dimensional
problems very well, we also believe that the correct cognitive theory is more likely to be based on 2-
dimensional analyses of projections of the 3-dimensional objects rather than a straightforward analysis
in 3 dimensions.

The boundary curves are restricted to simplify the implementation. The place vocabulary theory
is valid for arbitrary boundary curves, but implementing this requires general algebraic manipulation
routines which would detract from the main effort of the thesis.

To summarize, the domain of the theory to be described is kinematic chains in 2-dimensional
mechanisms, consisting of higher pairs in which both objects have one degree of freedom each. This
covers a large range of practical mechanisms, including mechanical clocks. Our theory could be
profitably combined with work such as Andrew Gelseys ( [GELSEY87)) to build a system capable of

analyzing almost all practical mechanisms.

1.2 Qualitative Reasoning and Kinematics

The theory in this thesis falls within the framework of qualitative reasoning and naive physics

( [FOR84,DKL84,FOR81,DKL79,HAY79,DKL75]). The goal of naive physics is to develop a for-
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mal theory of people’s commonsense knowledge of the physical world. While there are well-developed
mathematical theories about physical phenomena, they presume a large amount of gualitative knowl-
edge needed to properly apply them to physical situations. As commonsense knowledge does not make
use of numbers, theories of naive physics employ gualitative reasoning. Quantities are manipulated not
as numbers, but as qualitative expressions. Most theories of qualitative reasoning represent quantities
by their sign only, i.e., by one of +, 0 and -. While this representation seems extremely weak, it
actually turns out to be sufficient to accurately predict the behavior of many physical systems. A
refinement of the simple +, 0 and - representation is the notion of a quantity space ( [FOR84]), which
is a graph whose edges represent known relative magnitudes of the quantities making up the nodes.

Theories of naive physics represent the possible dynamic behaviors of physical systems as envi-
sionments. An envisionment is a directed transition graph whose nodes are qualitative states and
whose edges indicate possible transitions between them. A qualitative state of the system is defined
by a choice of qualitative value for each of the quantities in the system, and possibly a set of symbolic
switches indicating discrete changes in the physical system. The envisionment represents all behaviors
of the system that are perceived possible, thus, each path through the graph represents a possible
actnal behavior. In general, there is more than a single possible transition from each qualitative
state, so that the envisionment is ambiguous. It represents the physical system as a non-deterministic
automaton which accepts the set of possible behaviors of the device.

In order to apply qualitative reasoning to problems of kinematics, we have to find a useful definition
of a qualitative kinematic state, or place. Note that kinematic interactions between objects occur only
when they are in contact, and that the form of the interaction depends on where this contact occurs.
Reasoning about kinematics must therefore be based on configurations of contact, and changes in it
must lead to a change of place. This gives us the first criterion for the definition of places: each
qualitatively different contact configuration defines a place as the set of all configurations that exhibit
this particular configuration of contact.

We must also take into account that we want to reason qualitatively about the transmission of
forces and motion through the mechanism. This is helped greatly by requiring that the qualitative
relations between these parameters be constant within each place. For example, if a positive moment

on the input element of a kinematic pair causes a positive moment on the output element in one
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configuration and a negative moment in another, the 2 configurations should lie in distinct places,
even if the contact configuration is otherwise identical.

Finally, to predict the dynamics of mechanisms, we represent the adjacencies between the places
80 as to restrict the possible transitions between them. This information is given by the place graph,
a graph whose nodes are places and whose edges are the adjacencies between them. The place graph
serves as the spatial substrate for an envisionment of the mechanisms behavior.

In the next section, we give a formal definition of places, using the abstraction of configuration

space, and give an example of its application.

1.3 Place Vocabularies

The concept of a place vocabulary originated in FROB ( [FOR81,FOR80]). This work investigated
the qualitative analysis of the motion of point masses in polygonal, two-dimensional regions under
the influence of gravity. The qualitative representation of the physical space was derived by dividing
it into regions, called places, and arranging them in a connectivity graph.

Because FROB considered the motion of points, and the spaces considered were plane polygonal
regions, the places could be obtained by a tesselation of the physical space using only horizontal and
vertical lines. In this paper, we generalize the notion of a place to moving objects of finite dimensions
by making an abstraction from physical space to configuration space. This transforms the constraints
on the motion of the physical objects into constraints on the motion of a point in configuration
space. Similar to FROB, we divide up this space into regions corresponding to places. However, our
domain requires us to take into account many additional constraints, making this division a much

more complicated process.

1.3.1 Configuration space

The position of a physical object can be described by a small set of parameters. In the case of
unrestricted motion in 3 dimensions, there are 3 Euclidian position parameters and 3 orientation
parameters which completely determine the placement of the object in physical space. In mechanisms,

the motions of the parts are restricted by joints. By our definition, a single parameter suffices to
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describe the position of a part. We call the space spanned by the parameters characterizing the
positions of all the objects of a mechanism its configuration space ( [LPW79,BLP83,DON84|). A
particular choice of position of all the parts of the mechanism is called a configuration and is specified
by a point in this space. As the parts of a mechanism are not allowed to overlap, the configuration
space consists of regions corresponding to legal and illegal configurations. We call the union of all
legal regions the free space and its complement the blocked space. The condition for a configuration
to fall on the boundary between free and blocked space is that there is both a point in blocked space
and a point in free space that can be reached by an arbitrarily small motion. This is the case if and
only if the 2 objects are in contact.

There are 2 possible ways that plane objects O, and O can touch:

o A vertex of O, touches a boundary segment of Oy, or vice versa. Note that this subsumes the

case where a pair of vertices touch each other.
¢ A boundary segment of O, touches a boundary segment of O,.

Each possible instance of these cases defines a configuration space constraint in the configuration
space for O, and O;. We call the first vertez constraints and the second boundary constraints. A
configuration space constraint is an algebraic curve containing all the configurations where the defining
condition is satisfied. As each point of touch rules out motion in the direction of the surface normal
at the point of touch, it reduces the degrees of freedom of the objects by 1. The dimensionality of the
constraints is thus exactly 1 less than that of the configuration space itself. The algebraic curve can
have infinite length, but only a finite part of it actually corresponds to configurations satisfying the
condition. Its applicability is therefore restricted by applicability constraints ( [DONB84|). The actual
boundaries between regions of free and blocked space are defined by the envelope of the applicable
segments of the constraints. Constraints are subsumed wherever they fall inside this envelope.

The idea of configuration space was developed for the problem of motion planning, where it is
reasonable to approximate objects by polyhedra. Earlier formulations of configuration space restricted
themselves to vertex constraints only, as the touch of a pair of straight lines implies a touch of one
of the vertices of the ends, which is already described by a vertex constraint. When we consider
kinematics, however, an approximation of a curve by line segments results in spurious discontinuities

in behavior. A wheel that is approximated by a polygon will not run smoothly, contrary to its actual
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behavior. We can not make this approximation, and have therefore extended the theory to boundary
constraints.

The configuration space is defined by the motions we consider. In general, a mechanism has an
underlying configuration space of a finite, but possibly enormous, number of dimensions, describing
the simultaneous locations of each of its parts. In the analysis, one considers interactions between only
small numbers of parts, ideally kinematic pairs. The dimensionality of the configuration sub-spaces
for these analyses is then much smaller (usually 2 for kinematic pairs), so that the problem remains

tractable no matter how large the complete mechanism is.

1.3.2 Place vocabularies

The place vocabulary is defined as a set of suitable regions of configuration space. In this section, we
show how the regions can be defined so that the resulting place vocabulary satisfies the criteria we
have developed earlier.

The first and most important requirement is that the place vocabulary must distinguish different
configurations of contact. Note that the configuration space constraints themselves are defined by
different points of contact. Thus, the configuration of contact in some particular arrangement of the
objects is given by the constraints that are satisfied. When there are no such constraints, the objects
are not in contact and therefore can not interact.

Note that if the objects are in contact in more than one point, their configuration satisfies several
constraints at once and lies on the intersection of these constraints. Each point of contact reduces the
freedom of the objects by one. The region of configuration space containing all configurations with k
contacts thus has dimension k less than the dimension of the full configuration space. When the full
configuration space has dimension n, we find configurations with O up to n contact points, and the
dimensionality of the places thus ranges from n down to 0.

The configuration of the mechanism can leave a place either by establishing a new point of contact
or by breaking one. It thus moves to a place whose dimensionality is either one greater or one less
than that of the current one. Note that in general, a region of dimension d in space is bounded by
surfaces of dimension d — 1, and can itself bound regions of dimension d + 1. This is exactly the

arrangement of the places in configuration space; it is called a cell complez.

10
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So far, we have referred only to the topology of the places. This is a very weak notion, as it
allows the places to have arbitrarily complicated shapes. We need a more precise definition of the
regions corresponding to places. The description we propose for this is that of quasi-convez cells. By
this term, we mean cells defined by a set of bounding curves (surfaces) C;(z) = O such that all of
the points in the cell satisfy a certain conjunction of sign conditions on the C;. These conditions are
either inequalities or equalities, where each equality indicates the existence of certain points of contact
between the objects. The C; are given by the equations of the constraints that bound the place in
question. Ideally, we would like the places to be convex, but as their boundaries are algebraic curves,
this is not always possible. The quasi-convexity criterion approximates the idea of convexity as closely
as possible. If the bounding curves are plane, it is in fact just the convexity condition.

Each connected place that does not already satisfy this condition is broken up into cells that each
satisfy the quasi-convexity condition. This requires some additional curves to distinguish between the
regions. It turns out that the applicability constraints define a set of such curves that guarantees a
quasi-convex tesselation, so that its computation is straightforward.

We have thus obtained a uniform mathematical notation in which places corresponding to any
number of contact points can be described. The one condition we have not considered yet is that of
having constant qualitative relations between the motion parameters of the objects. In the case of
motion parameters, the relation between 2 motion parameters is given by the derivative of the place
in a coordinate system made up of the 2 parameters. This derivative exists only if a relation between
the 2 parameters is actually enforced by some constraint, and is then given as the derivative of the
constraint in that coordinate system. It is qualitatively constant whenever the constraint is monotone
in the coordinate system. This results in a monotonicity condition on the places; we show later how
it is satisfied.

It has been shown ( [MAS79,ERDMANNB84|) that forces and moments in physical space are equiv-
alent to forces on the corresponding point in configuration space and can thus be analyzed in config-
uration space. It turns out that the monotonicity condition is sufficient to guarantee a qualitatively
constant relation between forces as well. The dynamical analysis of mechanisms based on the place
vocabulary is the topic of current research by Paul Nielsen ( [NIE88|), and the reader is referred to

his work for a more detailed analysis.

11
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Figure 1.1: Ratchet example.

1.3.3 Example of a place vocabulary

We have now defined the notion of a place vocabulary and are ready to look at a simple example.
Consider the ratchet mechanism shown in Figure 1.1. This example is also described in more detail
in the example chapter. Both the lever and the wheel are hinged and can rotate around the points
indicated by the crosses. In normal use of this mechanism, the lever is pulled down onto the wheel
by gravity or a spring. When the 2 objects rea.c‘h the configuration where the tip of the lever touches
the bottom of a tooth of the wheel (configuration a in Figure 1.2), the wheel can not turn to the
right. The function of the ratchet is to allow the wheel to turn to the left, but not to the right.
This function is achieved when the lever touches the wheel in configurations where it points to the
left (configurations a, b, c, d). The lever can also be turned over to point to the right, such as in
configurations e and f. In these configurations, the wheel can turn in either direction and the function
of the ratchet is not achieved.

The configuration space for this example is shown in Figure 1.3. The 2 parameters spanning
the configuration space are the orientation ¢ of the wheel in the horizontal and the orientation ¥ of
the lever in the vertical.. The shaded region in the configuration space is the blocked space and all
configurations within this region are illegal. The boundary between free and blocked space is made
up by segments of constraints corresponding to different configurations of touch between the objects.
The constraint segments are labeled to indicate the configurations they correspond to. The free space

is tesselated by the applicability constraints as indicated by the dashed lines.

12
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To illustrate the meaning of the configuration space, let us envision the normal operation of the
ratchet. Consider configuration a). The poini in configuration space corresponding to this configura-
tion has no adjacent free-space to its left, thus there is no possible motion in the negative ¢ direction.
The wheel cannot turn to the right, as this would decrease its orientation angle ¢. Consider the wheel
turning left from this point, and let the lever be pushed onto the wheel by gravity. We now reach
configuration b). Further turning the wheel to the left, at some configuration the boundaries of the
wheel and the lever become parallel, and the configuration of touch changes into one as shown in
configuration c). Turning further left, we reach the configuration where the tip of the lever touches
the tip of the tooth on the wheel. Following this, the lever "drops down” to reach a configuration like
b) again. The cycle then repeats.

If we were to turn the wheel to the right from configuration c), we reach configuration b) and
then configuration 2). From a), we can not turn the wheel any further, and the ratchet is blocked.
Note that configuration d) is not reachable given our assumptions; gravity exerts a moment on the
lever in such a way that such a contact is not stable. However, this configuration is ruled out only by
the external forces applied to the kinematic pair, not by the shapes of the parts themselves. If the
external forces were different, these configurations could well become reachable. Therefore, they must
be included in the place vocabulary.

As the configuration space in this example is 2-dimensional, the place vocabulary contains places
of dimensionality 0, 1 and 2. The 2-dimensional places correspond to the regions of free space formed
by the tesselation. There are 5 such places for each tooth of the wheel. The l-dimensional places
are the constraint segments that make up the boundary between free space and blocked space. The
1-dimensional places correspond to the configurations of touch b) through f) in Figure 1.2. Some of
the constraints have extreme points where their derivative becomes zero. They are broken up at these
points to satisfy the monotonicity criterion. The 0-dimensional places are intersection points between
constraint segments. An example of a O-dimensional place is configuration a) in Figure 1.2.

The adjacencies of the places in configuration space define the place graph. It is described in more
detail in the example chapter. The place graph forms the spatial substrate for an envisionment of
the ratchet’s behavior. In the case of a negative external moment on the wheel (making it turn to

the right), and a non-negative external moment on the lever, the places corresponding to the locked
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position of the ratchet are characterized by the fact that there is no transition going out of them. The
fact that the envisionment contains such a sink when the external moment is negative, but does not
contain any when the moment is positive can be taken as a “definition” of a ratchet mechanism in

qualitative terms.

1.4 Computing Place Vocabularies

While the place vocabulary representation itself is symbolic, the metric dimensions of the physical
objects are required to compute it. As in FROB, we propose the model of a metric diagram as a
plausible way of using this information in the computation. It turns out that this model also has
other important advantages, for example, it allows us to solve mechanism design problems.

A plausible theory of human spatial competence can not assume that the eye furnishes information
about the objects in terms of algebraic curves and numerical coefficients. The work of David Marr
( [MARRS82]) indicates that low-level processing in the eye produces a primal sketch. The elements
of this primal sketch are symbols standing for lines and vertices (discontinuities) found in the image,
and symbolic links between them. In the case of a person looking at the parts of a mechanism, or a
design drawing of it, the primal sketch at some level contains a description of the object boundaries

! Note that this is exactly the

as a sequence of boundary segments and vertices between them.
information that is needed to define a the set of all configurations of touch that could be possible
between the 2 objects.

The actual arrangement of the constraints in configuration space is determined by the metric
dimensions of the objects. This information can not be represented in the primal sketch. We assume
that it is contained in an abstract device called the metric diagram. The information in the metric
diagram is accessible via an evaluator. This is an abstract function that can evaluate predicates on
the metric dimensions of the objects. These predicates are of the form ezp = 0, where ezp is some
algebraic expression involving distances between the vertices and boundary segments defined in the

primal sketch. The metric diagram is an abstract device, and could be implemented in various ways.

For example, some tests might be implemented by mental imagery, while others might be performed

!We are obviously ignoring here the problems of noise in the image, which frustrates vision researchers trying to

reproduce this process.
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by taking measurements on the actual objects.

The algorithms we describe for the computation of place vocabularies are structured to fit the
metric diagram model. It turns out that it is possible to determine the place vocabulary from knowl-
edge of the set of possible constraints using only evaluation of predicates; the algorithms we describe
can all be implemented in this way. However, in our current implementation, the metric diagram is
implemented by algebra. For efficiency reasons, the division between it and the symbolic computation
is not explicitly enforced.

Besides its plausibility as a commonsense model, the metric diagram also gives us an interesting
way to solve design problems. Consider the problem of choosing a suitable value for a metric parameter
in a mechanism. In the ratchet example, we might want to choose the distance between the centers
of rotation of the lever and the wheel. In the computation of the place vocabulary, some or all of
the predicates evaluated by the metric diagram make use of the value of this open parameter. The
expressions whose sign these predicates test can thus be understood as polynomials in this parameter.
For each predicate, the roots of this polynomial divide the range of the parameter into intervals within
which the sign of the polynomial, and thus the value of the predicate, does not change. We call these
roots landmark values.

Now consider the set of all such landmark values for all predicates tHat are used in the place
vocabulary computation. The result of the place vocabulary computation can not change except
at a landmark value, as the parameter influences it only via the predicates. This means that the
complete set of landmark values divides the range of the parameter into a finite set of intervals such
that the place vocabulary is the same for all choices of parameter in each interval. By computing the
place vocabulary for a representatiye value within each interval between landmark values, we can thus
make a complete list of all place vocabularies that can be achieved by variation of the parameter. Qur
implementation can be used to solve some such design problems, and an example of this is given in
Chapter 6.

Finally, we will outline how our algorithms could be plausibly implemented using the ideas of
computer vision, especially the theories of the curvature primal sketch ( [ASBR86]) and visual rou-
tines ( [ULLMANB84]). We find that some plausible modifications to these theories are required for

qualitative kinematics. We hope that the place vocabulary theory can be developed into a theory of
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Figure 1.4: Qualitative kinematics as a link between vision and reasoning.

human spatial competence. This would link the computer vision theories at the bottom to theories
of reasoning at ..the top, as shown in Figure 1.4. Such a link will greatly strengthen all the theories
involved through the mutual constraints it imposes. It would also put experimental verification of
the theories within reach. Note that because the case of mechanisms is a special case of the general

kinematics problem, the constraints it imposes on the theories generalize.
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Chapter 2

CONFIGURATION SPACE
CONSTRAINTS

Kinematics is based on the fact that no two physical objects can occupy the same space at the same
time. This condition defines constrasnts on the relative positions of the objects. These form the
borders between the continuous spaces of legal and illegal configurations of the objects. We use the
term configuration to refer to a specific choice of values for the motion parameters of the objects, .and
configuration space to refer to the space of configurations. It consists of a set of legal configurations,
called free space, and a set of illegal ones, called blocked space. The dimension of configuration space is
equal to the number of degrees of freedom that the objects have relative to each other. The topology
of the configuration space need not be Euclidian. In the case where objects can rotate relative to
each other, it includes special order groups, such as SO(3) (homotopic to a sphere with opposite
points identified) in the case of unrestricted 3-dimensional rotation. In our case, where we restrict our
analysis to 2 dimensions, it can contain S(1), homotopic to a circle.

Configurations that exactly satisfy a constraint are characterized by the fact that both legal and
illegal configurations can be reached from them by an arbitrarily small motion. This condition is
satisfied only if the 2 objects touch each other: the constraints are thus given as a subset of those

configurations where the objects are in contact.
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More precisely, we assume that the boundaries of the objects consist of discontinuities, which we
call vertices, and smooth boundary segments between them. The condition that 2 objects are in contact
is then satisfied whenever a vertex or boundary segment of one object touches a boundary segment
of the other object. * We call the constraints that are formed by a vertex touching a boundary
segment vertez constraints, and those formed by 2 convex boundary segments touching each other
boundary constraints. When the objects are free to move relative to each other, the configurations
that satisfy this condition form a constraint curve in configuration space. As the object boundaries in
general cover only a part of the algebraic curve that describes them, the constraint curves also consist
of a valid segment and an tnvalid segment. The valid segments can be delimited using applicability
constraints.

Not all configurations where the objects touch each other are actually on the border between free
space and blocked space, as the configuration may itself be illegal due to other overlaps at other
parts of the objects. In such a case, the configuration violates other constraints, which subsume
the constraint that the configuration lies on. The border between free space and blocked space is
formed by the envelope of the constraints. The envelope consists of segments of constraints. Each
segment is delimited by its intersections with others. These intersections occur cither where the
constraint ceases to be valid, or where it is intersected by a subsuming constraint. We call these latter
types of intersections subsumption intersections. In principle, any pair of constraints can form such
intersections, which makes the analysis of configuration space constraints very expensive.

Before a detailed discussion of the form of the constraints, we have to define the notation we are
going to use to describe configurations and our input representation. We then derive the algebraic
form of the constraints for the cases of 2-dimensional objects whose boundaries are made up of arcs
and straight lines. Finally, we further refine the analysis for the case of 2 objects with one degree of

freedom each, which is the common case in mechanism kinematics.

!Note that this includes the case of 2 vertices touching each other, as a vertex is part of 2 boundary segments
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2.1 The Configuration Space and the Metric Diagram

In this section, we first describe the notation we use to describe the configuration space for the
interaction of a pair of objects. We assume a global Euclidian coordinate system for physical space.
For each object, we assume a local coordinate system centered on a reference point. In 2 dimensions,
the position of each object can be described by 3 parameters: 2 coordinates for its reference point, and
an angle giving the orientation of the local coordinate system with respect to the global one. However,
because the transformation from local to global coordinates involves transcendental functions (sine
and cosine) of the angle, this formulation will result in non-algebraic constraints. It is therefore
advantageous to describe the orientation angle in terms of its sine and cosine, giving a total of 4

parameters for each object. Angles specified in this form can be added and subtracted using

sinfa+p) = sinccosftcosasinf (2.1)

cos(a+f) = cosacospf Fsinasinf (2.2)

The configuration space for the interaction of 2 objects therefore has 6 dimensions and 8 parameters.
However, because the interactions between the objects are dependent only on their relative positions,
the constraints are invariant under common translation of the reference points, and under rotation of
the arrangement of the 2 local coordinate systems. This would allow us to reduce the configuration
space to 3 dimensions and 4 parameters. However, in such a formulation the configuration space for
objects with constrained freedom of motion is not a simple projection of the full space anymore. It is
thus more convenient for our purposes to use the full specification.

The position and orientation of each object determine the relation of its local coordinate system
to a global one and thus appear in the equations describing its boundaries in the global system. We
adopt the following notation: Objects have names of the type O, where a is some letter, and the
configuration space parameters of object O are %4, ¥, , ¢q (= cos ¢c), and s, (= singd,). Points in

i

the local coordinate system of O, are denoted by (z%,y2), and in the global coordinate system we
3 g

simply omit the superscript, i.e., (2;,5;). Note that we then have the transformations

]
+

(2.3)
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to transform between the global and local coordinate systems.

If the objects O, and Oy are constrained to one degree of freedom only, the configuration space
becomes a two-dimensional surface. This does not always mean, however, that it can be described by
2 parameters only; rotation angles must be described by the sine and cosine in order to allow algebraic
formulation of the constraints.

The objects considered and their freedom of motion are described in a metric diagram. It consists
of 2 symbolic and a metric part. As a symbolic description of the parts, we assume the following

boundary-based representation:

e an object consists of a set of boundaries and a local coordinate system centered at the reference

point.

* a boundary is an alternating sequence of vertices and boundary segments such that each boundary
segment connects the 2 vertices adjacent to it, and the first and last vertex of the list are identical.
The sequence of the boundary segments in the boundary is assumed to be such that the object

is to the left of the boundary when it is traversed in order.

* a vertez corresponds to a discontinuity in the direction of the boundary, or a change in curvature

or algebraic form.

* Attachments describe an object’s freedom of motion and consist of a symbol describing a type

of joint, e.g., :ROT or :TRANS, and possibly a unit vector giving the direction of translation.

In our implementation, we allow the algebraic type of the boundary curves to be either straight lines
or arcs. Allowing general algebraic curves would require a general algebraic engine to solve problems
like determining intersections and extrema; while the algorithms for such systems exist, it is not the
focus of our research to implement them. Note that the symbolic representation we assume could be
readily obtained by rearranging the output representation of a vision system such as the Curvature
Primal Sketch { [ASBRS6}).

The symbolic part of the metric diagraimn defines a set of numeric parameters whose values are given

in the metric part. These are the parameters of the algebraic equations of the boundary segments, the
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coordinates of the vertices, and the directions of the freedom given by the attachments. Conceptually,
we do not explicitly spell out this metric information (as numbers could only be approximated anyway),
but assume that it can be accessed via the evaluation of predicates, such as comparisons of algebraic
expressions.

This allows treatment of kinematics in a qualitative way: u;lcertainty about the value of numeric
parameters may lead to ambiguities in the results, but will not invalidate them. In fact, it is possible to
compute (highly ambiguous) place vocabularies without any numeric information at all. It also means
that our algorithms can plausibly be implemented using theories of computer vision, namely Brady’s
Curvature Primal Sketch ([ASBR86]) and S. Ullman’s theory of visual routines ((ULLMAN84]). This

is discussed in detail in a later chapter.

2.2 Constraints in the General Case

The idea of configuration space constraints is due to T. Lozano-Perez ( [LPW79,BLP83]), with further
extensions by B. Donald ( [DON84]), and was developed to formulate the constraints on motion
planning problems. The derivation of vertex constraints we give here is identical to his formulation.

Because we also allow arcs as boundary segments, we then extend the theory to boundary constraints.

2.2.1 Vertex constraints

In this section, we derive the exact algebraic form of the configuration space vertex constraints for the
cases of straight lines and arcs. We formulate the constraints on the relative motion of the objects in
the 8-dimensional space formed by the C-space parameters of the 2 objects and consider the 2 objects
O, and Oy, and their associated C-space parameters.

Consider a vertex of object O, (z,y{) touching the straight edge from vertex (z3,43) to vertex
(z},43) of object O, (Fig. 2.1). We transform the coordinates of the vertex into the coordinates of

Oy, using ( 2.3) and ( 2.4)

b
z) ¢, Su Ca ~—Sa zy Za — ZTb

s = - 23)
yj_, =5y Cp Sa Ca 3y Yo — Y
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Figure 2.1: Situation analyzed for straight line Vertex Constraints.

which can be used in the line equation defining the constraint:

(s —v2) (ma—za) | * | =((ws—92) (ma—3a)) | | <0 (2.6)
U1 Y2

Note that we have omitted the superscripts since this equation holds in any coordinate system. In
order to expose the influence of the configuration space parameters, Equations ( 2.6) and ( 2.5) can

be combined and rewritten as

Cl
(Ch sb) N<{X ' + A ) — ¢y L0 (27)
Sa
where
b b b b @ @
Y~ Y2 ZT3—Z3 Zy ~Y Ta — Tt
N = b b b b ] x = 3 A = ¢ y C0 = ygxg - :cgyé' (2.8)
T3 — Tz Y3 — Y2 i =) Yo = Yo

The same approach can be generalized to the case of general algebraic boundary curves; however,
their form may be considerably more complicated. Below, we show the derivation for the case of a
vertex traveling on an arc (Fig. 2.2). The curve of the vertex constraint generated by the situation

shown in Fig. 2.2 above is characterized by the condition:
(21— 24)° + (1 —w)° > R? (2.9)
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Figure 2.2: Situation analyzed for Arc-Vertex Constraints.

Using the coordinate transformation ( 2.3), this can be written using local coordinates:
2 ) 2
(cazi = sayt + za — ozl + 500 — 3) " + (sazf + cay + ya — 12 — eyl — w) = R (2.10)

After some manipulation, this equation can be rewritten to expose the influence of the configuration

space parameters

cu

(ca s“)Xan ~ (cb 51)Xp A — (cu 50)XaA = ¢y/2<0 (2.11)
St
where
zt gyt zb —ah T z
Xa = 1 Yi Xb = 4 Y4 A= w b and
1 ) b
vt =} vi = Yo = i

— a2 a2 b2 b2 2 2
co=zy +yl +tzy +yg +|A-R

Note that the situation shown in Fig. 2.2 shows a convex arc participating in the interaction. In
the case of a concave arc, the inequality in Equation 2.9 must be reversed, i.e., we obtain the same

constraint equation but the legal side is > R2.
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Figure 2.3: Touch of convex (left) and of convex and concave (right) boundaries.

2.2.2 Boundary constraints

The boundary constraints are formed by a convex boundary segment on object O, touching a boundary
segment on object 0. 2 We have to distinguish between the case where the boundary segment on
O, is convex and the case where it is concave. As shown in Figure 2.3, in the convex case there can
exist only a single point of touch between the segments, whereas in the concave case there can be any
number of them. 3 In the convex-concave case, each possible point of touch gives rise to a separate
constraint surface. These points of touch vary following the root locus curves of the minimum distance
between the 2 curves. As the number of these is determined by the algebraic degree of the curve, the
constraints could not be formulated at all without knowledge of the algebraic form of the curves. The
case of multiple points of touch requires a rather complicated algebraic analysis; as it does not seem
to occur in mechanisms, we do not discuss it any further in this paper. In the following, we limit our
discussion to boundary constraints with only one possible point of touch.

A boundary constraint is thus defined by 2 boundary segments B, on object O,; and B, on object
O, touching each other. We assume some parameterization of the boundary segments and use P, and
P, to refer to the single point of touch in the local parameterization.

A point on the boundary constraint is then characterized by the following conditions:

(i) P. and P, must be in the same location.

2Two concave boundary segments can not touch one another.

3Where the number is bounded by the maximum algebraic degree of the 2 curves.
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Figure 2.4: C; and C, fulfill the 2 conditions for touching, but intersect nonetheless.

(ii) The derivatives of both curves must be parallel at that point.

For any choice of points P, and P, these 2 conditions define a fixed relative configuration of the 2
curves. For a pair of convex curves, there exists a legal configuration for any choice of points that
sati+fies the conditions. For a convex curve and a concave curve, this is not always the case (see
Figure 2.4), as the constraint generated by this point might be subsumed by that generated by
another possible point of touch. In the general case, the constraint can be obtained as the intersection
of the manifolds defined by the 2 conditions. It is possible that this intersection manifold does not
exist in closed algebraic form, in which case the constraint must be defined as a conjunction of the 2
manifolds.

In the case where one of the boundary segments involved is a convex arc, however, the boundary
constraint is actually identical to an analogous vertex constraint. This is because an arc of radius R
touches any curve exactly when its center is at a distance R away from the curve, as shown in Figure
2.5. In our case, where we restrict ourselves to arcs and straight lines, one of the boundary segments
involved in each boundary constraints must be a convex arc. A boundary constraint is then identical
to a vertex -onstraint formed by the center of the arc, the imaginary vertes, tra\feling on a curve a

distance R fron: the actual boundary, the ezpanded boundary.
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Figure 2.5: An arc touches a curve exactly when its center travels on a curve at distance R.

2.2.3 Determining the valid segments

In the general case, the endpoints of the range of validity of a constraint generated by a vertex and a
boundary segment are given by the configurations where the vertex involved in the constraint touches
the vertices at each end of the involved boundary segment; we call these configurations touchpoints.
A touchpoint bounds the validity of up to 4 constraints, namely the ones generated by each of the
vertices and the boundary segments that adjoin them (Fig. 2.6). Because a concave vertex of an
object boundary can not touch the other object, a pair of a convex and a concave vertex defines
touchpoints with only 2 incident constraints, and one of two concave vertices defines no touchpoint
at ail. Constraints that are generated by the touch of two boundary segments end in a somewhat
different manner. Their range of validity is always limited by their intersections with the constraints
generated by the vertices at the ends of one of the segments touching the other segment. In the case
of boundary constraints generated by arcs using the analogy to vertex constraints, these points can
also be computed precisely. Also, the range of validity of such boundary constraints can be bounded
by “touchpoints”, configurations where the center of the participating arc lies on the endpoint of the
expanded boundary segment.

Because the boundary defines a sequence of the segments, there is a natural way to define half of
the constraints incident at a touchpoint as outgoing constraint and half as incoming, depending on
whether the boundary segment that participates in the constraint comes before or after the vertex

participating in the touchpoint in the ordering of the boundary. This distinction is important because
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Figure 2.6: The configurations where V and V’ touch are endpoints for the 4 constraints arising from
g

V touching 2’,b’ and V’ touching a and b.

it defines on which side the active segment of the constraint lies.

The touchpoints define the ranges of validity of the constraint itself. As the constraint function is
defined over the whole of configuration space, it is necessary to generalize this restriction to define the
domain of configuration space where the constraint is applicable. The device we use for this purpose
is applicability constraints.

Consider a constraint generated by a vertex V on object O, and a boundary segment B on O,
The algebraic curve of the boundary segment divides the space of possible relative locations O, and
O, into a half-space where V is on the legal side of B and one where V is on the illegal side of B. But
the illegal half-space is too large and makes many possible relative positions illegal, as indicated by
the dashed outlines in Figure 2.7. The domain of applicability of the constraint has to be restricted
to rule out such cases. We do this by defining applicability constraints A; > 0 whose conjunction
delimits a convex region of locations of the vertex V relative to the object O, (as shown in Figure
2.7). This region maps into the quasi-convex region of configuration space defined by the conjunction
of the applicability constraints; this is exactly the valid region of the corresponding constraint C.

More precisely, we distinguish the different cases of straight lines and arcs as boundary curves. In
the case of a straight line, shown in Figure 2.7, we make the constraint applicable in a thin strip along

the boundary curve and bound its applicability by 3 different applicability constraints: A; running
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Figure 2.7: Many legal configurations (shown by dashed outlines) violate the constraint generated by
B and V. Its domain thus has to be restricted by applicability constraints as shown.

parallel to the boundary curve a small distance § into the object, and Az and A3 which run through
the vertices at the ends of the boundary segment. Note here that we have some freedom in choosing

the directions of A2 and A3. We use the following rule:

o If the applicability constraint runs through a concave object vertex, it is generated by the vertex

traveling on the bisector of that vertex.

o If the vertex is convex, we simply use the adjoining constraint, to save introducing an additional

curve.
o In the case of an adjoining arc, we use its applicability constraint.

For arc boundary segments, we have 2 applicability constraints: 4; running parallel to the bound-
ary a small distance § into the object, and A> as a straight line which distinguishes the valid part of the
circle from the invalid one (see Figure 2.8). Note that A2 cam.also serve as applicability constraint for
an adjoining straight line boundary segment at the vertex at either end of the arc. The applicability
constraint 4, requires a choice of the distance §. There are 2 competing requirements for this choice:
on the one hand, § must be small enough so that A; lies completely within the object in the range

determined by the other applicability constraints. If this were not the case, there would be some legal
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Figure 2.8: The applicability constraints for a convex (left) and a concave (right) boundary segment.

position of the vertex V that nonetheless violates C. On the other hand, if calculations are done using
floating point arithmetic with limited precision, § must be large enough to allow for roundoff errors.

For boundary constraints generated by arcs using the analogy shown earlier, the same applicability
constraints apply to the analogous vertex constraint.

Note now that the way we have defined the applicability of the constraints may leave large regions
within the object where no constraint applies to declare the corresponding configurations illegal. We
have to be careful not to declare such regions a part of free space as well. But notice that they are
necessarily disjoint from the real free space: to reach the inside of an object, a vertex has to cross
one of the regions declared illegal by the constraints. Furthermore, they are not bounded by proper
constraints, but by applicability constraints. These regions can thus be avoided by considering only
regions that are bounded by proper constraints to be part of free space.

As a final point, note the following alternative way to define applicability constraints (used by
T. Lozano-Perez). For each object, we construct a representation as a set of overlapping convex
regions. The condition that a point lies within one of these convex regions is given as a conjunction of
equations, and the condition that a point lies within an object as a disjunction of such conjunctions.
Blocked space can then be characterized by a disjunction of all these disjunctions, and free space is

just the logical complement of it.
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In this formulation, the tesselations made on the object to define the convex regions form the
applicability constraints. The reason why this approach does not seem to work as well for kinematics
is that it is non-local: the applicability constraints depend on the whole object, and can not be found
by local analysis of the boundary segment and its environment. This seems to violate our principle
of basing the theory on local analyses as much as possible, and that is the reason for choosing the
formulation we have given. However, if one wants a theory that is based on constructive solid geometry,
an alternative formulation based on descriptions of blocked space might be more appropriate. The
other parts of our theory do not make any particular assumption about the choice of applicability

constraints; alternative formulations can thus be substituted if necessary.

2.3 Constraints for Kinematic Pairs

In this section, we investigate the case of kinematic pairs of 2 objects, each attached so that it has only
a single degree of freedom. The kinds of attachments we allow to give the one degree of freedom are
either a purely translational or a purely rotational one. This ignores cases where the object can move
in some more complicated fashion; they could be incorporated into the theory if a precise definition
could be found. Fortunately, such cases are very rare in mechanisms (we have not found a single
example), and we do not treat them further here.

With this restriction, the configuration space is two-dimensional, the constraints are plane curves
and their intersections are points. The computation of the place vocabulary thus becomes a problem
of plane geometry, much simpler than in the unconstrained general case. In the restricted case that
we are considering here, the constraints can be very precisely characterized, allowing computation of
place vocabularies by other than brute-force methods. In the following sections, we show some of the

features of constraints for kinematic pairs.

2.3.1 Topological features

Depending on the different combinations of attachments of the objects, the configuration space can

have one of the following different topologies:

Euclidian in the case where both objects have translational attachment.
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A cylinder in the case where one object has rotational and one has translational freedom.
A torus in the case where both objects have rotational freedom.

If the configuration space topology is Euclidian, the constraint curves are unambiguous plane curves.
In the case where one or both objects have rotational attachment, there are always 2 configurations in
which the objects can touch at a certain point. The constraint curve in configuration space is formed
as the intersection of the cylinder or torus with the algebraic manifold defining the constraint. This

manifold can either
® not intersect the configuration space at all, in which case the constraint is inactive.
e touch the configuration space, a singular case.

e intersect the configuration space. In this case, the manifold will form 2 intersection curves. We
call one of these the original, the other the mirror image. This ambiguity is the same as that

which may be observed for the configurations of touch.

The convention for distinguishing originals and mirror images will be given at the end of the next

section.

2.3.2 Parameterization

The constraint curve can be parameterized by the location of the point of touch between the objects.

The most convenient parameter to choose is:
e in the case of rotational attachment: the radius of the point of touch from the center of rotation.

e in the case of translational attachment: the signed distance of the point of touch in the direction

of the right-handed normal to the direction of translation.

For simplicity, we shall refer to both of these quantities as radius, r. The 2 different cases are illustrated
in Figure 2.9.

There are several advantages to this choice of parameter. As we will see later, it simplifies the
calculations of extremal endpoints and the breakup into monotone constraint segments. In certain
cases, there can be ambiguities as a boundary segment may have several points with the same value

for the parameter. In this case, the segment has to be split to make the parameterization unique,
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Ref. Pt.1

Ref. Pt. 2
Figure 2.9: The definition of the radius as parameter. Note that ro is negative.

as shown in Fig. 2.10. We shall call the segment decreasing if the parameter decreases when the
segment is traversed from lower to upper end, and increasing otherwise. The restriction that each
segment has a constant sign curvature is insufficient to bound the number of segments that might
have to be ma.de.(see Figure 2.10). In the case of arcs and straight lines, it is possible to limit the
number of subsegments to at most 3. Along with the radius, we also define the distance d between

the attachments of the objects, also illustrated in Figure 2.9. We distinguish the following cases:

e When both objects are rotationally attached, d is just the Euclidian distance between the

reference points.

e When one object O, is rotationally attached, and the other object O, is translationally attached,
it is the signed distance of the reference point of O in the direction of the right-handed normal

to the direction of translation of O,.
e When both objects are translationally attached, d is undefined.

We compose the parametric description of the constraint segments from 2 parts: the absolute
location of the point of touch as a function of the radius and the offset of the point of touch in the
local coordinate systems of the objects. The 2 sets of configuration space parameters can be added
algebraically.

We describe the particular attachment by a pair (x,y), where x, y stand for the attachments of
the 2 objects O, and O, and can be one of translation or rotation. We then have the 3 cases shown
in Fig. 2.11 below: Shown in Figure 2.11 are the radius vectors of the points of touch between the
objects. We now derive the conditions that characterize where these points may lie. Note that the

angles/distances shown in the figure are not the configuration space parameters, which are obtained
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Figure 2.10: The boundary segments must be split at the points indicated by the dashed lines. Note

that the boundary on the right has positive curvature throughout and is thus a single segment.

by adding the positions of the points of touch in the local coordinate systems of the objects. We

distinguish the 3 cases:

(r-r): We have the 2 equations

R, cos ¢, + Rycos ¢y = d and R, sin ¢, = Ry sin ¢y,

from which we find
R2 - R,'j’ +d? \/ZRER;‘f + 2R2d? + 2R%d? — BRI ~ R} —d*
cos ¢, = W , sing, = % 2R,

Expressions for cos ¢, and sin ¢, can be found by symmetrical relations. Note that the roots in

the expressions for sin ¢, and sin ¢, are identical. Note that in order for the angles to refer to

the same global coordinate system, the sign of cos ¢, must be inverted.

The sign ambiguity in the expression for sin ¢, refers to the distinction between constraint

original and mirror image. We choose the positive sign for the original and the negative sign for

the mirror image.
(r-t): We have the equations

R,cos¢d, + R, =d and R,sing, = z,
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Figure 2.11: The 3 different possible attachment combinations: (r-r}, (r-t) and (t-t). The arrows meet

at the point of touch of the objects.
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(t-t):

Figure 2.12: Construction of local offsets for straight boundary segments.

from which we find

COS o = d };R” y Sindy = /1 — cos? ¢, and z;, = sin g, R,,

{13

The sign ambiguity in the expression for sin ¢, again refers to the distinction between original
and mirror image of the constraint, where the positive sign is chosen for the original and the

negative one for the mirror image.

We have the equations

R, R
£+ Ry, = zptana and —"
cosa cos o

+ R, =z, tana

which can be rewritten to give

R R, R, R,
L+ = and 5, = —% 4
n S o tanca

To use these equations to derive a parameterization of the constraints, we have to find the offset
in ¢ or x of the point on the boundary segment with the particular radius. This offset depends

on the form of attachement of the particular object.

In the case of straight line boundary segments shown below in Figure 2.12, we have for the

offset angle ¢ from the point where r is at its minimum rq

cosp = ro/r, andsiny = /1 — cos? ¢
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Figure 2.13: Construction of the local offsets for arc boundary segments.

and for the offset x,
r—nr

Az

Tz =
2=

For the case of arcs, shown in Figure 2.13, we have by the law of cosines
Ry = ro+ 12 — 2rrgcos ¢

and thus

The expression for sin¢ can be found from cos¢. In the case of translational attachment, we

obtain
z=2VR?>—{r—yw)?+20

While we can not give a general solution here for boundary constraints, in the case of a boundary
constraint involving an arc, we can use the analogy to vertex constraints to arrive at a parameteri-
zation. In this case, the boundary constraint is not parameterized by the radius of the actual point
of touch, but rather by the radius of the point where the imaginary vertex touches the expanded

boundary. However, the 2 parameters are related by a one-to-one mapping, as will be shown in a later

section.
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Note that the constraints can not all be algebraically parameterized in a single parameter. Alge-
braic parameterization is achieved by introducing new parameters, which are bound to the values of
the required transcendental expressions. This results in a parameterization by several algebraically

related parameters.

2.3.3 Further subdivisions for.monotonicity )

Configurations that satisfy constraints are of great importance for kinematic analysis, as they are the
ones where the objects are in contact and can thus influence each other. For a correct qualitative
analysis of the kinematics, it is necessary that the constraint segments be monotone so that the relation
they enforce between the configuration space parameters of the objects can be stated as a qualitative
equation.

For the purposes of discussion, we consider a constraint formed by a vertex on object O, touching
a boundary segment on object O, and refer to the position/orientation parameters of the objects as p,
and py. As the constraints are well-behaved algebraic curves with a continuous derivative, the mono-
tonicity réquireﬁent will be satisfied whenever a constraint has no zero crossings of the derivatives
dpy/dpy and dpy/dp, except possibly at the endpoints. It turns out that additional subdivisions of
constraint segments are needed to satisfy this requirement. In order to find these, we examine where

such zero-crossings of the derivatives may occur.

Zero crossings of dp, /dp,,

A zero crossing of dp,/dp, occurs at an extremum of p,(p,). If and only if py, is an extremum
of this function, there are 2 points p,, and pu, in an infinitesimal neighborhood of pyy such that
Pb1 < Poo < Pz and py(Pb;) = pu(pua). This means that there exist 2 configurations on the constraint
where the O, is in exactly the same position, but Oy, is in an infinitesimally different one.

If Oy is rotationally attached, there may indeed exist such pairs, namely whenever ps, and py,
result in configurations where the point of touch lies at the identical radius r with respect to the
attachment (see Figure 2.14). Such pairs of points with identical radii occur around extrema of the
radius on the boundary, thus, zero-crossings of dp,/dp, will occur at these points.

But note that we have already broken up the boundary segments at the extrema of the radius in
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Figure 2.14: Pairs of configurations where the vertex stays in the same position occur at identical

radii. Extrema of radii are thus extrema of the constraint.

order to achieve a unique parameterization. No further divisions are thus necessary to handle this
case; this was in fact one of the reasons for the choice of parameterization.

If O, is translationally attached, the sets of physical points occupied by the boundary segment
are disjoint for any pair of distinct positions, thus no such pair is possible. An exception to this is
the case where the boundary segment is parallel to the direction of translation: if there is a vertex

touching this segment, the derivative of the constraint is identically zero.

Zero crossings of dp,/dp, - dead points

Similar to the preceding section, we again examine the conditions for pairs of configurations (py,, puo)
and (pvz2),Puo). The possible motion of O, defines a locus curve for the vertex, which may be param-
eterized by p,. The points on this curve corresponding to ps; and p,, must both touch the boundary
on Oy. As the 2 points are only an infinitesimal distance apart, they lie just at those points where the
locus curve touches the boundary. These points of touch correspond to the zero crossings of dp;,/dp,,
and we call them dead points.

If O, is translationally attached, the locus is a straight line. If it touches a straight boundary

segment along its length, the derivative of the constraint is zero throughout, and monotonicity is thus
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Figure 2.15: Situation analyzed for the zero crossings of dpy/dp,, Oy translating and Oy, rotating (left)
or translating (right).

satisfied. If the boundary segment is a curve, the vertex may touch it in a point as shown in Figure
2.15. This imposes a particular condition on the radius of the point of touch where the zero crossing
occurs. Note that in Figure 2.15, the arc is convex. In the case of a concave arc, we have to reverse
the appropriate signs and shall indicate the ambiguity in the computation. In the case where O, is

free to rotate, we have that

d = ry£ (R - rocos¢)sign(d)
d—r
= Ry —% .
= rpcos¢ F sign(d) (2.12)
and, by the law of cosines,
ri = R®+r —2Rrpcosé (2.13)
Using ( 2.12) in ( 2.13), we obtain
ro =1\/ra — R2 £ 2R(d — r,)sign(d) (2.14)

Note that the cases of a convex and a concave arc are related by simple reversal of the sign of R.

When O, translates, we have from Figure 2.15 that

rm=roxt Rcosax (2‘15)
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Figure 2.16: Situation analyzed for the zero crossings of dp,/dpy, O, and O, rotating.

If 0., is rotationally attached, the locus is a circle and can touch both straight boundary segments
as well as arcs as shown in Figure 2.16 for a rotating O;. We have to distinguish the cases where O,
rotates and where Oy translates.

In the case of rotation, we have that
decosp=r, = A (2.16)

where the sign is ambiguous because the center of rotation could also be on the same side of the

boundary as the other object. Also, by the law of cosines we have
e =12 4+d° —2r,dcos ¢ (2.17)
Combining ( 2.16) and ( 2.17) gives
o= Vd® ~ 12 F 2r,& (2.18)

for the desired radius value. The sign is most easily disambiguated by testing on the actual constraint.

For the case of a convex arc, we have by the law of cosines that

7 = R® +r2 —2Rrocos ¢ (2.19)
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Figure 2.17: Situation analyzed for the zero crossings of dpy/dpy, Oy rotating, Oy, translating.

and

d? = (R+7,)% +r2—2(R+r,)rocos ¢ (2.20)

We can combine ( 2.19) and ( 2.20) and after some manipulation, we obtain

2 4% —rj
T, = \/7'0 + R (r_" T R - ru> (2.21)

In the case of a concave arc, we can apply the same analysis, reversing the appropriate signs, to arrive

Ty = \/rg bnd R (f- : ;g - r") (222)

Note that ( 2.22) is just ( 2.21) with the sign of R reversed.

at the result:

The situation when Oy, translates is shown in Figure 2.17. For the case of a straight line boundary,

we now have that

d T — 1y c05(180 — 4)

=7r, = d—rycosf (2.23)

where ¢ can be found from the object data in a straightforward manner. In the case of a convex arc
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Figure 2.18: The extremum of p, is reached where the point of touch on Oy is at an extremum of the

radius.

shown on the right in Figure 2.17, we have by linearity

R(d - 1‘0)

2.
R+r, (2.24)

r, =71+

where the corresponding result for a concave arc is again obtained by reversing the sign of R.

Zero crossings in the case of boundary constraints

We consider a boundary constraint formed by 2 boundaries on O,, and O;. Because of the symmetry
of the situation, it is sufficient to examine the conditions for zero crossings of dp,/dp,. Consider the
situation shown in Figure 2.18. Let py, be a configuration on the constraint such that dp,/dp, = 0.
In order for the 2 boundaries to touch, they must be parallel at the point of touch; in fact, the 2
curves are identical in an infinitesimal neighborhood of the point of touch.

In order to allow small movements of O, while keeping O, in place, the boundary on O, must
touch but may not intersect the envelope of O, formed by these movements. In the infinitesimal
neighborhood of the point of touch, this envelope is given by the curve traced by that particular
point under motion, i.e., an arc if Oy, is rotationally attached and a straight line if the attachment

is translational. The boundary on O, must be parallel to this envelope at the point of touch, and
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Figure 2.19: Tke constraint can be enclosed in the rectangle through the endpoints. Several rectangles

might have to be made if the invalid part of the constraint curve passes through the original rectangle.

likewise for the boundary on Oy as the 2 boundaries touch. But this means that the boundary on O,
touches the envelope, and dr/dp, = 0.

The extremal points of touch are thus extrema of the boundary curve, and the boundaries are
already broken up at these points to give the unique parameterization. Thus, boundary constraint

segments always fulfill the monotonicity requirement.

2.3.4 Bounding rectangles

We have already seen that the derivative of the constraint segments are qualitatively constant in
the coordinate system defined by the c-space parameters of the 2 objects. This makes it possible to
construct a bounding rectangle whose sides are parallel to the coordinate axes of configuration space
such that the constraint segment must lie completely inside it, as shown in Figure 2.19. Note that
this is the closest bound we can place on the shape of the constraint without further assumptions.
The purpose of bounding rectangles is to delimit a region of configuration space such that the only
part of the constraint curve that passes through it is the valid part. When the bounding rectangle is
chosen simply as the rectangle through the endpoints, it is still possible that the invalid part of the

constraint curve passes through it. This case can be detected by testing the opposite corners of the
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Figure 2.20: The constraint curve may intersect a bounding rectangle in complicated ways. Such cases
are ruled out in our implementation by the fact that 2nd order curves can have only 2 intersections

with a straight line.

enclosing rectangle for whether they lie on opposite sides of the constraint curve. We then replace the
bounding rectangle by a pair of them, each enclosing one half of the valid constraint segment, until
all such bounding rectangles contain only valid segments of the constraint curve.

The method above would fail in cases such as that shown in Figure 2.20, where the constraint
curve intersects a side of the bounding rectangle three times. Note that in our case, the constraint
curves have degree at most 2; therefore, they can have at most 2 intersections with the straight line
bounding the rectangle. The invalid part of the constraint curve can thus intersect any side of any
bounding rectangle at most once, and any such intersection will cause the 2 opposite corners of the

bounding rectangle to lie on the same side of the constraint curve.

2.3.5 Endpoints of constraint segments

If the freedom of the objects is completely unconstrained, the configurations defined by the touchpoints
are always achievable and the touch “point” are not points, but form a single connected region in
configuration space. When the freedom of the objects is constrained, however, this is not always
the case. Constraints or parts of them are nonexistent if the corresponding points of touch are not
achievable.

For an object with one degree of freedom, the location of a given point on the object is constrained
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Figure 2.21: Extreme configurations and the radius values that result from them.

to its locus curve. If the freedom is rotational, this curve is a circle; if it is translational, a straight
line. A given pair of points on the 2 objects can touch if and only if their locus curves intersect,
and the location of the point of intersection defines the configuration where this touch occurs. Note
that in the case of at least one object having rotational attachment, there exist two such points of
intersection, defining the original and the mirror image of the touchpoint.

When both objects are free to translate, either they can move in parallel (a singular case) or each
pair of vertices forms exactly one touchpoint, as 2 straight lines are either parallel or have exactly one
point of intersection. When one or both of them are constrained rotationally, there are non-singular
cases where no intersection and thus no touchpoint of the pair of vertices exists.

A constraint C exists whenever at least one configuration on it exists. In the case where there
is such a point but both endpoints of the constraint are inactive, the actual endpoints of the active
part of the constraint lie at extremal points of touch. In the following, consider a vertex constraint
generated by a vertex V with radius r, touching a boundary segment B at radius ry.

If the vertex is attached rotationally, there always exists a minimum and a maximum of the radius
of the point of touch, corresponding to the 2 configurations where the radius from the center of rotation
to the vertex is parallel to the direction between the attachments (see Figure 2.21). These radii are
thus given as r,; = d+r, and ry2 = d — r,. If the boundary is rotationally attached, the sign is of no
importance and we have that ryp = |d — 7.

If the vertex has translational and the boundary rotational attachment, there is only one possible
extremum of the point of touch. This is reached when r, = |d—r,|, corresponding to the configuration

on the left in Figure 2.21.
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If the radius of a vertex at the end of the boundary segment B falls outside of the interval defined
by these extremal values, the particular endpoint does not exist. In the case where the interval of
radii between the 2 endpoints does not contain the interval of the extremal values, the constraint
does not exist at all. Otherwise, the actual endpoints can be inferred by replacing the values at those
endpoints that fall outside of the interval with the corresponding bound.

Note that at such inferred endpoints, the constraint does not intersect the one generated by the
boundary adjacent to B at the vertex in question. Also, the extremal configurations are identical
for the constraint and its xﬁirror image. The constraint thus joins smoothly with its mirror image at
inferred endpoints. No applicability constraints need apply in connection with this smooth join.

The same reasoning as in the case of vertex constraints also applies to boundary constraints.
In the case of boundary constraints generated by the touch of an arc, the constraints are directly
analogous to vertex constraints and the analysis thus can be carried over directly. In other cases, a

more complicated analysis may be necessary.

2.3.6 Endpoints of boundary constraints

Boundary constraints in general do not end at touchpoints, but connect smoothly with a vertex
constraint. For each boundary constraint, there are 4 possible candidates for these constraints as
shown in Figure 2.22 below. For each of these candidates, we further have to distinguish whether the
constraint has to be linked to the original or the mirror image version, and to which segment if the
constraint is broken up.

First, let us consider the different conditions for an endpoint of 2 boundary constraint. An obvious
endpoint of a boundary constraint is reached when the center of the participating arc reaches an
endpoint of the imaginary boundary it travels on. In this case, the constraint connects with the
vertex constraints a) and b) in Figure 2.22. However, it is possible that in this configuration, the
point of touch would not fall within the valid segment of the arc. In this case, the endpoint of the
constraint is determined by the endpoint of the arc, and connects with the vertex constraint c) or d)
in Figure 2.22. We call this case an inferred endpoint.

While we otherwise parameterize arc boundary segments by their radius, in this case it is more

convenient to use the angle, 1. In order to determine the location of the point of touch on the arc, and
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Figure 2.22: The 4 possible vertex constraints to end a boundary constraint.
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Figure 2.23: Determining the endpoints of boundary constraints.

the parameter value to be used for the endpoint when the constraint is bounded by an endpoint of the
arc, we need to examine the relationship between the constraint parameter r and the angle 1 of the
point of touch on the arc. Given the relationships r(1) and ¥(r), we can test the obvious endpoints
for legality by comparing  against the endpoints of the arc. If they are found to be illegal, the
parameter value of the endpoint is given by r{3) and ¥ of the endpoints of the arc. This is illustrated
in Figure 2.23.

At its endpoints, the boundary constraint connects smoothly with the adjoining vertex constraint.
The parameter value of the vertex constraint corresponding to this endpoint is determined by the
parameter value of the boundary constraint. Therefore, we also have to find the functions relating
the parameters of the 2 constraints.

The final problem is to determine whether to use the original or the mirror image version of the
vertex constraint, and which segment should be used if the constraint is broken up. Fortunately, as
this is a problem of deciding among a small number of alternatives, we can avoid lengthy computation
by using a generate-and-test method. For each alternative, we find the configuration corresponding
to the parameter value we computed for the endpoint and compare this configuration to the actual
one of the endpoint of the boundary constraint. As these configurations are necessarily distinct for

each alternative, the test always determines a unique adjoining constraint.
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Figure 2.24: Line boundary constraint with both objects rotationally attached.
The algebraic analyses referred to above are given in the following sections.

2.3.7 Determining r(y) and ¢(r) - case of line

The relationships between r and 1 depend on the attachments of.the objects involved. We therefore

analyze each combination of attachments separately.

Both objects rotationally attached

In Figure 2.24, we have by the law of cosines

d® =72 + 12 = 2rr, cos(¢ + )

cos¢ = ro/r, and sin¢g = £4/1 — 13 /r2

where sin ¢ is negative for a descending segment, positive for an ascending segment. Using the addition

Note further that

formulae for sine and cosine, and the formula for the solution of a quadratic equation, we then obtain

rf._, =d? - r‘z, + 2rory cos ¢ + 2r3 sin? P & 2ry sinp/d? — (ro — ry cos9)?
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Figure 2.25: Line boundary constraint with boundary on translating object, vertex on rotating object.

where the sign is positive for a descending segment, negative for an ascending segment.

When r is given, we have that

cos(p — @) = w, and sin() — @) = /1 — cos?(¢ + 9)

2rry

where the sign of the sine is positive if the constraint is a mirror image. The angle ¥ can be found

from this by application of the addition formulae.

Boundary on translating object, vertex on rotating object
In Figure 2.25, we have for original constraints that
r=d—r,cos() — § — 180)

and for mirror images that

r=d—rycos(180 — (¢ — 4))

By the symmetries of the cosine function, these both reduce to

r=d+r,cos(f — )
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Figure 2.26: Line boundary constraint with boundary on rotating object, vertex on translating object.

As 0 is fixed for the boundary segment, r is found from this by application of the summation formulae.
Note that the equations also hold if the center of rotational attachment is on the negative side of the
translational attachment, i.e., d is negative. When we invert the equation to find %, however, we must
invert the signs when r becomes negative, thus obtaining that

r—d

v

cos(f — ¥) = sign(r)

, and sin(f — ) = £/1 — cos?(f + 9)

where the sine is negative for an original, and positive for a mirror image. We can again find ¢ from

this using the summation formulae.

Boundary on rotating object, vertex on translating object
Referring to Figure 2.26, we have that

2 2] n
r=ry+ A

and
A= (d—ry)sign(ry) + rocosy
- sin(—)
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We have to take into account the additional condition that

. < 0 for mirror images
sin(¢ — y) =

>0 for originals

If this condition is violated, the boundaries do not properly touch each other in the corresponding

configuration, and the constraint does not exist. The condition can be tested for using

1 .
tan¢ = |A|/"01 cos¢ = m, sing = £v/1—cos? ¢

where the sign of the sine is positive for an ascending segment, negative for a descending segment.

To determine 9 as a function of r, note that

cos(¢ — ) = sign(ry) Tv” d, sin(¢ — 9) = £1/1 — cos?(¢ — ¢)

r

where the sine is positive for a constraint original, negative for a mirror image. The angle ¢ can be

found in the usual manner using cos ¢ = ro/r, and ¢ thus computed using the summation formulae.

Both objects translationally attached

In this case, the relative angle between the 2 objects is constant, and thus 1 does not vary along the

constraint. As shown in Figure 2.27, 1 is given as
Y= (a—190) (2.25)

Note that the test for whether ¢ falls within the boundary segment now is a test for the ezistence of

the boundary constraint.

2.3.8 Determining (1) and ¢(r) - case of arc

Again, as the relationships depend very heavily on the attachments of the objects, we make a case

split and analyze each case separately.

Both objects rotationally attached
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Figure 2.27: Line boundary constraint - both objects translating.

Figure 2.28: Arc boundary constraint, both objects rotating.
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The situation corresponding to this case is shown in Figure 2.28, where the imaginary vertex is

assumed to lie on object 1, and the boundary on object 0. By the law of cosines, we have the following

relations:
7‘2 = r31 + (Ro -+ Rl)z - 2T"1(Ro + Rl) CcOos ¢’ (2.26)
& = 2+ 12— 2rory, cos(f’ — ')
12 +r2 —d?
0 — )= 0 v1 2.27
= cos( ¥') Brorer (2.27)
1',210 = th) + (Ro + Rl)z - 21“0(30 + Rl)COS ¢’
2 2
+ (RO + Rl) — Ty
= cosf! = 10 ] 2.28
cos 27'0(R0 + Rl) ( )
By the law of sines, we also have
Tva ) . 1 Tvy _.
sind’  sin(—v) s o siny (2.29)

Further observing that
sin(6’ — ') = £1/1 — cos2(9! — )

where the sign is positive for originals, negative for mirror images, we can find cos %' from ( 2.27),

(2.28) and ( 2.29) using the summation formulae. Using this value in ( 2.26) gives the result

Ry+R
= rﬁl + 7y, (Ro + By) cosyp — —07-—1 [(7'3l - dz)(Ro + Ry = 1y, cos )
0
*+ry, sin 1/)\/27‘87‘31 +2r3d? + 22 d2 — rd — 12 — d“} (2.30)

where the sign can not be predicted, but must be found by testing consistency.

We can find 9 from the formula for ¢’ by symmetry of the figure as

(r® +7r2 — d*)(Ro + Ry — ry, cos §') £ r,, sin 1/1’\/21"-"7'30 +2r2d? + 272 d? — 1§ — 1} —d*

(23
2r=ry,

cosyp =
(2.31)
where the sign is positive for mirror images, negative for originals, and sin % = #+/1 — cos2 ¢ has a

negative sign for originals and a positive sign for mirror images.

One object translating, one object rotating
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Figure 2.29: Arc boundary constraint. Object 0 translates, object 1 rotates.

Because of the symmetry of the situation, the cases where the imaginary vertex is on the rotating
cbject and the one where it is on the translating object may be analyzed together. Consider the

situation shown in Figure 2.29. First, observe that
' =180+ ¢ (2.32)

and then that

ro = d+stgn(d)ry, cos(8’' — y') = d + sign(d)ry,, cos(y -+ 180 — ¢')
ro = Ty, + (Ro + Ry) cos ¢’ = ru, — (Ro + Ry) cos (2.33)
) Tvo — (Ro + Ri)sign(ry,) cosy — d
—v)= 2.
= cos(¢’ — ¢) sign{d)r, (2.34)

Note that since §' = 180 + 1, the sign of sin¢' is positive for the mirror image and negative for the
original; sin’ can thus be found from sin(¢’ — ) = £+/1 — cos?(¥’ — ). This allows us to express
¥’ in terms of ¥ by using the summation formulae. Note that ¥(ro) can be found from Equation
2.33, noting that the sign of sin ¢ is positive for mirror images, negative for originals. For ry, we have

by the law of cosines

= \/"31 + (Ro + Ry)? — 2r,, cos ¢! (2.35)
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By using the previous result in this equation, we can obtain r, (). We also have for ro:

ro = d—ry, cos(180 — ' — §')sign(d)

d + ry, cos(¢’ + 8')sign(d) (2.36)

TO - on

- 2.37
Ry + R, ( )

ro = 1y, + (RoR1)cosf = cosb’' =

The term cos(3’ + ') in Equation ( 2.37) can be found from Equation ( 2.37) (noting that sin 8’ is
positive for originals, negative for mirror images) and 1’ by application of the summation formulae.

This gives a quadratic equation which can be solved for 7y to give

Too + d(Ro + 1'21)2/r31 — cos ¢'(d + ry,)sign(d)(Ro + R1) /7,
02 = N
(d—' r'ln)z
r3 N2

:i:(Ro + Rl) sin ¢’ l/N - (2.38)

where

N =1+ (Ro + Ry)?/r - 2sign(d)cosy'(Ro + R1) /7,
and the sign can not be predicted, but must be found by consistency check. We have already seen
how to compute ¥’ from . It remains to show how to derive 1 from 1'. Note that we have that
d = ry,+r1cos(180 — 6 — 3)

= 1y, —ricos(f + )
run - d

= cos(f + 9) (2.39)

Ty
and that sin(f + ) is positive for mirror images, negative for originals. We also have by the law of

cosines that

2
Ty 1

71+ (Ro + R1)? — 2ri(Ro + Ry) cos 6

7+ (Ro+ Ri)* —r2
g = - o .
= cos 21 (Bs £ Fy) (2.40)

where sin ¢ is positive for mirror images, negative for originals. We can then obtain % from ( 2.39)

and ( 2.40) using the summation formulae.
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Figure 2.30: Arc boundary constraint - both objects translating.

Both objects translating
The situation for this case is shown in Figure 2.30. Note that we have for 1
b=a—n (2.41)
and forr,
r =ro + Rcos(y) = ro + Rcos(a — 1) (2.42)

The angle « can be determined directly from the boundary segment.

2.3.9 Relations between constraint parameterizations

At the endpoints of the boundary constraints, the value of the radius value for the vertex constraint
corresponding to that configuration has to be found from the radius value of the boundary constraint.

We have to distinguish the following 2 cases:
o The vertex of the vertex constraint is on the other object
e The vertex of the vertex constraint is on the same object as the arc of the boundary constraint

In the first case, the radius values refer to boundaries on different objects. The parameter value on
the vertex constraint is in this case best computed using the relations to the angle ¥ found earlier

which can serve to index to point of touch. Making the appropriate distinctions with respect to the
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Figure 2.31: An straight line boundary segment “expanded” to derive a boundary constraint.

attachments, we have here that

Vg + R? — 2rgRcosy for rotational attachment

ro — Rsign(ro) cos 9 for translational attachment

In the second case, the radius value of the vertex constraint and that of the boundary constraint refer
to the same object boundary. They can thus be computed without any further reference to the other
object. In the case of a boundary constraint generated by an arc and a straight line, we have the
situation shown in Figure 2.31. In the case of rotational attachment, indicated on the right half of

Figure 2.31, we have the 2 equations

8 = 124 A% (2.43)

2 = (ra+ropg)’ + A2 (2.44)
Combining these 2 equations, we have that

22 =12 + 1% — (ry +ross)? (2.45)
For translational attachment, shown in the left half of Figure 2.31, we have by linearity that

z=r—r,cosf (2.46)
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Figure 2.32: An arc boundary segment “expanded” to derive a boundary constraint.

where § is found in a straightforward manner from the metric diagram.

In the case of 2 rotating arcs, shown on the right of Figure 2.32, we have that

2 = AZ4AZ (2.47)
1'2 = (Al + R1)2 -+ Ag (2.48)
P2 = (A + Ry £ Ry)?+A2 (2.49)

where the ambiguity of the sign in Equation ( 2.49) expresses the different cases of convex/concave

arcs. These equations can be combined to give

2 2 R n o
z= \/r('; + R} + m(r’ ~ R - RZ — 1 F 2R, R,) (2.50)

In the case of translational attachment, shown on the left half in Figure 2.32, we have by linearity

that
R
z=ry+ __R1 :i:le (1‘ - 7'0) (2'51)

where the ambiguous sign again expresses the distinction of convex/concave arcs.
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2.3.10 Singular cases

There are 2 kinds of singularities that we need to distinguish in this context. The first are singular
cases of object boundaries which can not be parameterized in the parameterization we are using:
these are straight lines parallel to a translational attachment, and arcs whose center coincides with
the center of a rotational attachment. For these curves, the radius is constant and thus can not be
used as a parameter. Instead, we use the distance from the lowest endpoint. We have also seen
previously that these cases result in constraints whose derivative with respect to the configuration
space parameter of the boundary segment is identically zero. Besides this feature and the different
parameterization, these constraints share the same properties as the other constraints.

When 2 singular boundary segments of this kind are combined, the resulting constraint may be

singular in a different way. There exist in particular the following cases:
1. Two parallel straight line boundary segments.

2. A straight line, translating parallel to itself, and an arc, with its center of curvature in the center

of rotation of the object.

3. Two circular boundary segments, rotationally attached, both having their center of curvature

in the center of rotation of the respective objects.

4. A straight line boundary segment and a vertex, both with translational freedom parallel to the

boundary segment.

Case (1) is the only case where 2 straight lines can touch. In the case of attached objects, it in general
results in a one-dimensional constraint. However, there is the singular case where both objects have
translational freedom parallel to the boundary segments. In this case, the constraint is actually 2-
dimensional, as both objects can move while maintaining the constraint. The same situation is given
in case (4).

Similarly, in cases (2) and (3), both objects can move while maintaining the constraint, and it
is thus a 2-dimensional region of configuration space. Fortunately, the boundaries of this region are
rather simple: it is just a rectangle in configuration space through the touchpoints formed by the
vertices at the ends of the boundary segments in question.

The 2-dimensional constraints do not serve any kinematic function in mechanisms, as the contact
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is trivially maintained no matter how the parts move, and they do not constrain this motion at all.
They are therefore ignored for the construction of the place vocabulary; if a particular application is
sensitive to such points of contact, e.g., electrical machinery, the corresponding regions can be specified

and intersections with the places of the place vocabulary could be formed in a postprocessing phase.
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Chapter 3

PLACES

In this chapter, we describe how the constraint segments can be combined to form the place vocabulary.
The computation of place vocabularies proceeds in 2 stages: First, place vocabularies are found for
the individual kinematic pairs, and then the place vocabulary for the complete kinematic chain is
found by composition of these pairwise place vocabularies. We discuss first the computation of the
place vocabularies for kinematic pairs.

The place vocabulary is a representation of free space as a cell complez, i.e., a set of cells of different
dimensions. In configurations in the regions of free space where no contact between the objects exists,
the objects do not constrain each other; these are the jull-dimensional places. In general, every
contact between the objects reduces the degrees of freedom by one. The places of dimension d-1
(with d being the dimension of the configuration space) are thus made up by the configurations
that exactly satisfy one constraint, the constraint curves themselves. The places of dimension d-n
comprise the configurations that satisfy n constraints simultaneously, i.e., the intersection manifolds
of n constraints. Except in singular cases, n points of contact exist between the objects in these places.

Only regions which lie within or on the boundary of free space can form places. The first step
in finding the place vocabulary thus consists of determining the connected components of free space.
As we already noted, the boundary between free and blocked space is made up of the envelope of the
constraints. In the case of a 2-dimensional configuration space, these boundaries are 1-dimensional

chains of constraint segments. We define a chain as a maximal sequence of constraint segments such

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



s e m i - am

that
o successive segments intersect each other, and have the free space on the same side.
¢ no segment intersects anything else between the intersections with its 2 neighbors in the sequence

e 1o segment is subsumed by another intersecting constraint within the interval where it forms

part of the chain. This still leaves the possibility of chains subsuming each other.

The chains can be found by tracing the structure formed by the constraint segments and their inter-
sections. In the general case of a configuration space with more than 2 dimensions, this envelope will
itself be a cell complex and can not be characterized in this simple manner. Our subsequent discussion
is therefore restricted to the case of 2-dimensional configuration spaces.

The constraint segments that occur as part of some legal chain make up the 1-dimensional places in
the place vocabulary, and their intersections are the 0-dimensional places. No other 0- or 1-dimensional
places can exist, as they would form additional boundaries of free space.

Given the chains, it is possible to find the connected components of free space and associate the
chains into sets bounding the same component. Note that there may be an arbitrary number of
such chains associated with the same region. First, if one or both of the attachments are rotational,
the topology of the configuration space is that of a cylinder or a torus, where 2 disjoint boundaries
are required to bound a single connected region. Second, the components need not all be simply
connected. Within any component of free space, there may exist an arbitrary number of obstacles,
each of which has a chain as boundary.

Finally, each connected component must be described by a set of quasi-convex cells, i.e., a conjunc-
tion of predicates (% > / < 0), where the % are equations of constraints or applicability constraints.
To find this description, we must take into account not only the set of constraint segments in the
chains, but also their applicability constraints. The applicability constraints require place divisions
wherever they run through free space. As free space is defined by a logical formula on the signs of the
constraints and the applicability constraints, and the signs of these do not change within the regions
thus defined, they constitute the desired breakup of the connected component into full-dimensional,
quasi-convex places. |

In the following sections, we discuss the steps involved in computing the place vocabulary from

the constraints. First, we discuss the problem of determining the envelopes of the constraints, then
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we show how they can be associated with the different connected components, and finally how these
components are broken up by the applicability constraints. We then discuss what further subdivisions
might be appropriate to improve the results of the qualitative analysis, and how to compose the place
vocabularies for analyses of kinematic chains. Finally, we show how algebraic decision methods could

be applied as an alternative way to compute place vocabularies.

3.1 Determining Chains of Constraints

The first step in finding the chains of constraint segments consists of detecting all intersections between
constraints. Some intersections are already given by the endpoints of the constraints; we call these
endpoint intersections. Besides these, any pair of constraints can form intersections distinct from their
endpoints. We call these intersections subsumption intersections, as at these points one constraint is
subsumed by another.

The number of possible intersections between a pair of constraints is limited by the algebraic degree
of the constraints involved. In our particular case of boundary curves restricted to arcs and straight
lines, we have seen in the previous chapter that the algebraic degree of the constraint curves is never
greater than 2, thus limiting the number of possible intersections to 2 also.

The only simple way to test for intersections between constraint segments is to test the relative
locations of their endpoints. However, this test will only succeed when the number of intersections
is odd. An even number of intersections between constraints reflects a local subsumption between
constraints. It has no global influence on the place vocabulary, and such cases can thus be viewed

in isolation from the rest of the place vocabulary computation. There is no simple way to detect

such multiple intersections. However, in the section on algebraic decision methods, we show how the

number of intersections between algebraic curves can be reliably computed.

The intersections between constraints define a graph §. The set of vertices of § is the set of
intersections of constraints, and the edges are the valid constraint segments between the intersections.
The ordered set of intersection points on some constraint C defines a set of valid constraint segments in
the intervals on C that do not violate any of the intersecting constraints. Note that each intersection

point is linked to at most 2 such valid segments. Note now that cach loop in § is a legal chain, and
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Figure 3.1: The endpoints of constraint C,, lie on the same side of Cy, but there is only one intersection

where C;, is valid.

that any legal chain must form a loop in §. The chains can thus be found by tracing § to find all the
loops. Chains found in this way could still lie completely within blocked space. Because the way we
have defined constraints does not give a full description of blocked space, we can not test the chain
directly for inclusion in blocked space. However, if the chain is a part of blocked space, there must

exist 2 subsuming chain. We describe later how we can test 2ll chains to see if they subsume another.

3.1.1 Finding single intersections

The set of candidates for pairs of intersecting constraints can be limited by considering only pairs for
which there is a pair of intersecting bounding rectangles. Usually, a pair of constraints that is tested
for intersection does not cover exactly the same range of parameters. It is possible that a constraint
segment intersects the algebraic curve of another constraint segment 2 times, but that only one of the
2 intersections falls within the area where the other constraint is actually valid (see Figure 3.1). To
avoid this case, we construct the intersection of the bounding rectangles of the 2 constraints, then find
the endpoints of those segments of the constraints that fall within the intersection(s), and test these
for intersection. As neither bounding rectangle contains any invalid part of the constraint curves, no

intersections with them can occur within the intersecting region.
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Figure 3.2: Proper (left) and improper (right) intersection of C, and Cs.

The condition of intersection of enclosing rectangles also avoids another undesirable case. Consider
2 constraint segments C, and Cp which are to be tested for intersection. Each segment forms part of
a closed constraint curve, and we call the rest of this closed curve the complement of the constraint
segment. If, by evaluating the equation of the constraint, the endpoints of C, have been found to lie
on opposite sides of Cp, and the same holds for C;, then we have one of the 2 cases (shown in Fig.
3.2):

e Cq and Cp intersect, and so do their complements

e C, intersects the complement of Cp, and C, the complement of C,.

Intersections of the first kind we call proper intersections, intersections of the second kind tmproper.
Only proper intersections are of any interest for the place vocabulary. As the bounding rectangles
do not enclose any invalid part of the constraint curve, the condition that they intersect rules out
improper intersections.

For constraint segments which share a common endpoint, the endpoint tests are not possible, as
‘the common endpoint lies on both constraints and thus can not be on the opposite side of any other
endpoint. For a pair of constraints C,; and C;, with 2 common endpoint, where C, subsumes C; at the
common endpoint, a subsumption intersection exists whenever the other endpoint of C, is subsumed

by Cy. The condition of intersection of bounding rectangles applies to this case as well.
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3.1.2 Ordering the intersections

For each constraint, the intersections with other constraints must be ordered so that the valid segments
can be found. While this ordering amounts to tesselating a surface in the case of constraint curves with
more than 2 parameters, in the special case of a 2-dimensional configuration space and parameterized
constraints, the intersection points can be ordered on the constraint curve in the direction of its
tangent. In order to construct this ordering, we need a test to compare the parameter values of the
intersection points.

Such a test can readily be devised for the case where the 2 intersecting constraints themselves do
not form any subsumption intersections. If they do not intersect at all, one completely subsumes the
other and their ordering can be found by testing which side both endpoints lie on. If they share a
common touchpoint, then their ordering is determined by the local analysis at the touchpoint.

In the case where 2 constraints C,; and C, intersecting a third C. have a free intersection, it must
be determined on which side of C. that intersection lies in order to determine the ordering of the
constraints. But as the coordinates of the intersection point are not known at this point, this can
not be tested directly. In this case, we determine the order by finding a point on C. between the

intersection points of C, and Cp with C, and determining on which side of C, and C; this point lies.

3.1.3 Detecting multiple intersections

The case of an even number of intersections between a pair of constraint segments can not be detected
by the endpoint test. Multiple intersections must be found by algebraic methods based on Sturm’s
theorem, these are described in a later section. This leaves the algorithm incomplete for the case where
the algebraic form of the boundary segments is not known, but note that in this case the possibility
of error is indicated by the intersection of the bounding rectangles. We have not implemented these

algorithms as we have not come across a case where multiple intersections actually occurred.

3.2 Association of Boundary Sequences

Once the chains have been determined, it is necessary to find the connected regions of configuration

space that they enclose. First, we have to consider the topology of configuration space. Depending
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Figure 3.3: The chains ¢; — ¢z and d; — da together bound a single region of space.

on the combination of attachments, we have the following cases:
translational-translational: The configuration space is the Euclidian plane.
translational-rotational: The configuration space is a cylinder
rotational-rotational: The configuration space is a torus

A region may have several disjoint boundaries, depending on whether it is simply or multiply con-
nected. In the case where the configuration space is a cylinder or a torus, there are boundaries which
do not delimit a region by themselves, but require a complementary boundary to form one. This is
the case whenever chains are “slung around” one or both rotational dimensions, as shown in Figure
3.3 below. We call such chains traversing chains, as they traverse the whole of one or more rotational
parameters. In Euclidian space, we distinguish convez and concave chains. Convex chains enclose a
finite region of free space, while concave chains bound finite regions of blocked space and are also
referred to as obstacles. Both the cylinder and the torus are locally Euclidian, so that the same
classification applies to them for non-traversing chains. However, as the torus itself is a finite space,
the definition may not use infinity. Instead, we define a convex chain on a torus as one that encloses
a region that does not contain a closed curve spanning the whole range of a rotational parameter.

Examples of convex and concave chains are shown in Figure 3.4.
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Figure 3.4: Concave (left) and convex (right) chains in configuration space.

Because traversing chains do not intersect one another, all such chains must be parallel to each
other. This means that all of them cover the same absolute angles in each rotational parameter. This
angle can be described by its direction indez. For the torus, this is a pair (n,m), giving the multiples
of 27 covered in each rotational dimension. For the cylinder, we have only a single such number. Note
that there are 2 complementary kind of chains, some that have index (n,m) and some with (-n,-m).
Because of the monotonicity of the constraint segments, the index can be found by a march along the
chain, adding up the angles covered by each segment.

Each chain of index (n,m) must be paired up with the “closest” chain of index (-n,-m) to bound a
doubly connected region of free space. The chains must thus be ordered along a curve that traverses
them, i.e., has a different direction index. In general, any of the 2 coordinate axes of configuration
space can be chosen for this purpose. The exception to this rule is the case where the chains are
parallel to one of these axes: in the case of (0,m), we must use the first axis; in the case of (n,0) the
second axis.

Chains which are not traversing must be classified into convex and concave ones. Again, because
of the monotonicity, this can be done by a march along the vertices of the chain, adding up the
directional changes in the constraint segments. The directional changes at the vertices are ambiguous,

as it is not clear whether the turn is to the left or to the right. For example, if 2 successive segments
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Figure 3.5: Convex chain contained in a concave chain (“obstacle”) enclosed in a convex chain.

have qualitative directions (+, +) and (+, -) the turn is -90 degrees for a turn to the right, but
+270 degrees for a turn to the left. However, recall that the free space is always to the left of the
constraint when it is traversed from bottom to top. Thus, the turn is leftward if and only if the vertex
is a concave touchpoint. If the sum of the angles is -360 degrees, the chain is convex, otherwise it is
concave.

The regions of free space enclosed by pairs of traversing chains or by convex chains usually have
to be tesselated further to form the quasi-convex description of the full-dimensional places. This is
described in detail in the next section.

The obstacles, given by the concave chains, must be associated with the region of free space they
fall into. In general, it is possible for several concave chains to be contained in the region enclosed by
a convex chain, and each concave chain may in turn contain a set of convex chains in its blocked space
{see Figure 3.5). For the purposes of the place vocabulary and qualitative analysis of a mechanism,
it is completely unimportant whether a convex region of free space is contained in some obstacle or

not. The only association that is of interest is that of chains with the region of free space that they
bound.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chains may also subsume each other. This is the case if we find that a chain falls within the free
space enclosed by another chain, but that chain is not included in the region bounded by the other.
After quasi-convex tesselations of the regions have been constructed, this can be tested by one-shot
inclusion tests of representative points. Subsumed chains and their associated regions are then simply
thrown out.

Finally, the obstacles have to be associated with the regions of free space that they are contained
in, and the quasi-convex tesselation has to be recomputed to incorporate these. In the case where
no convex or traversing chains exist, all concave chains are embedded in the full configuration space.

This is the only case where we have observed concave chains in mechanisms.

3.3 Subdivisions by Applicability Constraints

The applicability constraints for some constraint C do not always run through blocked space, but
may also intersect free space. Whenever an applicability constraint is crossed, the set of applicable
constraints changes. As all points in the same place are characterized by the fact that the same set of
constraints applies to them, applicability constraints require place distinctions wherever they occur
in free space.

Recall that applicability constraints are defined by the condition that the vertex (or imaginary
vertex) generating the constraint is located on certain lines defined by the boundary involved in the
constraint. A necessary condition for an applicability constraint to run through free space is that this
defining line itself runs through empty space. Configurations where the vertex is located within the
other object are illegal and never part of free space.

This criterion restricts the set of applicability constraints that have to be considered. The cases

where applicability constraints may run through free space are the following:
o The constraints meeting at touchpoints formed by concave object vertices.
¢ The straight lines bounding the applicability of arc boundary segments.

Given some connected region of free space, we first find the set of applicability constraints of the
above types associated with the constraints bounding the regions. Each member of this set is tested

for intersection with the chains bounding the region. This will define the segments, if any, where the
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Figure 3.6: The constraint C is not applicable anywhere on the positive side of . # is thus not

needed there.

applicability constraint runs through free space, and thus the tesselation imposed by the applicability
constraints. We call the individual tesselations free space divisions.

The intersections can be found by endpoint tests of the valid constraint segments with the monotone
segments of the free space divisions. This again leaves the case of multiple intersections to be handled
by algebraic techniques. The newly introduced free space divisions may intersect each other, and such
intersections must be taken into account in determining the set of regions (and thus places) formed
by the tesselation. Note that in many cases, we can terminate a free space division 7, at its first
intersection with another, 7>. This is the case whenever 7> does not intersect the constraint C that
required 7, because in this case C is not applicable anywhere on the other side of 7, (see Figure
3.6). The set of quasi-convex regions formed by the tesselation is given as the set of faces of the graph
formed by the constraints and free space divisions, and can be found by a tracing process described
below. Each region is a full-dimensional place with the bordering constraints and free space divisions
as its boundaries.

For each obstacle (concave chain), the applicability constraints associated with the bounding con-
straints impose a tesselation of the free space around it. For a set of obstacles in some region of free

space, the tesselations for each of the obstacles and that of the region itself must be superimposed.
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Thus, we determine the set of intersections of the free space divisions and constraints associated with
the obstacle and the divisions and constraints that already define the region and its tesselation.
A special case occurs when this graph consists of several disconnected components. This case is

described in the next section.

3.4 Composing Tesselations

In this section, we consider the case where the graph formed by constraints and free space divisions
for some connected component consists of several disjoint parts. This case occurs when there exist
regions formed by the tesselation which have more than a single disjoint boundary.

We consider first the case where the graph of constraint segments and free space divisions consists
of a pair of components X; and Xz. Each of the components defines a set of quasi-convex regions, and
their intersection forms the quasi-convex tesselation that defines the places. We define the bounding
region B of a graph component X as the finite region bounded by the envelope of the set of constraint
segments and free space divisions. Note that because there are no intersections between constraints
and free space divisions of X; and X3, the bounding regions of each must be contained in one of the
regions defined by the other. This inclusion can be tested using a representative point, such as a point
of intersection between constraint segments, or a sample point on a constraint.

Let R, be the region defined within X, containing 8, and R the region defined by X, that

contains B;. There then exists

e aregion Ry bounded by the union of the boundaries of both regions, i.e., the intersection of the

2 regions: Ro = R; N Ra.
e all other regions of X; and X; besides 8; and B,.

This is illustrated in the example shown in Figure 3.7. The region Ry forms the connection between
the 2 disjoint components of the graph, as it is bounded by the 2 boundaries from X, and Y.. Note
that Ro satisfies the quasi-convexity requirement without any further modification.

In the case where there is a set of components X;, 7 = 1...m, the solution must be generalized. Let
{R{‘} be the set of regions defined by .I;. First, we determine the indices of mutual inclusions k; 5 such

that Rf‘" contains X;. Each set of components {X;, ¢ =1...n} such that k;; = kiy, 7,l =1...n
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Figure 3.7: The 2 disjoint tesselations form a region with 2 disjoint boundaries R, leaving all other

regions unaffected.

for all i defines a region R with the n boundaries Rf"', similar to the case of 2 boundaries.

Note that we have to take into account the transitivity of the inclusion relation. If X; contains
Xj, X; will inherit the inclusion relations with respect to the other components from X;. In a region
formed by a set of components including X;, X is excluded because the inclusion relations between
X; and X; are necessarily different from the others.

The following algorithm will determine the regions connecting the different components. First, for
each sign class R¥ defined by the component Y;, we determine the set C (R¥) of X; included in it. We
now form an inclusion graph G in the following way. The nodes of § are defined by the union of all
sign classes of all components that contain some other component, i.e., the RE. The edges are defined
by the mutual inclusion relations: an edge exists between Rf and }2; if and only if }2£~c contains X,
and R_‘,- contains X;. Note now that regions bounded by multiple boundaries correspond to maximal
cliques in §. The set of regions with multiple boundaries is found by determining them.

Note that each node of § participates in at most one place and at most one of the resulting cliques.
This clique is the maximal one in the set of cliques that the node participates in. This maximal clique
can be found by elimination: we start with the set of nodes that the node is connected to and search

breadth-first by eliminating one node at a time from this set. We conduct this search for all nodes
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in §. We then find the set of maximum cliques by repeatedly picking from the set of cliques the
maximum one and eliminating from consideration all cliques associated with its nodes.

Note that the runtime of this algorithm is exponential in the size of §. This is not surprising, as
the problem of finding a maximum clique in a graph is NP-hard. However, in well-behaved practical
mechanisms inclusions of regions in one another rarely exist , and thus almost all links in graph §

will participate in one of the resulting cliques. In practice, the algorithm should thus run very fast.

3.5 Subdivisions for Mechanical Analysis

The motion of the parts in a mechanism is governed by the forces they exert on each other. An envi-
sionment of the possible behavior of a mechanism is found from the place vocabulary by a qualitative
analysis of these forces and the possible place transitions they may cause. For this analysis, we need

the following information:

(a) The relationships expressing the sum of the forces and moments acting on the objects (static

analysis).

(b) The possible place transitions that may be caused by movement in a certain direction (dynamic

analysis).

Note that the qualitative relation between the direction of movement and the forces is determined by
Newtonian mechanics; this is the subject of ongoing research (see [NIELSEN]).

Part (a) applies only in the case where a contact between the objects exists, as otherwise no forces
or moments can be transmitted. The configuration thus satisfies a constraint, and the relationship
of the forces is determined entirely by the derivative of the constraint. For the case of attached
objects, we have already seen that the deri\:a.tives of the constraint segments are qualitatively constant;
the condition is therefore automatically satisfied. In the general case, further tesselations might be
necessary to satisfy this requirement.

The set of possible place transitions out of a place given some particular direction of motion is a
subset of the set of neighboring places. For 0- or 1-dimensional places, which correspond to constraint
segments or intersections of them, there are never more than 3 possibilities, and this set can not be

narrowed down any further except by variation of the qualitative coordinate system used. This is
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Figure 3.8: Example of places in configuration space. Qualitative directions are specified as pairs of

(x,y) in the coordinate system shown.

illustrated in Figure 3.8. From the 1-dimensional place P, motions in the direction (+,+) or (-,-)
will end up either in the full dimensional place Py, or in the 0-dimensional places P; or P;. Note that
motion in the direction (-,+) will uniquely lead to place Py, and the motion (+,-) is ruled out. In place
Ps3, we have the maximum ambiguity: Motion in direction (-,+) might lead either to Py, P, or Ps.
In the case of 2-dimensional places, there can exist considerably more ambiguity. In the case of Py,
motion with a negative y-component can lead either to Pi, P; or Py, and this number could become
arbitrarily large as there is no bound on the number of possible places at the “lower” boundary of a
P,. It is possible for this number to become unacceptably large. In this case, it can be reduced by
breaking up P, using additional tesselations as indicated by the dashed lines.

As the research on qualitative mechanical analyses is still in progress, we do not know yet whether

such tesselations are necessary or not, and thus have not implemented any of them.

3.6 Place Composition

So far, we have only discussed the computation of place vocabularies for kinematic pairs, in particular

for pairs of boundaries on 2 objects forming a kinematic patr. For an analysis of a complete kinematic
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chain, we must compose these place vocabularies to capture the dependencies that arise because of the
common configuration space parameters. There are 2 different cases in which such place composition
is necessary: to compose place vocabularies generated by different boundaries of the same objects,
and for composing pairwise interactions into descriptions of interactions between many objects. We

refer to the first case as co-dimensional composition, and to the second case as chain composition.

3.6.1 Co-dimensional place composition

To compose places in the same configuration space, we have to find the regions formed by intersections
of the regions forming the places. In the general case, this is not an easy problem (see [PS85]). In the
case of 2-dimensional configuration space, the boundaries of the places are one-dimensional and have
points as intersections. We can find the intersections between the regions by finding all intersections
and tracing out the faces of the resulting graphs. Note that because the intersections of quasi-convex
regions are again quasi-convex, the resulting regions will automatically be quasi-convex places.

Note that this process is just the same as the one we used for combining the tesselations of a
region imposed by different chains of constraints. Thus, we can either use the same procedure over
again, or combine the chains defined by the interactions of different boundaries before the association

to regions and places.

3.6.2 Chain composition

In the problem of chain composition, we compose 2 place vocabularies whose configuration spaces have
one or more parameters in common. Such chain compositions are needed to find a place vocabulary
of a kinematic chain from those of the individual kinematic pairs.

To form the composition, the regions corresponding to the places must be “backprojected” into
the product space of the 2 C-spaces. The composed place vocabulary is defined by the regions formed
by the intersections of these backprojections. Like the co-dimensional problem, in the general case,
this is also a very difficult problem.

In the case of 2-dimensional configuration spaces, however, the place vocabularies share at most
one single parameter. The surfaces formed by the backprojections of the constraint segments bounding

the places (see Figure 3.9) intersect if and only if the intervals they cover in the common parameter
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Figure 3.9: The intersections of the backprojections of a, b, ¢ and d define a face bounding the

intersection volume on the backprojection of e.

intersect. Because of the monotonicity of the places, there can be only a single continuous interval of
the common parameter where the surfaces intersect.

This makes the intersection problem very simple, as it is reduced to interval intersection tests in
the common parameter. Furthermore, none of these intersections can be subsumed by other backpro-
jections, so that all the intersections actually occur as boundaries of the intersection. The composition

process is illustrated in Fig. 3.9.

3.6.3 Complexity of place vocabularies for kinematic chains

The most straightforward way to qualitatively analyze a kinematic chain is to construct a common
place vocabulary that contains all dependencies of all kinematic pairs in the chain. In practice, this is
a bad idea, because the chain composition process leads to a combinatorial explosion in the number
of places. Consider a kinematic chain that consists of n pairs, and let the place vocabularies of each
have a size that is O(k). In a chain composition, each place intersects all places whose common
configuration space parameter is about the same. If we assume that the places are evenly distributed

in the 2-dimensional configuration spaces, the number of these intersecting places is about O(\/E)
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Figure 3.10: In the transmission on the left, the effect of G, can be eliminated from the composed

place vocabulary. In the transmission on the right, this is not completely possible.

Therefore, the size of the output of the chain composition is O{k>/2). For successive compositions, we
thus expect the size of the place vocabulary to grow exponentially with k.

In considering a kinematic chain, we are usually interested only in the relation between the first
(input) and last (output) elements of the chain. In certain cases, we can deal with the combinatorial
explosion by eliminating all information about intermediate elements of the chain from the composed
place vocabulary and projecting it into a configuration space for the input and output elements.

As an example, consider a transmission made up of 3 gearwheels Gy, G and G5 with n,, no and
ng teeth, respectively, such that G forms kinematic pairs with G; and G3. This is shown on the left
in Figure 3.10. Let P, P> and P; denote the configuration space parameters of the 3 objects. Both
place vocabularies consist of a single connected region which is broken up into places corresponding
to the interactions between pairs of teeth. For the purposes of this discussion, we assume that one
place is formed for each interaction of teeth. These places are periodic repetitions of each other, and

there are n;nz and nana of them, respectively. These places are arranged in periodic sequences of
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length LCM(n1,n2) and LCM(nz, n3), respectively. Note that if there is no distinction between the
teeth of the gearwheels, the sequences are all equivalent and may be represented as a single one. Now
consider a place X in the place vocabulary for G and Ga, and let X; be the adjacent place offset
by 27/n; in P; and —27/n; in P,. Note that X, is the place reached from X, when the wheels are
turned by one tooth. Let Y5 and Y be similar places in the place vocabulary for G; and Gs, i.e.,
Y] is offset from Yo by —27/nz in P; and 27/n3 in P3. The intersections of the backprojections of
Xo with Yo and X, with Y) are also adjacent, and offset from each other by 27/n; in Py, —27/n; in
P,, and 27/n3 in P3. The length of this sequence will be LCM(ny, nz, n3), and the total number of
places in the intersection ninong.

However, the number of different offset combinations in the P; and Ps parameters is only n; and
ng3, respectively. This means that when we consider the projections of the places into the P;/P;
plane, there can only exist nyn3 periodic copies of any place. This in turn implies that each such
projection is shared by ny places with different offsets in the P, direction. If the P, coordinate is of
no interest, each such set of ns copies can be replaced by a single place, and the resulting combined
place vocabulary for G, and G3 has only n;ns places.

In the case where n;, n; and n3 have common divisors, some of the sequences in the combined
place vocabulary may again be represented as a single one.

Note that such collapsing can be done only in the case of periodic repetitions with the same periods.
In the above example of a transmission, this is the case, because the same boundary of Gy is used in
both kinematic pairs. In most transmissions, however, successive kinematic pairs use entirely different
sets of gears, joined by common shafts. This case is illustrated on the right in Figure 3.10. In this
example, the gear G; drives a gear G2, which shares a common shaft with G, which in turn drives
G4. We compose the place vocabularies for the interaction of G, /G2 with that for the interaction
of G3/G4. Contrary to the earlier example, the offsets in the common parameter are now different
for the 2 place vocabularies. But this means that the places resulting from the composition intersect
with different relative offsets in that parameter, and can not be collapsed into a single one. The only
possible simplification is the reduction to a single periodic sequence of states when n;, ns, n3 and ny

have common divisors.
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3.7 Computation by Algebraic Decision Methods

The subproblem of determining intersections between constraints and their ordering can be solved
reliably only by algebraic decision methods. Furthermore, based on such decision methods there are
algorithms for aigebraic cell decomposition that give a (terribly inefficient) way to compute place
vocabularies for the general case. We shall first discuss the mathematical basis of algebraic decision
methods and then show how they apply to the problems of intersection detection and place vocabulary

computation.

3.7.1 Decision methods

There exists a theorem in algebra which allows exact calculation of the number of roots of a polynomial

in a given interval. This theorem is

Sturm’s Theorem: The number of simple roots of a polynomial P(x) with only simple roots in some
interval [a..b] is given by |n(b) — n(a)|, where n(x) is the number of sign changes in the sign-
inverted remainder sequence of P(x), P’(x). By a sign-inverted remainder sequence we mean 2
remainder sequence where each element is the negative of the remainder of the pre-preceeding

element divided by the preceeding one.

Note that this theorem determines only the existence of the roots, but not their location. It has been
generalized by Alfred Tarski and used to develop a decision method for algebra ([TAR48]). In this
work, he develops an algorithm to derive, for a quantified logical expression made up of predicates on
the signs of polynomials, an equivalent expression containing no quantifiers. This latter expression
can then be evaluated to determine the truth of the original expression.

The method is based on Tarski’s generalization of Sturm’s theorem:

Given 2 simple and relatively prime polynomials p(x) and q(x), the difference in the
number of roots of p on [a..b] such that q(x)>0 and the number of roots such that q(x) <0 is
equal to n(b)-n(a), where n(x) is the number of sign changes in the sign-inverted remainder

sequence of P(x), P*(x)Q(x).
Recently, Collins ( [COLL75]) and later Ben-Or, Kozen and Reif ( [BKR85]) developed simplified

decision methods based on the idea of algebraic cell decomposition. Using Tarski’s generalization
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together with Sturm’s theorem itself, we can compute the number of roots of P for Q>0 and the
number of roots where Q<0 in a given interval. These allow us to determine the sign classes of P and
Q, i.e., the set of legal simultaneous sign assignments to P and Q. This divides up the domain of the
polynomials into a set of cells because each sign assignment will be valid for a certain range of the
parameter. The boundaries of the cells are found as the roots of the polynomials that appear in the
remainder sequences of Sturms theorem.

We can extend this method and use it to determine whether a set of multivariate polynomials
has any simultaneous roots (intersections) in the following way. We recursively isolate one variable in
all the polynomials considered and compute the required remainder sequences. The next step in the
recursion applies to the set of polynomials that appear in the remainder sequences until only a single
parameter remains. Note that at this point, the signs of each polynomial in the set will influence the
result. Therefore, there exists an ambiguity in the sign classes, and therefore a common root, exactly
when one of the polynomials in this set has a root within the range of the parameters. Note that any
application of Sturm’s theorem or its generalization must be preceeded by eliminating all multiple
roots of the polynomial in question. This can be done by algebraic techniques using computations of

greatest common divisors as described in ( [KNUTHS1]).

3.7.2 Application to constraint intersection detection

In the case of a 2-dimensional configuration space, the constraints can be parameterized by one or
more parameters. If we can parameterize the constraint by a single parameter r, then we can find the
number of intersections of 2 constraints C, and Cy as just the roots of g,(fu(r)), where fis the function
from the radius to a sample point on the constraint and g is the equation of the constraint itself. The
number of such roots in the interval corresponding to the constraint segment can be computed readily
using Sturm’s theorem.

In the case where the constraint is parameterized by several parameters ro, ry, ... , r, which
are related by algebraic conditions Qo(ro,r1,...) = 0, ..., @u-y(ro,71,...) = 0, we can deter-
mine whether an intersection exists by applying the multivariate method outlined above to the set
{9a(fo(ro,r1,...))}. This test, however, can become quite expensive if the number of variables is high.

We have seen in the earlier chapter that for straight lines and arcs, all constraints can be parameter-
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ized algebraically with at most 4 parameters. In the general case, we can always limit the number
of parameters that are necessary by the number of configuration space parameters by applying the
above technique to the set {gq,gs} augmented by any algebraic relations that may be given between

the configuration space parameters (e.g., sine and cosine in the angle specifications).

3.7.3 Constructing place vocabularies by algebraic methods

Decision methods have been applied to motion planning problems by observing that the condition
that objects do not overlap can be expressed as a quantified formula. One can construct an algebraic
cell decomposition of the expressions that occur in this formula and then, for each cell, determine
whether the points in it are legal configurations or not. This gives a description of free space as a set
of cells, which can be arranged in their adjacency graph. Paths for a desired motion can then be found
by graph searching. The first algorithm proposed for this is that of Schwarz & Sharir ([SCHS83b]),
and recent work on the topic has resulted in more efficient algorithms ((K'Y85]). The latter paper also
shows that the problem is in the class NC and can therefore be efficiently implemented in parallel.

While the adjacency graph constructed for the cell decomposition appears similar to our place
graph, the two are in fact quite different. The cells constructed for the solution of the decision
problem contain no information whatsoever about applicability of constraints. Thus, cell distinctions
are forced everywhere along a constraint curve, not just along the valid segment. In our case, this
leads to meaningless place distinctions, as a constraint would have influence on the place distinction
in completely unrelated parts of the mechanism.

Based on algebraic decision methods, there exists the following method to construct a place vo-
cabulary for kinematic pairs. First, we construct the cell decomposition of the C-space with respect to
all constraints and applicability constraints using, for example, the method of Kozen & Yap (|[KY85]).
This gives us a set of quasi-convex, connected cells within which there are no sign changes of constraints

-or applicability constraints. We then merge the cells according to the following criteria:

Two cells can be merged if they differ only in a single boundary 7% such that one has
the condition % < 0 or % > 0 and the other has the complementary condition or 7 = 0,
and 7 is either (i) an applicability constraint whose associated constraint is not among

the boundaries of either cell, or (ii) a constraint which is not applicable in both cells.
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Some computation can be saved in the decomposition step by not computing separate sign assignments
for cases where the cells would be merged anyway, for example, applicability constraints need only be
included together with their associated constraint.

Not that the problem of merging cells corresponding to the different sign classes is formally the
same as that of designing a switching function from a truth table. We can use algorithms such as that
of Quine-McKluskey to find the prime implicands. The regions corresponding to these will in general
overlap and then have to be divided to make disjoint regions. Logic design has developed algorithms
for this problem as well.

The place graph is found by eliminating from the resulting set of regions those that lie in blocked

space, as defined by the sign assignments.
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Chapter 4

ALGORITHMS

In this chapter, we describe the actual implemented algorithms. for computing place vocabularies for

kinematic pairs. The computation is divided into 2 stages:

e an instantiation stage, where the possible constraints defined by the symbolic part of the metric

diagram are collected, and

e an evaluation stage, where the numeric information is used to generate an actual place vocabu-
lary.

The instantiation stage allows unknown numeric parameters. Leaving all parameters open results
in a large number of ambiguities in the instantiation and makes the algorithms very slow. In our
implementation, we have therefore chosen to allow symbolic specification of parameters only for the
reference points in the global coordinate system (that is, the relative position of the objects may
be unknown). This restriction is made only for the sake of efficiency of the code, and there are no
algorithmic problems with eliminating it.

In the evaluation stage, tests on the metric parameters are performed to determine the set of
active constraints, their intersections and finally the place vocabulary. These tests can be understood
as a set of predicates on the metric dimensions of the objects. Each of them thus defines a landmark
value for whatever parameter might be unknown. As many of the necessary tests are already known

during the instantiation stage, an initial set of landmark values is generated there. These remaining
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landmark values are not independent of the choice of parameters; they are found by an iterative
procedure described later.

In the evaluation phase, all the metric parameters must be fixed. There is no mechanism for
dealing with ambiguities; ambiguous cases must be generated by running the evaluation for different
choices of metric parameters. This is discussed in detail in the next chapter.

In the next sections, we describe the algorithms used in the 2 stages. First we discuss the instan-
tiation and the data structures used to represent the objects. Next, we describe how the chains are
found and finally how the actual place vocabulary is computed. Finally, we discuss how periodicity
of the parts can be exploited, and how the computation of single place vocabularies is embedded in

the qualitative analysis of complete mechanisms.

4.1 The Instantiation Phase

In the instantiation phase, we compile the set of possible constraints from the description of the object
boundaries and their attachments. Recall that constraints arise from interactions of the following pairs

of elements:
e a convex vertex of one object boundary and a segment of the other (vertex constraints)
e a convex arc segment of one boundary and a segment of the other (boundary constraints)

The instantiation thus proceeds in a loop through all possible pairs of boundary segmments and vertices,
instantiating the possible constraints for each pair. The input representation allows specification of a
periodic repetition of a sequence of boundary segments. This is exploited by allowing the constraints
for the repeated segments to be instantiated as copies of the original constraints, offset in configuration
space by the appropriate amount.

Vertex constraints are joined together in the configurations where a pair of vertices touch each
other. We call these configurations touchpoints. Each constraint we instantiate has to be linked to
the touchpoints at its ends, and thus the first step is the instantiation of the data structures for the
touchpoints. For each pair of object boundaries, these are held in a 2-dimensional array called the
basis, indexed by the vertices of the object boundaries they correspond to. The basis also allows

indexing of the constraints via the touchpoints at their ends.
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For each pair of boundary segments, up to 3 possible constraints are generated: the 2 vertex
constraints corresponding to the vertex at the beginning of one segment sliding on the other segment,
and the boundary constraint corresponding to the touch of the 2 segments. Each of these is then
possibly further subdivided to satisfy the requirements of monotonicity. In the case of rotational
attachments, we generate the mirror images. At this stage, we also instantiate the touchpoints between
the 2 vertices at the beginning of the segments.

In the following sections, we first describe the data structures we use for the constraints and

touchpoints. We then describe how the instantiation of each of the elements takes place.

4.1.1 Data structures

In this section, we describe the data structures used to represent the configuration space constraints.

The main elements here are constraints and touchpoints.

Constraints

For a constraint, we specify the following information:

1. its equation, a function of the 2 configuration space parameters that is zero on the constraint

curve itself, and >0 in free space.

2. its tangents, a pair of functions giving a tangent vector to the constraint curve in configuration

space. The tangent points in the direction from the lower to the upper endpoint of the constraint.

3. its applicability constraints, split up into 2 parts: a set which can and a set which can not run
through free-space. For the first set, we specify only a list of functions of configuration space
coordinates which is >0 wherever the constraint is applicable. The second set is specified as a

list of applicability constraint structures.

4. its endpoints: we distinguish between a lower and an upper endpoint, which correspond exactly
to the lower and upper end of the boundary segment involved. For mirror images, the direction
of the tangents is reversed. In order to preserve the convention that the tangent points to the

upper end of the constraint, the upper and lower endpoints are exchanged.
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. a find-point-form, a function from parameter (radius) values to the configuration on the con-

straint corresponding to the parameter value. Due to the existence of transcendental parameters,
this is split up into 2 parts: the parameter definition and the actual algebraic forms to be eval-

uated.

. lower and upper bounds on the parameter r. Given by the radius values of the endpoints of the

boundary segment. Note that lower and upper here refer to the ends of the constraint, not the

magnitude of the values.

. lower and upper ra, the possible extremal values of the parameter. In this case, lower and upper

refer to the magnitude of the values.

- some duplicated fields to save the values of evaluations in order to make the code more efficient.

- bookkeeping information about the type (:BOUNDARY or :VERTEX), indices of boundary and

vertex involved, etc.

The structure for applicability constraints has the following elemerts:
1. an equation and tangent, similar to a constraint.

2. one or several find-point-form(s), because the applicability constraint may have a non-unique

parameterization.

3. aset of intervals of ra to allow tracing out the complete curve of the applicability constraint.
4. a set of endpoints of the intervals covered by the intervals of r,.

Note in particular that the lines that make up the applicability constraints are usually not broken up
into segments that ensure unique parameterizations. The applicability constraint might be parame-
terized in several segments to account for the different segments. The endpoints of each constraint

are linked to the touchpoints.

Touchpoints

We associate the following information with touchpoints:

1. its coordinates in configuration space
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2. an array of 4 endpoints of the constraints that may end there. Indices 0 and 1 hold lower

endpoints, and 2 and 3 hold upper endpoints.

3. up to 2 predicates to indicate if the radius values corresponding to the touchpoint are too large
‘or too small for the touchpoint to exist. The violation of these indicates which r, has to be

used to infer endpoints of the constraints.
4. other bookkeeping information about the type, indices, etc.

The touchpoints are arranged in an array called basis. The 2 coordinates of this array are the indices
of the vertices involved in each touchpoint. Whenever at least one of the objects has rotational
attachment, the first coordinate is doubled so that the even coordinates refer to touchpoint originals,

the odd ones to their mirror images.

4.1.2 Instantiation of constraints and touchpoints

The first step in the instantiation is to break up the boundary segments on each boundary into seg-
ments that have a unique parameterization in terms of the radius. In our current implementation, this
is actually done during the instantiation of the constraint, as this allows some savings of computation.
For the description of the algorithm, however, we will consider this a separate step. In the following,
we thus assume that each boundary segment has such a unique parameterization.

Consider then the pair of boundary segments By, the i-th boundary segment on boundary a, and
Byy, the k-th boundary segment on boundary b. Let the initial vertices of the 2 segments be V,; and

Vor- The following elements have to be instantiated for this pair:
1. the touchpoint between V,; and possibly its mirror image.
2. if V,; is convex: the vertex constraint between V,; and By, and possibly its mirror image.
3. if Vi is convex: the vertex constraint between Vy; and B,; and possibly its mirror image.

4. if either of the 2 boundary segments is a convex arc, and the other is anything but a concave
arc of smaller radius than the first, the boundary constraint between B,; and By, and possibly
its mirror image.

The touchpoints are instantiated as touchpoints indexed (27, k) and (27 + 1, k) in the basis array.

Recall that the first dimension of the basis array is doubled to account for the mirror images. The
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lower endpoints of both original vertex constraints are linked to the touchpoint just instantiated as
constraints indexed 0 and 1, and the upper endpoints of the mirror image vertex constraints are linked
to the mirror image touchpoint as constraints indexed 2 and 3. The upper end of the original vertex
constraint between V,; and By, is linked to the touchpoint indexed (2¢, k@ 1) as endpoint with index
2, where the symbol @ indicates summation modulo the size of the array. The upper end of the other
original vertex constraint is linked to the touchpoint with index (2¢ © 2, k) as endpoint with index 3.
The lower ends of the mirror images of the vertex constraints are linked the mirror images of these
touchpoints as endpoints with index 0 and 1.

Note that by this instantiation, each touchpoint that has an incoming constraint with index 0
must have an outgoing constraint with index 2, and similarly for indices 1 and 3, as these pairs are
generated by the same vertex.

Note also that the upper and lower endpoints of mirror images are exchanged. This is because the
tangents of the constraints reverse their direction on the mirror image. Thus, traversal of the mirror
images in the direction of the tangents means traversal in the opposite direction to the originals.

The boundary constraints are not linked into an array at all. The only a priori link that exists
between them is between boundary constraints generated by segments that were broken up to give
a unique parameterization. The actual link to the vertex constraints at the ends can be determined

only in the evaluation stage.

4.1.3 Algebraic simplification

The instantiation of the various equations, predicates and functions requires symbolic manipulation
of algebraic expressions. The algebraic simplification system we use is a modified version of a system
originally developed by G. Sussman pf MIT. The major addition that had to be made were methods for
the manipulation of square roots. Fortunately, this is the only transcendentai function that appears
in the expressions, and there exists the following algorithm for taking the square root of a polynomial
(if it exists).

Let P(z) be the monic polynomial of degree n whose square root we would like to obtain, and let
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P have the k roots r;,z =1...k:

k
P=T](z - n)*
=1

The derivative P’ is then

k . L .
Zj"(z — )%t H (z—r)*

P =
f=1 I=1,74
k . k k
= (H(x - ,.‘)Jl—l) (ZJ‘ H (z— rl))
{==1 =1 I=1#i

Note that the second factor in the expression for P’ is not divisible by any (z — ) for 1in {1...k},

and thus does not occur in the greatest common divisor of P and P':

GCD(P, P') = f[(z — )it

=1

In particular, we can now find the product of all the roots of P as

R= GC'DPP'). H(”

Now, define a sequence @Q; in the following way:
Q: = GCD(PP)

k
Qi+1 = GCD(Q"Q:) = H(x —_ rl)max(j[_i,o)
=1

Now note that

GCD(P,R) = product of all roots of P ( = R)
GCD(Q2,R) = product of all roots of P with multiplicity > 2
GCD(Qi,R) = product of all roots of P with multiplicity > i

Hence, if P = S2, we have that

S = (H(z—r;)) (H (z-rz))
=1 Li1>2

= RGCD(Q2,R)GCD(Q4,R)---
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The GCD computations are implemented using the subresultant method of Collins, Brown and Traub
described in ({KNUTHS81}). Whether the candidate S is actually a root of P is verified by comparison
of S2 with P. For non-monic P, we split off the leading coefficient at the beginning of the algorithm
and have to multiply the result S with the root of this coefficient.

4.2 Computation cf Chains

In this section, we describe how we find the chains of constraint segments that bound regions of free
space from the instantiation of possible constraints and touchpoints. This computation proceeds in

the following 3 stages:

o first, the instantiation is completed for the actual parameter values. The subset of touchpoints
and constraints which are actually active is determined, endpoints are inferred if necessary,
constraints are ordered around touchpoints, boundary constraints are linked to the vertex con-

straints where they end, and other bookkeeping information is instantiated.
o the subsumption intersections between active constraints are determined and ordered.
o the resulting graph of constraint segments is traced out to find the chains.

In the following sections, we describe the algorithms used in each of these steps.

4.2.1 Determining the set of active constraints and touchpoints

For each touchpoint, we have instantiated predicates to determine if it is active. The first step is to
evaluate these predicates to determine the active subset of touchpoints. If a touchpoint is inactive,
the particular violations of the predicates indicate at what parameter value the endpoints of the
constraints might be inferred, as described earlier.

A constraint is active whenever at least one of the configurations on it exists. This means that
there must be an intersection between the interval of the radius values of the possible points of touch
and the interval of the radius that the boundary segment covers. This intersection is determined by
the predicates for the existence of the touchpoints at the ends of the constraint. If the intersection

interval exists, the parameter values of the endpoints of the constraint are given by the ends of this
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interval. The second step is to determine the active subset of constraints and instantiate the inferred
endpoints, if necessary. If an endpoint of a constraint is inferred, that endpoint links the constraint
to its mirror image, and we mark an intersection of the constraint with its mirror image.

For a boundary constraint, there are 4 possible vertex constraints (any of the 4 endpoints of the 2
boundary segments touching the other) and their mirror images that either end could connect with.
The set is narrowed down to 2 candidates (a constraint and its mirror image) by the criteria described
earlier. Which of the 2 remaining possibilities is actually applicable is determined by testing for each
of them whether the candidate actually touches the boundary constraint at its end. All of these tests
may generate additional landmark values.

For each active constraint segment, it must be determined whether there exists a dead point.
Recall that 2 dead point is a point where the derivative of the constraint becomes zero, requiring the
constraint segment to be broken up. The algorithm determines the radius value at which such a dead
point could exist and then tests whether the corresponding configuration actually is a dead point, as
there exists ambiguity in the radii of the possible dead points. ! We then determine a set of bounding
rectangles for the constraint. Note that at least 2 of them are required in the case where a dead point
exists, and further breakups may be necessary as described in the previous chapter.

At each active touchpoint, only 2 of the 4 constraints that meet are actually applicable. The
applicable pair is determined by the ordering of the constraint directions around the touchpoint. This
ordering can be reduced to a set of predicates on the relative directions of the boundary segments
when the objects are in the touchpoint configuration, which may generate additional landmark values.
For the 2 constraints that make up the active pair at the touchpoint, we mark an intersection at their
endpoints. For the endpoints of the other 2 constraints at the touchpoint, no intersecting constraint
is marked.

Finally, we mark the direction of each constraint segment by evaluating the tangents at a sample
point in the center of the parameter range. For each endpoint of an active constraint, we store a copy
in a separate field. This copy has fully evaluated numeric coordinates and the value of the radius
parameter that was actually used for the endpoint. We also instantiate a simplified version of the

find-point-form where all parameters are eliminated to speed up later computation.

1This ambiguity could be eliminated in the instantiation phase, but the solution we use here is simpler.
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4.2.2 Determining intersections

Each constraint may form intersections with others at its endpoints; these are found and marked when
the endpoints of the constraints are determined. Besides these, subsumption intersections can exist
between any pair of constraints whose bounding rectangles intersect. Constraints C; and Co form a
subsumption intersection whenever one of the endpoints of C; violates C2 and the other does not,
and likewise with C; and C» exchanged. Based on the earlier discussion, these intersections are found
in the following way. Once a pair of intersecting bounding rectangles on C, and C, has been found,
the ranges of the constraint parameters where they actually fall within the intersecting area of the
bounding rectangles is determined. If these intervals are non-empty, we test the constraint points at
the ends of these intervals by the endpoint test and thus determine if an intersection exists. This test
is reliable: the intersection of the bounding rectangles does not contain any inapplicable segments of
the constraint curves.

Note that it is possible that the constraint segments intersect each other in an even number of
points. Such intersections will not be found by endpoint tests, and the algebraic methods described
in the previous chapter are required to reliably detect them. Note that multiple intersections will
cause local errors in the place vocabulary, which could be corrected in a later cleanup stage. As we
have not observed any instance of such a case in practical mechanisms, we have not implemented any
algorithms for this yet.

If a constraint has subsumption intersections with several others, they must be ordered. This
requires in particular a way to determine the ordering relation of the intersection points on a constraint
segment. The current implementation does this by finding a point between the intersections using a
binary search, and then testing the relative locations at that point. Note that this does not require
determining the actual configurations where the subsumptions occur. In certain cases, it might be
possible to use simpler methods to determine the ordering relations. However, this requires making
assumptions about well-behavedness of the constraint curves, and all our attempts at this have been
thwarted by actual examples of constraint curves that violated the assumptions.

There exist landmark values where subsumption intersections appear, disappear or their ordering
changes. These are best found by considerations different from the algorithms described above. The

landmark values where subsumption intersections between constraints C; and C» appear are charac-
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terized by the fact that an endpoint of C; falls on Cz or vice versa. The predicates for the landmark
values are thus defined by the roots of the instantiation of the constraint equation of C; with the
endpoint coordinates of 2, and vice versa.

The ordering of the intersections of 2 constraints C; and C, with Cy changes when all three
constraints intersect each other in a single point. The corresponding landmark values for this can be
found using algebraic techniques discussed earlier, and there does not seem to be any simpler way
to do this. We have not implemented this particular part of the landmark value computation. We
detect whether the ordering of the intersections changes within an interval of a parameter by testing
the orderings when the parameter is at the endpoints. If we detect that the ordering changes, the
resulting place vocabulary is ambiguous. This test might fail in the case where the ordering changes
more than once, and this case is beyond the capabilities of the current implementation.

Intersections are marked as lists of special data structures. For each constraint, there exists a
separate list for each bounding rectangle, as the other constraint may intersect within any of these
subsegments. The ordering of the intersections is thus partially given by the ordering of the bounding

rectangles.

4.2.3 ‘Tracing out the chains

The tests outlined so far uniquely determine the boundaries between free and blocked space as pieces
of configuration space constraints. The boundaries between regions of free space and blocked space
are chains of these constraints. They are found by tracing out the faces of the graph formed by the
constraints and their intersections, picking only those where the inside of the face lies on the free
space side of all the bounding constraints.

In particular, on each constraint we mark the valid segments between the intersections. The
first and last intersections are defined by the constraints that the endpoint of the constraint links
to. An interval between 2 intersecting constraints is a valid constraint segment if and only if the 2
intersecting constraints together bound a region of free space, as shown in Figure 4.1. Each such
constraint segment is linked to the intersection points at its ends. This defines the graph of constraint
segments and intersections. Note that each intersection point is associated with at most 2 constraint

segments, but many will have only one or even none at all. This is the case when the intersection
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Figure 4.1: On (o, the segment between intersections with C; and C; is legal, but the one between

C2 and C3 is not.

point is subsumed by other constraints on one or both of the constraints whose intersection it marks.

The graph is searched to find all closed chains of constraint segments. This is done by a march
along the vertices, starting at an arbitrary unexamined vertex, until either the beginning of the march
is reached, or a vertex with less than 2 constraint segments is reached. In the first case, a chain has
been found, whereas in the second case, none of the vertices examined in the march can be a member
of any chain. Applying this tracing procedure until no more unexamined vertices exist will find all

chains in the graph.

4.3 Determining the Places

In this section, we describe how the chains are associated with the connected regions of free space
that they bound and how the place vocabulary is computed from them.

For each chain, we have to determine its direction indez as discussed in the last chapter. In the
case of rotational freedom, the topology of the configuration space is not Euclidian, and there may
be chains that do not bound a region of configuration space by themselves. This occurs in the case
of traversing chains. The direction index is determined by a march along the chain which counts the
number of zero crossings in each rotational dimension. All chains with a common direction index are

then ordered along a transversing coordinate axis. This ordering is determined by the value at the
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zero crossing points of the coordinate with the least zero crossings. This particular rule ensures that
the chains are never parallel to the chosen coordinate. Regions of free space are bounded by pairs
of chains adjacent in this ordering such that one chain has index (n,m) and the other (-n,-m). This
determines the association between traversing chains and regions of configuration space. The rest
of the chains are classified into convex and concave ones by a march along the vertices as described
earlier.

The next step is to determine the tesselations that the applicability constraints impose on the
regions bounded by convex chains and pairs'of complex type chains. For each region of configuration
space, we determine the set of applicability constraints associated with the constraints bounding the
region. The subset of these which potentially run through free space is tested for intersections with
the constraint segments bounding the region. These intersections are found by endpoint tests like
those of the constraints themselves. There are 2 ways in which an applicability constraint could enter
free space: either the touchpoint it emanates from is part of the region boundary, or the applicability
constraint intersects one of the constraints bounding the region. If such points are found to exist, free
space divisions are introduced between them. If the applicability constraint intersects a constraint
segment, it is broken into 2 parts at the intersection. A free space division is represented by a special
data structure. Similar to a constraint, it has an equation, a find-point-form, and a parameterization.?
However, each free space division has 4 endpoints (2 each for the constraint segments it is linked to
at each end), and free space exists on both sides of it. In specifying it as a region boundary, we thus
have to distinguish its positive and negative sides.

The resulting structure is traced out once again to find the regions formed by this tesselation. It
is possible that the graph formed for some region consists of several disjoint parts. In this case, there
exist places with multiple disjoint boundaries. These are found by testing mutual inclusions using the
algorithms described in the previous chapter.

Finally, the concave chains (obstacles) are tested for inclusion in the regions bounded by the convex
and traversing chains. Each obstacle by itself defines a tesselation of configuration space through its
constraints and free space divisions. These tesselations must be superimposed on the tesselation that

already exists for the region. This requires computing the additional intersections between pairs of

2Just like in applicability constraints, this parameterization may consist of several parts.
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applicability constraints associated with the obstacle boundaries and constraints associated with the
region boundary, and vice versa. The resulting graph is then traced out one more time as described
earlier. The resulting regions, the full-dimensional places, are represented in structures of type full-
face.

Note that the kinematic behavior of 2 mechanism is completely determined by the possible chains
and their association with connected regions of free space. The quasi-convex tesselation does not
reflect 2 kinematic interaction, but is a device to keep track of constraints that might potentially be
reached by intermittent motion. The connectivity of free space does not change unless some of the

chains change. There are thus no new landmark values generated in this stage of the evaluation.

4.4 Periodicity

In mechan?sms, many parts have boundaries which consist of periodic repetitions of small sequences
of segments. For example, the teeth in the boundary of a gearwheel are periodic repetitions of each
other. We refer to each instance of such periodic repetitions as period.

The input representation allows specification of periodicity in the direction of attachments. Specif-

ically, we have the following 2 cases:

e in the case of translational attachments: a sequence of boundary segments can be repeated n
.
times along the axis of possible translation.

e in the case of rotational attachments: a sequence of boundary segments can be repeated n times

around the center of rotation to form a closed boundary.

Periodicity is used only in this restricted form because this is the only way it can be exploited
profitably. The periodic repetitions of the boundary segments generate identical constraints with
different configuration space offsets exactly when the periodic repetitions are offset by a variation in
the configuration space parameter. We distinguish between the period original and the period copies
of each constraint. The reason for requiring the periodic segments to form a closed boundary in the
case of rotational attachment is that this is the normal case, and very difficult to specify otherwise
because of roundoff errors. The implementation exploits the restriction and automatically generates

the proper offsets.

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The periodicity is used to improve the efficiency of the code in several places. First, in the
instantiation each periodic copy of a constraint or touchpoint is instantiated as a copy of the original
by adding the proper offsets where necessary. Each combination of periods from the 2 objects defines
a set of offsets for the constraints generated by the parts of the boundaries that belong to the periods.
In the evaluation, only the originals are tested for intersections. For each constraint that intersects
the original, the analogous intersecting constraint is found for each periodic copy by picking the copy
with the proper offset. The intersections of the constraint originals are ordered before the copies are
made, and this ordering is preserved in the copies. Note that we must test the originals against all
constraints, because a constraint may intersect any of the periodic copies. This is the reason why the
algorithm actually instantiates all the periodic copies. Also, intersections can be copied only from
original to periodic copy if all constraints involved are part of the same periods, as the configuration
space periods of different periods will in general not agree. All pairs of constraints belonging to
different periods must be tested for intersection individually.

In the case where the boundaries of both objects consist of a single period, all constraints belong to
the same periods, and the resulting place vocabulary is thus periodic. As it is useful for the qualitative
analysis to capture this periodicity, the output representation is marked to indicate it. Specifically,
we construct a period descriptor for the pair of periods, which describes the number and step size of
the different offset combinations. The output place vocabulary then contains only a set of original
places, and all periodic copies of it are defined by the offsets in the period descriptor.. The places are
specified in the place graph by indicating the place original together with the appropriate offsets. This
representation is constructed from the output place vocabulary using the links between constraints

and their periodic copies.

4.5 Mechanism Analysis

A complete mechanism consists of a set of kinematic chains, each of which is in turn made up of a
set of kinematic pairs. In the previous sections, we have described the algorithms to compute place
vocabularies for kinematic pairs. In this section, we outline the framework within which these can be

used for the analysis of complete mechanisms.
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By applying the composition algorithm described in the previous chapter to the place vocabularies
for each kinematic pair, a combined place vocabulary for the chain could be constructed. However,
this may lead to a very large number of places. Only in certain cases of periodic repetitions can the
combinatorial explosion be avoided.

Due to the definition of the places, the composition process itself consists only of a set of interval
intersection tests. It can thus very easily be carried out on demand during the mechanical analy-
sis. Instead of computing an explicit place vocabulary for the kinematic chain, our implementation
provides the necessary functions for composing the ;;laces on the fly.

An ongoing research project is investigating the complete qualitative kinematic analysis of mech-
anisms based on the place vocabularies for kinematic pairs we construct in this work. We refer the
reader to ([NIELSEN]) for more details of this research.

The input to the program is provided by drawing the objects using a simple graphic editor, and the
same routines can also be used to display sample configurations in the places. The place vocabularies
computed by the program are written to a file for use by the qualitative analysis programs. There
also exist facilities to inspect the configuration space and the place graph directly.

Beyond the qualitative analysis of a given mechanism, our algorithms also allow us to determine
the complete list of place vocabularies that can be achieved by varying a certain parameter P. This is
discussed in detail in the next chapter; we show here how it is actually implemented. The computation
involves 2 stages: first, the complete set of landmark values is found, and then the place vocabularies

for each case are determined separately. The set of landmark values contains 2 parts:

o an initial set, defined as the values of P where the predicates for the existence of touchpoints

change.

o a set of landmark values for the subsumptions of the constraints, which is defined only for a

given set of active constraints and touchpoints.

Our implementation allows us to instantiate constraints and touchpoints with symbolically specified
parameters. During this instantiation, the initial set of landmark values is found from the predicates for
the existence of touchpoints. All possible landmark values for subsumption are tested for inclusion in
the intervals where the elements that define them actually exist. All values for which inclusion is found

are added to the list of landmark values. For each interval between these landmark values, we pick a
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representative point and evaluate the place vocabulary for it. Each of the resulting place vocabularies
is then representative for a certain interval of the parameter. However, as our implementation does
not determine landmark values of the ordering of intersections, we must test each result for whether
this ordering changes between the limits of the intervals. If such a change is found, the ambiguity is

reported. An example of the application of this procedure is given later in this report.
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Chapter 5

QUALITATIVE KINEMATICS

In this chapter, we discuss the requirements for a theory of qualitative kinematics and show how our
place vocabulary theory satisfies them. First, we place the work in the context of qualitative physics,

and then we go on to examine its relationship with computer vision theories.

5.1 Kinematics and Qualitative Reasoning

The place vocabulary representation itself is designed to serve as the spatial substrate for a qualitative
kinematic analysis of mechanisms. It describes kinematic interactions in a manner compatible with
the paradigm of qualitative reasoning, and its use for qualitative analysis of mechanisms is shown
elsewhere ([NIELSEN]). Beyond this, the algorithms to compute place vocabularies themselves are
based on the qualitative reasoning paradigm. In particular, we emphasize the distinction, common to

all work in qualitative reasoning, of the input information into 2 parts:

o a symbolic part, in this case specifying the parts of the mechanism, the shape (algebraic form)
of their boundary curves, the way in which they are arranged, etc. The symbolic information
defines a parameter space, the metric space, of all the continuous parameters associated with

the physical situation described.

e a metric part, which specifies the actual values of the parameters of the metric space.
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In a pure qualitative physics, no information about the metric part is assumed. All solutions that are
possible given proper choice of these parameters are produced. We define a partial qualitative physics
as one where the some of the metric parameters are known or confined to some interval, and can thus
be tested to resolve ambiguous cases.

As we have seen, the symbolic part alone completely defines a finite set of possible configuration
space constraints for each kinematic pair. The subset of these that is actually valid and the arrange-
ment of these into place boundaries is determined by the metric part. As the number of possible
constraints is finite, there are only a finite number of possible active subsets of them. For each set of
active constraints, there are only a finite number of ways in which they can intersect and form place
vocabularies. This implies the important result that the symbolic part alone defines a finite set of
possible place vocabularies.

Because the set of possible place vocabularies is finite, there exists a set of predicates on the metric
information, defined by the symbolic information, which is sufficient to decide which is the correct
one. Conceptually, the computation of the place vocabulary is thus split into 2 processes: a symbolic
computation which works from the symbolic part of the input information, and the evaluation of
certain predicates on the metric information.

The set of curves where the values of these predicates change, which we call landmark curves,
divides the parameter space into regions within which the place vocabularies do not change. An
initial set of these curves is defined by the symbolic information alone. There remain certain tests
that do not become defined until a certain choice of metric parameters is assumed. The complete set
of landmark curves can be found by an iterative précedure described below.

This implies first of all that a purely symbolic kinematics is indeed possible, at least for the
restricted case we have analyzed here. However, the number of ambiguities that arise is so enormous
that such a theory could hardly be called practical or psychologically plausible. It is feasible, however,
to implement a partial qualitative kinematics, where one or several of the metric parameters are
unknown. In the following, we examine this possibility and show how it can be applied to practical

problems.
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5.1.1 Determining the set of landmark curves

As the metric information is used only through the evaluation of predicates, changes in the metric
information influence the resulting place vocabulary only if they change the outcome of a predicate
evaluation. If we consider changing a metric parameter, for each predicate there exists some threshold
for the parameter where the value of the predicate changes. We call these thresholds landmark
values. It is useful to make a distinction between the cases of considering only a single parameter
and of considering several. In the case of a single unknown parameter, there exist landmark values
which define intervals of possible values. In the case of several such parameters, we are dealing with
landmark curves which divide the parameter space into landmark regions. It is a nontrivial problem
to construct these regions given the curves, but it can be solved in polynomial time using the algebraic
cell decomposition techniques described earlier. In our implementation, we have restricted ourselves
to the case of a single open parameter, so that only interval tests need to be considered. In the
following discussion, we shall refer to both cases as landmark curves.

The set of predicates determining the existence of touchpoints is defined during the instantiation
and gives an initial set of landmark curves. By choosing a representative pointin each landmark region,
we can generate an initial set of possible place vocabularies. There remain the tests for ordering of
constraints at touchpoints, for subsumption intersections, and for the ordering of intersections, which
are defined only when an actual set of active constraints is given. The landmark curves defined by
these are valid only within the region where the touchpoints and constraints that define them are
actually active; they thus yield new landmark values only if they intersect that region. The second
set of landmark curves is thus found by intersecting the candidate curves generated by all possible
remaining tests with the intervals where the elements involved in the tests are active.

Recall that our implementation does not construct closed form predicates for the ordering of
intersections. Instead of computing landmark values for these, we test only whether the ordering
changes between the limits of each interval to detect the presence of further landmark values. Should
such values exist, the result is further ambiguous.

It remains to be shown that the set of landmark curves is finite, so that the procedures will
terminate. For any given touchpoint, as the set of constraints that meet at the touchpoint is finite,

the set of predicates expressing the ordering of the constraints around the touchpoint is also finite. For
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a given set of active constraints, the set of landmark curves for the subsumption intersections, defined
by the condition that the endpoint of one constraint falls on another, contains 2 tests for each pair of
constraints and is thus finite. The ordering of intersecting constraints changes whenever 3 constraints
intersect in one common point. The possible set of landmark curves defined (using algebraic decision
methods) for this is also finite. Thus, for a given set of active constraints and touchpoints, there
can be only a finite number of landmark curves. Hence the procedure will eventually converge.
Note, however, the numbers involved: if the number of active constraints/touchpoints is O(n), then
the number of predicates for the ordering at touchpoints is O(n), the number of predicates for the
subsumption intersections is O(n?), and the number of predicates for the ordering is O(n®). The

number of landmark regions thus grows very quickly as the number of constraints increases.

5.1.2 Applications of a partial qualitative kinematics

There are many potential applications of a theory such as we have developed. The same advantages

that make qualitative physics useful also apply to qualitative kinematics. These are

o No explicit representation of metric information is needed, and thus no explicit representation

of uncertainty is required either.

o The reasoning is complete within the model: every possible behavior admitted by the mathe-

matical model is found.

e The representation is symbolic: Al techniques of symbolic reasoning can be applied to solve

kinematic problems.

The last point in particular is of importance: so far, the representational problems involved in spatial
and geometric reasoning had made it intractable for AI. While our implementation of qualitative
kinematics only covers a tiny subproblem of general spatial reasoning, the place vocabulary theory is
perfectly general. It defines a symbolic representation of kinema.tics that is rich enough to allow us to
apply Al techniques to this domain.

But the other points have important merits as well. The completeness of the reasoning makes it
possible to use a qualitative analysis for verification of designs. There may exist possible kinematic

behaviors that a designer misses. For example, it is possible to arrange a pair of gears such that they
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lock up when turned in a certain direction, but not when turned in the other. This fact had been
unknown to the author until it actually was pointed out by the place vocabulary computation.

Because we do not need to represent the metric information explicitly, the effects of uncertainties
about these values can be cleanly captured. If the value of some predicate evaluation becomes un-
certain, it simply results in an ambiguity in the resulting place vocabulary. There are no certainty
factors or other ill-defined notions that hide the direct influence of uncertainty on the result.

The division of parameter space into landmark regions allows us to make a complete list of all
possible place vocabularies that can be achieved by varying the parameters. We can use this to solve
problems of design: the list of all possible place vocabularies defines a set of possible place vocabularies
from which we can pick one that satisfies the design specifications. If no such place vocabulary exists,
the design problem has no solution. Note that in general, the number of possible place vocabularies
will be too large to make a complete list of them. Instead, the search must proceed incrementally,
possibly using heuristics to pick a parameter to vary past the next landmark value. But such a theory
is beyond the scope of the current research.

In the next chapter, we show an example of the application of the ideas we have given above.
Using our implemented program, we have generated all the possible place vocabularies that can be

achieved by varying the distance between the wheel and the lever of a ratchet.

5.2 Qualitative kinematics and computer vision

In this section, we investigate the implications that our research has for theories of computer vision,
as well as the constraints that computer vision might impose on qualitative kinematics. We put the
algorithms we have developed earlier in this paper in the context of 2 vision theories: the curvature
primal sketch idea developed by Brady and Asada ([BRADY86}), and the theory of visual routines of
S. Ullman {{ULL84}).

5.2.1 Instantiation from the curvature primal sketch

The representation of the objects we assumed in the metric diagram is very close to that of the

curvature primal sketch. This makes it plausible to obtain the symbolic part of the input representation
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Figure 5.1: Any point P can be made extremum of the radius parameter by proper choice of attach-

ment.

from visual input. However, the .instantia.tion also requires further breaking up the object boundaries
to allow parameterization of boundaries and constraint segments. Because the points where the
divisions have to be made are defined for single objects alone, it is the responsibility of the symbolic
object representation to indicate where they should be placed. ! It will be sufficient if it can be
indicated how many such breakups are possibly required for a2 boundary segment. This will leave
some ambiguity, but that could be resolved in the evaluation phase.

Recall that the additional breakups of the boundary segments must be placed at the extrema of
the radius with respect to the attachment of the object. This requires knowledge of the attachment, or
at least of possible attachments, of the object. Note that for any point on a smooth boundary curve,
there exists an attachment of either type that will require a breakup of the boundary at that point,
as shown in Figure 5.1. 2 For rotational attachment, the center of rotation must lie on the normal to
the boundary segment at that point. For translational attachment, the direction of translation must
be parallel to the boundary at that point. Note that if the boundary segment is a straight line, there
will never be another point on the segment that also becomes an extremum for this choice. Thus, for
straight line boundaries, at most one extremum is possible.

In the curvature primal sketch, each boundary segment is guaranteed to have a curvature of

!We thus leave dead points to be found in the evaluation.

2Ignoring singular cases for the moment.
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Figure 5.2: This curve has a constant sign curvature, but might have to be broken up several times.

Note that it also seems to be conceptually divided by the human visual system.

constant sign. Unfortunately, this does not limit the number of points on the boundary segment
where extrema of the radius might occur, as it allows boundary segments such as the one shown in
Figure 5.2. If the curve is attached rotationally in the center, we find 12 extrema of the radius
parameter. Yet, the curvature is negative throughout. We can construct curves of this type with an
arbitrary number of “corners”, thus requiring an arbitrary number of divisions. But note that the
curve does not appear as one homogeneous segment, but seems conceptually to be broken up at each
“corner”. It seems plausible that these divisions apply to the primal sketch as well, and therefore the
theory of curvature primal sketch should be modified.

The modification of the curvature primal sketch should give all boundary segments the property
that the number of extrema of the radius is bounded. Note that it can be limited to a single one only
in the case of straight line boundaries. In all other cases, the normals to the boundary segment are
not parallel, and any point of intersection of 2 such normals can be chosen as a center of rotation,
making the points where they originate extrema of the radius. It would be desirable to impose some
further local condition on the curve that would limit the number of extrema to these 2.

The first possibility that comes to mind is to require a constant sign of the derivative of the
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curvature as well. This would properly split up the curve shown in Figure 5.2, as the curvature in
that example has extrema at the “corners”. However, there are still examples for which such criteria
will fail. A logarithmic spiral has a monotone decreasing curvature, yet it has an unbounded number
of extrema with respect to any translational attachment.

The number of possible extrema of a curve, like the number of possible intersections of .curves, is
determined by the algebraic form of the curve. Curvature can not be used to bound the algebraic
degree, except when it is identically 0. Therefore, a low-level description based on curvature alone
seems insufficient for accurate reasoning.

The problem here could be solved by using assumptions about the possible attachments of objects
in the low-level image analysis. Under the assumption of a likely center of rotation or direction of
translation, the extrema of the radius and thus the points where the boundary should be broken are
straightforward to compute. If this hypothesis is accurate, the accuracy of human kinematic analysis
must show strong variation when the attachments of the objects are varied.

There is another hypothesis that can be made. This is that we use the curvature primal sketch
as given, but approximate each segment of constant sign curvature by an arc whose curvature is an
average of the curvature of the segment. If the arc fits the curve very closely, the reasoning errors that
result from this approximation will usually be minor. Given the evidence for the curvature primal
sketch, this seems the more likely hypothesis.

While there are certain problems with using the curvature primal sketch as a basis for the symbolic
part of the place vocabulary computation, it still matches the requirements very closely. The question

of how the deficiencies can be overcome is an interesting new research question.

5.2.2 Evaluation by visual routines

The evaluation phase of the algorithms we have described is based on 2 major operations:
e indezing: to pick out a certain configuration of touch of the 2 objects

o predicate evaluation: to evaluate a predicate on the objects when they are in an indexed config-

uration.

This distinction is exactly the same as that made in the theory of visual routines.
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Figure 5.3: The predicates for the existence of a touchpoint can be evaluated by distance comparison

with the objects placed in the configuration shown.

To examine what kind of indexing and evaluation operations are required, let us assume for the
sake of simplicity that both object;.s are rotationally attached. To determine if a touchpoint exists, we
then first perform an indexing operation, placing the objects in a configuration where the radii to each
vertex point in the direction of the other object’s center of rotation, as shown in Figure 5.3. With the
objects placed in this indexed configuration, the predicates for the existence of the touchpoint can be
evaluated by linear distance comparison, an operation that does not involve any algebra. We have seen
earlier that these predicates are sufficient to determine the set of active touchpoints and constraints.
For the ordering of the constraints around a touchpoint, a similar set of operations applies: first, the
touchpoint configuration is indexed, and the ordering of the boundary curves around the point of
touch then gives the ordering of the constraints. The existence of dead points can also be tested by
indexing the configuration where such a dead point would occur and then testing whether it is a legal
point of touch. These evaluations are local: they require local information around a certain point.

Intersections between constraints could be found by pairwise tests as we have described in our
algorithms. Note, however, that it is possible to find all the intersecting constraints using only 2
indexing operations: we index the configurations at each end of the constraint segment and find

the sets Sy and § of constraints that are violated in each configuration. Now the set of intersecting
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constraints is just the set of constraints violated at one end, but not at the other, i.e., $US,~ §; N Sz:
Note that if there are constraints that are violated at both ends, i.e., $;N S5 is nonempty, the constraint
is subsumed altogether and need not be considered any further. The number of indexing operations
We require is then proportional to the number of constraints, which in turn is a good measure of the
"complexity” of the objects. The ordering of the constraint intersections could be achieved by the
binary search method our program uses. However, this requires a number of tests which grows as the
square of the number of constraints. It might be simpler to develop some probabilistic method that
indexes random configurations until enough information has been gathered. The predica.té evaluations
required are now parallel evaluations of point inclusions, local tests as before will not suffice.

Note that this procedure ignores the condition of intersecting bounding rectangles that was dis-
cussed earlier and will therefore fail in certain cases. This could provide examples with which the
theory can be validated as a theory of human competence: if the errors that the algorithm makes
are the same as those that human subjects make, we have a good indication that the theory actually
models human performance. However, in practice this case is more subtle because people have expe-
rienced common cases of these errors many times and may have developed special heuristics to avoid
them.

In order to be plausibly implemented as visual routines, the algorithms for computing place vo-
cabularies must be weakened and specialized to fit the different type of computation allowed by the

visual system. This is a promising direction for further research.
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Chapter 6

EXAMPLES

In this chapter, we give examples of place vocabularies that have been generated using our implemen-

tation of the algorithms. The description of each example will consist of:
e The physical objects and their arrangement
e The configuration space constraints and the breakup of free space
o The place graph describing free space

Whenever the objects involved in the interaction are periodic, we will discuss the periodic version of
the place graph computed by the program. This results in a much simpler display than displaying the
full graph, but is somewhat harder to understand because of the additional periodic links appearing
in the graph.

Besides the fully worked examples, we have also computed place vocabularies for an actually
existing clock, the QRG clock. As these place vocabularies are considerably more complicated than

the others, we give only abbreviated descriptions of them.

6.1 A Ratchet

We consider the example of the simple ratchet mechanism shown in Figure 6.1. This example has

been presented in the introduction and we now discuss it in more detail. For easier reference, we again
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Figure 6.1: Ratchet example.

show examples of possible configurations and the configuration space in Figures 6.2 and 6.3. The

resulting place graph for this example is shown in Figure 6.4. First, we shall explain the notation

used in the graph. Nodes are labeled as either IP-n, CSEG-n, FD-n or FULL-FACE-n, where n is

some integer. IP-n stands for Intersection Points between constraint segments, i.e., the 0-dimensional
places or points in configuration space. CSEG-n designates Constraint Segments, i.e., 1-dimensional
places. FD-n stands for Free Space Division, i.e., the tesselations of free space defined by applicability
constraints. Finally, FULL-FACE-n designates regions of configuration space, i.e., the 2-dimensional
places.

Adjacencies between the places are indicated by the edges of the graph. The edges are marked to
indicate the type of relationship the elements have. The mark “->” means that the place on the left
end of the edge bounds the place on the right end of the edge. Note that because constraint segments
and intersection points mutually bound each other, they have this mark going both ways. When the
adjacent place is a periodically offset copy, this is indicated by marking the link. We use a pair of
numbers indicating the number of vertices on the boundaries of each of the 2 objects by which the
place is offset.

The graph and its relation to the configuration space is best understood by focussing on the 2
dimensional places, of which there are 5. The regions that these places correspond to are indicated
in Figure 6.3. After identifying the 5 FULL-FACEs, note that their bounding places are arranged

around each of them in a circle. The association of constraint segments to the sample configurations
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Figure 6.2: Examples of possible configurations for the ratchet.
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Place Touch Configuration
CSEG-12 d)
CSEG-13 d)
CSEG-14 c)
CSEG-15 f)
CSEG-16 f)
CSEG-17 f)
CSEG-18 e)
CSEG-19 f)
CSEG-20 c)
CSEG-21 c)
CSEG-22 b)
IP-28 a)
IP-31 a)

Figure 6.5: The association between constraint segments and configurations of touch.

of touch is shown in the table in Figure 6.5. Note that there are often several constraint segments

corresponding to the same configuration of touch. This is for one of the following 3 reasons:
® The constraint changes qualitative directions and must be broken up to satisfy monotonicity.

e The constraint is broken up to satisfy the parameterization requirements. Note that this does

not necessarily entail a change in qualitative direction.
e The constraint is broken up because of an intersecting free-space division.

The adjacencies between 2-dimensional places are defined by free-space divisions. In the graph,
the FULL-FACEs are thus connected by shared free-space divisions. Note that the intersection of
free-space divisions FD-75, FD-97, FD-141 and FD-142 forms a “cycle” by itself. FULL-FACE-57 and
FULL-FACE-58 are mutually adjacent to periodic copies of each other. These adjacencies occur at

the free-space divisions FD-94 and FD-73, which are periodic copies of each other, offset by 2 vertices.
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Thus, all places connected to FD-94 are also connected to FD-73 with a periodic offset, and vice
versa. Each of these connections is marked either by an offset (2,0) or (14,0), as these are the mutual
offsets of the 2 free-space divisions. Which of the 2 is actually chosen is determined by the direction
of the link: if the direction is from FD-94 to FD-73, the offset is (14,0), otherwise it is (2,0). Note
that because the links occur via intersection points, there is some ambiguity as to what period this
intersection point belongs to. In Figure 6.4, the 4 intersection points at the ends of FD-73 /FD-94
are duplicated as IP-39, IP-41, IP-44 and IP-46. Out of these, IP-39 and IP-41 are in the same period
with FD-73, and IP-44 and IP-46 are in the same period as FD-94. Therefore, the indices of the
periodic repetitions are (14,0) for the first 2 and (2,0) for the last 2. Finally, note that FD-94 is also
linked to FULL-FACE-57 by a periodic link, similarly for FD-73 and FULL-FACE-58.

This place graph forms the spatial substrate for an envisionment of the behavior of the ratchet.
The links in the graph define all the geometrically possible transitions, many of which are impossible
for a given configuration of external forces. In the actual envisionment, many of them can be ruled

out based on analysis of the forces.

6.2 Parameter Variation for the Ratchet

In this section, we describe the changes that the place vocabulary undergoes under variation of a
paramter. The parameter we vary is the distance between the center of rotation of the wheel and the
center of rotation of the lever, and we shall refer to it as d. In the analysis of the previous section,

the distance has a value of d=30 units.

6.2.1 Generation of landmark values

The values of the parameter at which the place vocabulary undergoes possible changes are called
Landmark Values. In the example of the ratchet, there are 8 of them: at 21.05, 23.06, 27.29, 28.3,
29.27, 32, 35.5 and 40.28. When d is smaller than 21.05, there are no legal configurations. When d is
greater than 40.28, the objects are too far apart to touch, thus there is no interaction.

As discussed earlier, landmark values arise froni the following conditions:

e For each touchpoint: the 2 conditions for its existence, and the predicates determining the
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relative ordering of the constraints around it.

e For each pair of constraints: the condition that an endpoint or midpoint (point where the

derivative is zero) falls onto the other constraint (subsumption landmark values).

The actual landmark values are defined by an equation 7(d) = 0, where 7(d) defines the condition
as an equation, written in terms of the open parameter d. The equation is obtained in the following

ways:

o For predicates determining existence of touchpoints, the predicate itself is defined as an inequal-

ity which is readily converted into an equation.

e For the relative ordering of 2 constraints around a touchpoint, the predicate is defined by the
condition that the 2 constraints have the same tangent direction. This is also readily expressed

as an equation.

o For subsumption landmark values: substituting the coordinates of the endpoint, written in
terms of the open parameter, in the equation of the other constraint gives the equation for the

landmark value.

For many of these landmark values, it is possible to restrict the range of validity. For example,
the landmark values defined by the conditions involving the endpoints of constraints are valid only
in the interval where these endpoints actually exist. Even within this range of validity, in most cases
a possible landmark value results in a change in the structure of the constraints in blocked space
only. It does not affect the boundaries of free space and therefore is not an actual landmark value.
In the current implementation, this fact is detected only in the final result of the place vocabulary
computation. It would be conceivable to construct an explicit dependency structure of landmark
values on other predicates to predict irrelevant landmark values more directly, but this has not been
implemented.

In the example given here, the numerical values of the landmark values were found by binary
search using the defining equation. The initial interval was defined either by other landmark values
governing the existence of touchpoints or endpoints or by an a priori interval which was set to [1..50].
Binary search is a very crude method for finding roots of such equations, and it turns out that not all

landmark values are found by this procedure. The procedure failed to produce the value at d=23.06,
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which is not a minor omission. For a proper automatic analysis, reliable methods for finding roots
(such as using Sturm sequences) will be required. In this simple example, missing landmark values

were found by hand-calculation and verification using the corresponding defining equations.

6.2.2 Representative place vocabularies between the landmark values

To illustrate the major changes that the place vocabulary undergoes when r is varied, we show place
vocabularies for 3 different cases: d=22, d=25 and d=34. We have already investigated the place
vocabulary for d=30 in the previous section. This leaves the intervals from 27.29 to 28.3 to 29.27 and
from 35.5 to 40.28 uncovered, but the variations in the place vocabulary that occur at these landmark
values are only further breakups of constraint segments corresponding to the same configuration of
touch. These are introduced to satisfy requirements of changes in qualitative direction or unique
parameterization. We do not examine these variations separately here.

When d=22, the configuration space contains eight periodic regions of free space as shown EFigure
6.6. Each region is bounded by eight different constraint segments, as indicated by the numbers in
Figure 6.6. To get some idea of the configurations that the constraints correspond to, consider the
sample configurations in Figure 6.7. Note that again, certain groups of constraint segments share the
same configuration of touch. The place graph for this case corresponds directly to the configuration
space arrangement and is shown in Figure 6.8.

When d becomes greater than the landmark value at d=23.06, it becomes possible for the tip of
the lever to touch the tip of the teeth of the wheel. This results in 2 simultaneous changes in the place
vocabulary: The appearance of a strip extending upwards from the tip of each region, and a vertex
in the bottom boundary of each region. These vertices require the addition of free-space divisions.
The resulting configuration space for d=25 and its tesselation is shown in Figure 6.9. Again, the
numbers in Figure 6.9 indicate the correspondences to the place graph shown in Figure 6.10. To aid
in understanding, sample configurations corresponding to the new constraint segments are shown in
Figure 6.11.

When d is increased further, direction changes appear in the 2 vertical boundaries of FULL-
FACE-85 (in Figure 6.9) at d=27.29 and d=28.3. These direction changes are very small and do not

show within the resolution of the graphic display, so the configuration space for these intervals looks
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Figure 6.7: Examples of configurations satisfying the various constraint segments.

qualitatively the same as that for d=25. When the landmark value at d=29.27 is crossed, the 8 disjoint
regions become connected and the wheel is free to turn. We have already examined a representative
place vocabulary for this interval in the previous section.

When d increases beyond d=32, the touchpoint between the tip of the lever and the vestex at the
“bottom” of the teeth disappears. The lever is now free to rotate a full rotation, and blocked space
consists of 8 disjoint “obstacles.” The configuration space and its tesselation for the representative
value of d=34 is shown in Figure 6.12. The numbers in Figure 6.12 again indicate the correspondence
to the place graph, which is shown in Figure 6.13. Note that FULL-FACE-130 is connected to periodic
copies of itself at the free-space divisions FD-252 and FD-249. The links are made in the same way
as those in the example for d=30, given in the last section. Sample configurations for the places are
shown in Figure 6.14 to aid in comprehension of the example. Note in particular the direction change
from CSEG-63 to CSEG-64, both of which share the same configuration of touch.

When d is increased further beyond the landmark value at d=35.5, the direction change between
CSEG-63 and CSEG-64 disappears, and we obtain the configuration space tesselation shown in Figure

6.15 for the representative case of d=37.
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Figure 6.8: One period of the place graph for the ratchet when d=22.

- 125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



20 N T W 8 Sy

The configuration space for the ratchet example for d=25.
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Figure 6.11: Sample configurations for some of the constraint segments in the ratchet place vocabulary
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Figure 6.12: The configuration space for the ratchet example when d=34.
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Figure 6.13: The place graph for the ratchet example when d=34.
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Figure 6.14: Sample configurations for some of the constraint segments in the ratchet place vocabulary

for d=34.
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Figure 6.15: The configuration space for the ratchet example when d=37.
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Figure 6.16: Recoil escapement example

We have thus found all possible place vocabularies that can be achieved by varying the distance
between the center of rotation of the wheel and the center of rotation of the lever. Note that we
do not take into account the structure of the tesselation imposed by the free-space divisions. This
is because this tesselation does not influence the mechanical behavior of the mechanism itself, but
is added only in order to satisfy the quasi-convexity criterion for the 2-dimensional places. While it
appears possible to compute landmark values for changes in the tesselation as well, they do not reflect

changes in actual behavior and we thus do not consider them necessary.

6.3 Three Clock Escapements

In this section, we discuss the place vocabularies for 3 different types of escapements: a recoil escape-

ment, a deadbeat escapement, and a cylinder escapement.

6.3.1 Recoil escapement

Consider the recoil escapement shown in Fig. 6.16. The escapement consists of 2 parts, the escape
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Figure 6.17: The configuration space for the recoil escapement example. Note that the space is a

torus surface and thus wraps around on the sides. The horizontal direction is ¢, the vertical 1.

wheel and the anchor, both hinged with rotational freedom. It is the central element of many pendulum
clocks. Attached to the anchor is a pendulum which oscillates with a constant period. There is a
driving moment acting on the wheel that turns it clockwise. Each time the pendulum swings, the
escapement allows the wheel to turn by one tooth. As the period of the pendulum is constant, so are
the intervals between successive advances of the wheel.

The configuration space for this example is shown in Figure 6.17, where the horizontal direction is
the orientation angle ¢ of the escape wheel, and the vertical is the orientation angle ¥ of the anchor.
Note that there are 2 disjoint regions of free space: one through the center, corresponding to the normal
operation of the ratchet, and one that wraps around from the top to the bottom, which corresponds

to the anchor being inverted. We discuss the region corresponding to the normal operation of the
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Figure 6.18: An enlarged section of the configuration space. The letters refer to the configurations

shown in the respective figure, the arrows indicate motion of escapement during normal operation.

escapement. Figure 6.18 shows an enlarged section of this part of the configuration space. The region
is bounded by sequences of constraint segments corresponding to the right side and the left side of the
anchor touching the wheel. These form the 1-dimensional places: the set of configurations where there
exists a point of contact between a certain vertex and a certain boundary segment of the object. For
each tooth, the program finds 1-dimensional places corresponding to the 6 different configurations of
touch shown in Figure 6.19. The constraint segments corresponding to these are indicated by letters
in Figure 6.18. In cases A}, C) and D), there exists a point where the qualitative relation between
the configuration space parameters changes; they are thus further subdivided by the program. Note
that in the actual place graph, these places are further broken up by intersecting free-space divisions.
The places shown in each row of Figure 6.19 are connected in a sequence as indicated by the arrows.
There are 14 teeth on the wheel, so there are 14 periodic repetitions of the places shown. In the actual
operation of the escapement, the wheel is moving clockwise and the anchor alternatively touches the
wheel with its right and its left end. This motion is indicated by the arrows in Figure 6.18. The

sequence of places it passes through is then A) — B) — intermittent motion — E) — intermittent
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Figure 6.19: Sample configurations for the 1-dimensional places in the escapement example.

motion — A)’ ..., where A)’ refers to the next periodic repetition of A). The intermittent motions,
where no contact between the objects exists, are represented by 2-dimensional places. .

The place graph for the escapement example is shown in Figure 6.20. Similar to the case of
the ratchet discussed earlier, the place graph contains two 2-dimensional places, FULL-FACE-15 and
FULL-FACE-24, which are adjacent to periodic copies of each other, and this is again indicated by
links marked for periodic offset.

We outline how an envisionment of the escapement’s operation can be obtained using the place
graph. For each place, the set of possible transitions is given as the set of adjacent places. We describe
the velocities and forces or moments of the objects by their signs. Note that the 2 quantities are related
by a simple qualitative differential equation. Each of the one-dimensional places enforces a monotone
relation between the configuration space parameters. This results in a constant relation between the
qualitative parameters for the motion and forces within these places. The 0-dimensional places are
contained in 1-dimensional places and thus share these characteristics. For the 2-dimensional places,
there is no contact between the objects and they therefore do not influence each other. Details of the

actual qualitative simulation are described in ( [FNF87]).
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Figure 6.21: A deadbeat escapement.

As afintl point, note that we have not described the other region of free space. This region is also

broken up into subregions by free-space divisions and forms a disjoint component of the place graph.

6.3.2 Deadbeat escapement

The escapement we have discussed in the previous section has an undesirable behavior. In the normal
operation of the escapement, consider the intermittent motion from configuration b) to configuration
e). At the moment where the contact in configuration e) is made, the pallet is still rotating counter-
clockwise. But in order to continue the motion of the mechanism along CSEG-2, this motion has to
be reversed. The pendulum is thus driving the clock backwards, an undesirable behavior.

This situation is corrected in the deadbeat escapement shown in Figure 6.21. The boundaries
where the escape wheel comes into contact with the pallet following intermittent motion are now
curved with the center of curvature equal to the center of rotation of the pallet. When the escape
wheel touches these surfaces, motion of the pallet will not affect it. The pallet thus no longer drives
the clock backwards. The difference between the 2 escapements can also be explained using the
configuration space, which is shown in full in Figure 6.22.and in an enlarged version in 6.23. Again,
we have indicated the motion during normal operation of the escapement by arrows in Figure 6.23.
Note now that the 2 intermittent motions in the duty cycle both end in places whose derivative with
respect to the motion of the pallet is zero, namely CSEG-2 and CSEG-10. Sample configurations for

some of the places are shown in Figure 6.24. As the device is very similar to the ordinary escapement
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Figure 6.22: The full configuration space for the deadbeat escapement.
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Figure 6.23: An enlarged section of the configuration space for the deadbeat escapement. The numbers

refer to constraint segments in the place graph.
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Figure 6.24: Sample configurations in some of the places for the deadbeat escapement.
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shown in the previous section, so are the configuration space and the place graph, shown in Figure
6.25. The correspondences between the configuration space and the place graph are indicated by the
numbers is Figure 6.23. Figure 6.23 should be compared with Figure 6.18 to better understand the

difference between the 2 types of escapements.

6.3.3 Cylinder escapement

Escapements of the pallet type we have seen are rather brittle devices. The distance between the
centers of rotation of the wheel and the pallet, for example, has to be very precisely adjusted for
the escapement to operate properly. A cylinder escapement, shown in Figure 6.26, is a much less
problematic design. It consists of 2 parts: a cut-out cylinder, on the left, which rotates around its
center, and a spoked wheel. Note that of the first part, only the hollow cylinder is actually in the same
plane as the wheel. In the plane of our analysis, its center of rotation thus lies outside the object,
although in some other plane it must be fixed by a joint.

The cylinder is attached to a balance spring and rotates back and forth. The wheel is attached to
a spring that drives it in the counterclockwise direction. We refer to the sample configurations shown
in Figure 6.27. Starting in CSEG-18, with the cylinder turning clockwise, we arrive at CSEG-17.
The spoke of the wheel is now released, and it moves intermittently in the counterclockwise direction.
The next spoke now hits the other side of the cylinder, as in CSEG-15. The cylinder swings to its
extremal point and reverses its direction of motion. Now rotating counterclockwise, we reach the
configuration in CSEG-3, where the spoke is again released. After intermittent motion, the device
reaches CSEG-18. In this place, the cylinder now swings to its extremal point, reverses its motion,
and the cycle repeats. N

Figure 6.27 also shows some other configurations to illustrate the display of the configuration
space, shown in Figure 6.28. The duty cycle of the mechanism is also indicated by arrows in this
figure.

The place graph for this example is shown in Figure 6.29. The place graph consists of 6 2-
dimensional places for each spoke of the wheel. The correspondences between places and the con-
figuration space are indicated by the numbers is Figure 6.27. Note that FULL-FACE-1 is linked
periodically to FULL-FACE-6.
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Figure 6.26: A cylinder escapement.
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Figure 6.27: Sample configurations of the cylinder escapement.
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Figure 6.28: The configuration space of the cylinder escapement.

143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[ T ——
sprar .

“uswadedss 1apulj4d> a3 10y ydrid adeid ayJ, :6z'0 213

$-TIVI-TINA™ o oA
..’ Vqﬂ. N Sypal
sh-d _w a1 Triees) nod Jvdﬂ a /
=di e 2 - g
P5-0353 5 - - =
/ 5 /./ s ~
h

EIDVI-ING

\.\\\\

144

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



%

ﬁ:gw
W

. 2)

WY

S, W

Figure 6.30: A pair of gears.

6.4 Gears

Consider the pair of gears shown in Figure 6.30. The configuration space for this example is again
2-dimensional, the 2 dimensions being made up of the orientation angle ¢ for the lower gear and the
angle ¢ for the upper gear. The gears in this example have 16 and 24 teeth, respectively. As the
greatest common divisor of these is 8, the configuration space contains 8 identical doubly connected
”channels,” corresponding to different initial choices for pairs of interacting teeth. The complete
configuration space is shown on the left in Figure 6.31, and a single channel alone is shown on the
right. A detailed display of an enlarged section of configuration space is further presented in Figure
6.32. As the interactions between the teeth are all periodic, so is the place vocabulary. In this case, we
have 24 % 16 = 384 possible choices for a pair of teeth, so there exist 384 periodic copies of each place.
The place graph, shown in Figure 6.33, contains 2 2-dimensional places, connected to their periodic
copies as shown. To aid in understanding, Figure 6.34 shows sample configurations for the places
in the place graph. The numbers of the places are also indicated in Figure 6.32. The place graph
contains links that indicate the periodic repetition. At FD-9, the 2-dimensional place FULL-FACE-9
is linked to a periodic copy of FULL-FACE-95, and vice versa at FD-10. The remaining free-space
division, FD-8, runs between the 2 places. Note that as the wheels have 16 and 24 teeth, respectively,
and each tooth contains 2 vertices, the periodic offsets are either the pair (2,30) or (46,2). Adjacent

periodic copies are offset in both parameters, reflecting the fact that successive teeth on one wheel
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Figure 6.31: The configuration space for the gearwheel example. On the left, the complete configura-

tion space, on the right, one of the 8 identical doubly connected components of free space.

touch successive teeth on the other.

6.5 Cams

Cams are devices used to transform rotational motion into periodic translational motion. They consist
of a rotating part, the cam, which drives a translating output part, the lever. The shape of the rotating
part determines how the motions are translated. By choosing the proper shapes, rather complicated
relative motions can be achieved. These motions often depend on certain specific boundary curves
of the cam. This feature can not be described adequately in the qualitative formalism. Just as for a
human engineer, an algebraic analysis is required to determine the exact interaction. In this section,

. we give examples of place vocabularies for 2 types of cams: a "standard” cam and a Scotch yoke.

6.5.1 Standard cam

We consider the cam shown in Figure 6.35. The lever is free to translate in the vertical direction,
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Figure 6.32: An enlarged section of the configuration space for the gearwheel example.
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Figure 6.33: The place graph for the gearwheel example.
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Figure 6.34: Sample configurations for some of the places for the gearwheel example.

Figure 6.35: A standard cam mechanism.
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Figure 6.36: The configuration space for the cam mechanism. The horizontal parameter is the orien-

tation angle of the cam, the vertical the translation of the lever.

and the cam rotates. The configuration space, shown in Figure 6.36, is thus a 2-dimensional cylinder
surface. It contains 2 infinite regions of free space, corresponding to the lever being above and below
the cam. As in the previous examples, the numbers in Figure 6.36 indicate the constraint segments
that corresponds to the configurations. As the cam rotates, the asymmetries in its shape drive the
lever up and down. In this example, the lever oscillates once for each rotation of the cam, but this
could be varied by changing the shape of the cam. Examples of configurations occ.urring in this cycle
are shown in Figure 6.37. They are labeled with the constraint segments that they correspond to.
The place graph for this example is shown in Figure 6.38. It consists of 2 connected components,

corresponding to the 2 regions of free space. In the case of translational attachment, the program

assumes a division of free space that delimits the feasible region of translation. In this example, the
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Figure 6.37: Sample configurations for the cam mechanism.
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Figure 6.39: A scotch yoke.

division is made up of the free-space divisions FD-6 and FD-7 above, and FD-12 and FD-13 below.
Each of the regions outside the feasible regions forms a place in itself, and these are FULL-FACE-3 and
FULL-FACE-8. However, because they have no constraint segments (and thus no contacts between

the objects) among their boundaries, they have no kinematic function.

6.5.2 Scotch yoke

A Scotch yoke, as shown in Figure 6.39, is a type of cam that translates rotational motion into
sinusoidal translational oscillation. An important difference of this mechanism to the standard cam
is that the lever can not be detached from the cam. The configuration space for this example consists
of 3 regions: one where the pin of the cam is inside the slot of the lever, and 2 regions where it is
outside on one side of it. Examples of these configurations are shown in Figure 6.40. Configurations in
CSEG-39 and CSEG-44 lie on the 2 boundaries of the region within which the yoke normally operates.
The configurations in places CSEG-52 and CSEG-47 are on the boundaries of the regions where the
pin is outside of the slot and the yoke thus does not function properly. The configuration space and
place graph for the yoke are shown in Figures 6.41 and 6.42. Note that no free-space divisions are

needed to satisfy the quasi-convexity criterion in this example.
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Figure 6.40: Sample configurations of the scotch yoke.

154

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 6.41: The configuration space for the scotch yoke
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Figure 6.42: The place graph for the scotch yoke
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6.6 The QRG Clock

As a test of the place vocabulary theory on a real-life mechanism, we have analyzed the QRG clock,
shown in Figure 6.43. The clock contains an escapement, 6 pairs of gearwheels, and a ratchet. The
arrangement of the parts and their motion during normal operation of the clock is shown in Figure
6.44. As the number of teeth of the gearwheels are not readily visible in Figure 6.44, they are listed
in Figure 6.45. Gearwheel 6 is attached to a spring which drives it to the left. This spring is the
source of energy for the clock. It is wound up using a handle connected to a ratchet, which prevents
the handle from turning backwards and relaxing the spring. The spring and ratchet are indicated at
the bottom of Figure 6.44. Two kinematic chains originate at gearwheel 6. One connects it with the
escapement, thus regulating the motion of gear 6,' and the other connects it with the hands of the
clock. .

The first kinematic chain consists of the 3 kinematic pairs between gearwheels 5/6, 3/4 and 1/2,
and the escapement. It is formed by rigid connections between successive gears, i.e., 5 with 4, 3 with
2 and 1 with the escape wheel. The ratio between the number of teeth of the gearwheels in these
pairs is 62/15, 56/10 and 52/11, and the number of teeth of the escape wheel is 34. Thus, during one

revolution of gearwheel 6, the number of times that the pallet of the escapement oscillates is

3. —. = .2 = T ~3720.3
15 10 11 825

The pallet is directly attached to a pendulum. When the clock is properly calibrated, Gearwheel 6
makes one revolution per hour, and the pendulum swings back and forth a little more than once per
second.

The second kinematic chain, linking gearwheel 6 to the hands of the clock, consists of the 3
kinematic pairs between gearwheels 6/7, 8/9 and 10/11. It is formed by the rigid connections between
gears 7 and 8 as well as 9 and 10. The first of these pairs, between gears 6 and 7, has the sole purpose
of reversing the direction of motion, so that the minute hand can be driven clockwise. The following
2 pairs have ratios of 40/10 and 36/12, so that gear 11 rotates 40/10 - 36/12 = 12 times slower than
gear 7. It can thus serve to drive the hour hand, making one full revolution every 12 hours.

Using our implemention, we have computed place vocabularies for each of the kinematic pairs in the

clock. These place vocabularies will be used by Paul Nielsen ( [NIE88]) to compute an envisionment
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Figure 6.43: The QRG clock.
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Figure 6.44: The kinematic chains of the QRG clock.
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Figure 6.45: The number of teeth for the gearwheels in the QRG clock.
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Figure 6.46: The configuration space for the ratchet.

of the clock’s behavior. As his work is not completed yet, we can not report on the final result of this
analysis. We thus describe the place vocabularies we have generated for each of the kinematic pairs. As
the graphs get rather large and complicated, we describe the place vocabularies by the ;oxxﬁguracion
space tesselation only. For the ratchet, we show the full configuration space in Figure 6.46, but for
all other examples, we illustrate the tesselation using an enlarged section of the configuration space
in Figures 6.47 through 6.53. The reader is referred to the similar examples discussed earlier for a
full discussion of the form of the configuration space constraints.

In this example, we had to contend with several major difficulties. It was very difficult to get accu-
rate descriptions of the geometries of the parts. While we obtained some quite good approximations
from photographs of the device, these had to be corrected by trial and error using the results of the
place vocabulary computation. In the case of the escapement, the distance between the escape wheel
and the pallet has to be accurate to 0.1 % in order for the pair to function properly. Floating-point
truncation errors pose the second major problem. The computer used for the implementation does
not have a very refined arithmetic, and the program thus uses a rather large tolerance (10~7) to allow

for truncation error. However, it turned out (in the case of the ratchet) that the example required
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Figure 6.47: An enlarged section of the configuration space for the escapement.
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Figure 6.48: An enlarged section of the configuration space for the pair between gears 1 and 2.
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Figure 6.49: An enlarged section of the configuration space for the pair between gears 3 and 4.
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Figure 6.50: An enlarged section of the configuration space for the pair between gears 5 and 6.
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Figure 6.51: An enlarged section of the configuration space for the pair between gears 6 and 7.
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Figure 6.52: An enlarged section of the configuration space for the pair between gears 8 and 9.
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Figure 6.53: An enlarged section of the configuration space for the pair between gears 10 and 11.

finer distinctions. We avoided the problem by a very slight variation of the dimensions of the parts,
but this is by no means a satisfactory solution. The third problem is that the implementation is very
slow: with the exception of the ratchet, the computation for all the kinematics pairs had to be run

overnight. However, we are confident that our algorithms can be implemented in a way that avoids

these problems.
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Chapter 7

CONCLUSIONS

We begin by briefly reviewing other work in spatial reasoning and motion planning. We then dis-
cuss several categories of future work. First, we discuss potential improvements in both the place
vocabulary theory and the algorithms. We then describe possible extensions and improvements to the
place vocabulary theory itself. Finally, we outline the other requirements for a theory of mechanical
design, and list the work that will be needed to achieve a complete theory of human reasoning about

mechanism kinematics.

7.1 Review of Related Work

We have argued in the introduction that it is a bad idea to attempt to reason about kinematic
interactions using analog representations of individual objects. However, such approaches have been
explored in related areas. The most important work of this kind is the ACRONYM system of R.
Brooks ( [BRO81]). This system dealt with recognition of objects from images and used reasoning to
help the recognition process. Closer to the kinematic domain, E. Davis developed the MERCATOR
system ( [DAV83|), which used the idea of fuzzboxes to reason with partially specified geographic
information. However, neither system was designed to reason about kinematic interaction.

There has been substantial work on purely symbolic spatial reasoning. The idea is that when

objects are represented by a finite set of symbols, it is possible to express their interactions by a set
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of rules. This approach is implicitly assumed in most of the work in the blocks world, but had not
been formalized for complex domains. C. Stanfill [STA83]) developed a symbolic system to represent
and reason about cylinders. A more ambitious project is recent work by E. Davis ( [DAVS6]), who
is devising a logic-based system to reason about objects moving through space. As his work is still
in its beginning stages, it is not clear yet how powerful his approach will be. Finally, Andrew Gelsey
([GELSEY87]) has implemented.x system that analyzes mechanism kinematics. He is trying to model
complete mechanisms using symbolic descriptions of the function of kinematic pairs and rules that
relate between them. His system incorporates numerical information into the description, but does
not use it for reasoning. Because his system is based on a finite set of possible kinematic pairs, it
is not powerful enough to completely represent higher pairs. However, his work demonstrates that
reasoning about the function of complex mechanisms is tractable. The place vocabulary could very
well provide the necessary generative vocabulary to make his system general.

While these symbolic approaches are powerful in the domains for which they are designed, they
lack the important property of generativity. The set of objects they can represent is limited by the
symbol set they use, and therefore they are in principle unable to reason about general geometric
shapes. To overcome this problem, we need a generative symbolic representation. This is one of the
goals of modern qualitative physics ( [FOR81,FOR84,DKL79,DKL84|). The place vocabulary idea
originated in FROB ( [FORS81]), which analyzed qualitatively the possible motions of a point mass in
polygonal regions. Places were created by a tesselation of the regions into rectangles. FROB could
then reason about the possible motions of the point mass within these regions. For example, it could
answer what places the mass could come to rest in given that it started in some given way. FROB,
however, could not yet reason about kinematics, and the objects it dealt with were just points.

The abstraction we use in this thesis to generalize the idea of place vocabularies is configuration
space. This idea is due to Thomas Lozano-Perez ( [LPW79,LMT83,BLP83]) and has been developed
for the problem of robot motion planning. The development of configuration space as a suitable
abstraction of the problem has resulted in a large amount of work on algorithms for robot motion
planning. Of particular relevance to our work is the idea of using algebraic cell decomposition, first
proposed by Schwartz & Sharir ( [SCHS83]). In this work, a method for motion planning using a

decomposition of configuration space into cells very similar to place vocabularies is proposed. How-
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ever, their cell decomposition does not use applicability constraints. The unbounded domain of the
constraints means that all constraints are applicable at all legal configurations. This results in a
large number of unnecessary divisions of free space, which is very undesirable for a place vocabulary.
However, in motion planning, this distinction is irrelevant. Unfortunately, despite some recent im-
provements ( [BKR85,KY85]), the algorithms proposed to compute the algebraic cell decomposition
are all so inefficient that even for toy examples, none of them has ever been implemented. We have
not been able to use them for the computation of place vocabularies.

Finally, the idea of kinematic pairs and chains is due to Franz Reuleaux { [REU75| in German,
English translation in [REU76]). Many of the ideas in the framework of this thesis are due to his
seminal work. Yoav Shoham ( [SHO85|) analyzes static arrangements of objects, but unfortunately the

analysis breaks down as soon as the objects move, making the representation unusable for kinematics.

7.2 Improvements in the Current Place Vocabulary Theory

In this section, we discuss some desirable extensions and improvements in various parts of the current
place vocabulary theory. All of the ideas proposed in this section assume the place vocabulary theory

as given in this thesis.

7.2.1 Faster algorithms

Unfortunately, the current place vocabulary implementation is very slow. A faster version would facil-
itate further research. Recoding the current implementation could speed up the program somewhat,
but the potential for such improvement is limited. It looks more promising to try to decrease the
complexity of the algorithms.

In the instantiation of the constraints, the current implementation uses symbolic algebra to com-
pute the various equations and functions. This has given us a lot of flexibility for experimenting with
various definitions of place vocabularies. The instantiation could now be sped up by replacing the
symbolic algebra by a set of functions for each of the coefficients of these equations.

A large part of the rest of the computation is spent on detecting subsumption intersections between

constraints. There are various ways to speed up this process. First, one could better index the
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constraints to narrow the set of constraints considered for intersection tests. Recall that the current
implementation uses a test for intersection of bounding rectangles to narrow this set. As all the
rectangles are distinct, testing their intersection for each pair of constraints is a slow process, and
could probably be sped up by using a fixed global set of bounding rectangles to narrow the search.

As another possibility, it might be possible to further narrow the set of possible candidates by
combining the intersection detection with the computation of regions of free space. Constraints would
thus be tested for intersection only when they are considered as boundaries of free space. This might
allow us to compute only those subsumption intersections that occur at legal configurations, and
not waste any effort on those whose configurations are not legal anyway. To do this, we need a
fast algorithm to determine whether a given configuration is legal, and recent work in robotics and
computational geometry might provide such a method.

Finally, the computation could take fuller advantage of periodicities in the objects. The most
computation-intensive parts of the program already do this, but some improvement can still be gained
in various places. For example, periodical copies of constraints and touchpoints could share the same

data structures to save memory, and pointers between them could be replaced by an indexing scheme.

7.2.2 Analysis of complete mechanisms

The research presented in this thesis is concerned mostly with the analysis of higher kinematic pairs.
As one of the goals of qualitative kinematics is to analyze complex mechanisms, it would be desirable
to apply this kinematic pair analysis in the context of a larger system.

We have already given an analysis of a complete clockwork, the QRG clock. Paul Nielsen ( [NIE88|)
is devising a system called ALEX which uses place vocabularies to analyze such clockwork mechanisms.
The main goal of his research is to determine how the forces and motions of the parts of a complete
mechanism can be analyzed qualitatively. The theories he is devising will allow us to compute an
envisionment of the mechanism’s actual behavior from the place vocabularies for the kinematic pairs.

What is missing in the system is the automatic identification of the lower kinematic pairs in the
mechanism, i.e., an anlysis of the joint configurations to determine the freedom of the parts. The
input information explicitly specifies the freedom of each part as either translation along a certain

axis or rotation. The problem of identifying this freedom is very different from the analysis of higher
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kinematic pairs, and we have thus excluded it from our work. There exists an exact mathematical
analysis for this problem ( [DEHAS55]), and recent work by Andrew Gelsey ( [GELSEY87]) shows that
it is possible to solve this problem by rule based methods, a much simpler and faster procedure than
the expeﬁsive place vocabulary analysis. It would be interesting to combine his techniques with the

ALEX system to yield a system covering almost all practical mechanisms.

7.2.3 Extension of éoverage

The current implementation is limited to 2-dimensional objects whose boundaries are made up of
straight lines and arcs. While this covers a large portion of practical mechanisms, there are cases that
fall outside this domain.

A higher kinematic pair in 3 dimensions differs from a 2-dimensional one only in the form of
the configuration space constraints. Both objects have just one degree of freedom each, so that the
configuration space is still 2-dimensional. All that has to be done to extend the implementation to 3
dimensions is to provide representations and configuration space constraints for 3-dimensional objects.
This is not an easy task, but it does not require any new theories.

Extending the theory to cover more cases of boundary curves is more difficult. To handle general
algebraic curves, we need an algebraic engine that finds the equations of the configuration space
constraints. Furthermore, as the configuration space constraints become high-order algebraic curves,
the endpoint tests we now use to detect intersections between them will become too unreliable. It will
thus be necessary to test for intersections using algebraic decision methods, a very slow procedure.

Further research is needed to determine how to make this extension in a reasonable manner.
7.3 Requirements for a Revised Place Vocabulary Theory
In this section, we discuss some possible modifications to improve the place vocabulary theory.

7.3.1 Three dimensions from two dimensions

One of the justifications for limiting the current theory to 2 dimensions is that people solve 3-

dimensional problems not by direct 3-dimensional analysis, but by a set of related 2-dimensional

170

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ones. So far, we have not investigated how this process might work.

Mechanical engineers represent and reason about mechanisms in suitable projections. Reasoning
about 3-dimensional interactions thus seems to be split up into 2 parts: first, find a suitable set of
2-dimensional projections of the problem, and second, the analyses of these subproblems are composed
to predict the behavior of the actual 3-dimensional mechanism. The place vocabulary theory provides

a framework within which these phenomena can be studied.

7.3.2 Division of free space

In the current theory, free space is tesselated into different places by applicability constraints. There
are many ways in which such applicability constraints could be defined, and the one we have chosen
in our theory is underconstrained. Given the crucial influence of this choice on the place vécabulary,
this is an undesirable situation.

Currently, the only requirement placed on applicability constraints is that they bound the algebraic
domain of applicability on the corresponding constraint itself. To obtain a unique definition, we must
find additional criteria for constraint applicability for configurations in free space. The most promising
way to define such criteria is to make assumptions about probable motions of the objects. A constraint
is then applicable if a probable motion will lead to a configuration that satisfies it. An interesting

empirical question is whether there exists a reasonable set of such assumptions.

7.3.3 Recognition of mechanism function

As the place vocabulary provides a representation for mechanism function, it might be used to cat-
egorize place vocabularies into equivalence classes that express a certain mechanical function. Thus,
the place vocabularies of different ratchets all have certain ratchet-defining features in common. It
would be interesting to see if recognition functions for common classes of mechanisms can be based

on the place vocabulary theory.

7.3.4 Compositional computation

When people analyze a mechanism, they seem to be able to predict local behavior from local informa-

tion. For example, for a gearwheel, people can decompose the behavior into that of individual teeth
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“pushing” each other onward, and this analysis seems to be based on information about single teeth
only.

Currently, we compute place vocabularies by a global analysis of the complete objects. This does
not correspond to the way people seem to analyze the problem. The theory could be improved to
compute the place vocabulary in parts based on localized information. Based on this, an interesting
question is whether we can find a sei of primitive interactions from which place vocabularies for com-
plex objects can be composed. This might also give us much more efficient algorithms for computing
place vocabularies.

Note that it will be difficult to preserve completeness in the composition process. For example, a
pendulum escapement (examples of which are found in the example chapter) fails when the distance
between the parts becomes too small. This failure is manifested in subsumptions between constraints
generated by interactions of either end of the pallet. In order to find these subsumptions, the composi-
tion would have to test for subsumptions between any of the places in the primitive elements. But this
amounts again to a global analysis! However, predicting such subsumptions seems to be a problem in
which people frequently fail, indicating that people probably solve this problem in a heuristic manner.

7.3.5 Leaving the mechanism domain

Kinematic interactions between physical objects are not restricted to mechanisms, but occur in many
other, less constrained settings. In the general case, objects have 6 degrees of freedom. The place
vocabulary theory as such covers this case as well, but the computation in 6-dimensional configuration
spaces is not tractable with current computer technology.

However, it might be possible to find approximations using the 2-dimensional place vocabulary
theory. In research on dot pattern perception (Jon Webb, personal communication), it has been
shown that the human visual system tends to assume that objects move in one degree of freedom
only. It is thus possible that people analyze kinematic problems under the same assumption. It
would be interesting to develop a theory that decomposes the general spatial reasoning problem into

subproblems with 2-dimensional configuration spaces to see if this hypothesis is indeed true.
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7.4 Towards a Theory of Mechanical Design

One of the motivations for Qualitative Kinematics is the development of a theory of mechanical design.
We have already indicated how the place vocabulary theory can be used for the solution of certain
design problems, and have given an example of the solution of a parameter design problem. For
general design problems, however, the current theory is still insufficient. In this section, we examine
some of the issues that further research in this area should address.

An interesting empirical question is what the number of landmark values in typical cases of mech-
anism design actually is. Before we can answer this question, the implementation must be improved
in various ways. As we have already indicated in the earlier discussion, a more elaborate algorithm
is needed to determine the actual values of the roots of the expressions defining the landmark values.
Besides this, we also need an efficient way to indicate the effect that the crossing of a landmark value
has on the place vocabulary.

Our current implemeﬁtzﬁ;ion allows us to generate landmark values for the arrangement of the
parts in the mechanism. Mechanical design does not concern only the relative arrangements of parts,
but also the design of the parts themselves. Landmark values for variations in the objects themselves
must also be analyzed.

In a design problem, there are usually many parameters that can be varied. Often, their variation
has opposite effects on the result, and thus it is important to consider them simultaneously. Multiple
open parameters in the place vocabulary computation mean that we have to deal with landmark
regions, not values. Finding these regions amounts to finding the regions formed by a set of complicated
curves in a high-dimensional space. Exact solutions to this problem can not be computed efficiently,
so that it becomes important to devise approximation algorithms for this tesselation.

Besides varying parameters, it is also possible to vary the structure of a mechanism itself. This
includes varying the number of teeth in a ratchet, varying the number of gears used in a transmission,
and so forth. While such reasoning stands at a higher level than the place vocabulary analysis, it is

grounded in the elementary analysis of mechanism behavior and this relation should be investigated.
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7.5 Towards a Theory of Human Competence

The development of the place vocabulary theory has been heavily influenced by the idea of psycholog-
ical plausibility. While we can not yet hope to give an accurate theory of human spatial reasoning, we
have taken great pains to ensure that the place vocabulary does not make assumptions that contradict
what is known about human cognition. In this section, we sketch what issues should be addressed to

develop the current theory into one of human understanding of mechanism kinematics.

7.5.1 The primal sketch as an object description

The work of David Marr ( [MARRS82]) has shown that the human visual apparatus computes a
symbolic representation of the image at a very low level. In particuiar, there exist arrangements of
cells in the retina itself that detect the presence of lines and line endings. We have seen that these
are just the elements that are required to predict the possible kinematic constraints in configuration
space. However, we are also interested in the qualitative relations between the object parameters.
This often requires subdivisions of the boundary segments. As the number of such subdivisions is not
known a priori, it is not reasonable to assume that they can be found from predicate evaluations in
the metric diagram. Their existence must be predicted in the primal sketch itself.

We have seen that the subdivisions require information about the possible motion of objects.
However, the primal sketch is a low-level representation. Information about possible motions can not
be assumed to be available in the low-level visual system. The visual system must thus make fixed
assumptions about how physical objects move. For example, a reasonable assumption is that physical
objects always rotate around the center of gravity in the image. ! It would be interesting to make
experiments that determine what assumptions are actually made.

Note that it is also possible that the visual system uses approximations of object boundaries,
which would make the number of possible subdivisions known a priori. In this case, their existence
could be determined by the metric diagram. The approximations, however, should result in other
imperfections in people’s predictions. Making experiments to find them will tell us more about how

the human visual system actually represents objects.

1 This requires the assumption that low-level vision can compute this point.
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7.5.2 Implementation of the metric diagram

We distinguish two types of implementation of the metric diagram: internal and ezternal. In an
internal implementation, the predicates are evaluated by operations on some mental representation
of the object or its image. In an external implementation, new measurements are taken on the actual
objects to evaluate the predicate.

As the power of mental imagery is very limited, not all of the metric diagram can be assumed to
be internally implemented. This is reflected in the fact that people often can not predict kinematic
relations simply from seeing the objects involved. People then often resort to experiments on the
actual objects themselves, and thus use an external implementation of the metric diagram.

As the internal implementation of the metric diagram is based on mental imagery alone, the
question of which predicates it can and can not evaluate sheds light on the power of the mental
imagery apparatus. Together with S. Ullman’s theory of visual routines ( [ULLMANB84]), qualitative

kinematics can serve as a basis for devising very precise experiments that test this function.

7.5.3 The role of learning

The place vocabulary theory is a theory of first principles. Because it often requires additional
measurements in the world, it is too slow and cumbersome to serve as a plausible model of people’s
everyday performance. A more realistic model would be one of learned analyses and recognition
procedures that index them. For example, in the analysis of a mechanism with many gearwheels, each
kinematic pair of gearwheels can be recognized and its function predicted from previously analyzed
cases of gearwheels. If introspection is to be trusted, this seems to be the way that people analyze
common mechanisms.

As it is unreasonable to assume that people are born with knowledge of gearwheels and ratchets,
their function must be learned. But in order to learn about the functioning of a pair of gearwheels
or a ratchet, we must analyze its function based on first principles. This is precisely where the place
vocabulary theory is important: it defines a way how this first principles analysis could be computed
for any arbitrary mechanism. Place vocabularies can provide the elementary vocabulary from which

learning about mechanical phenomena can start.
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7.6 Final Remarks

We have seen that the place vocabulary theory provides a useful qualitative representation of mecha-
nism kinematics. The restriction to the mechanism domain has allowed us to formulate a very concrete
theory. Contrary to many previous theories of qualitative kinematics, the power and limitations of
the place vocabulary theory are well-understood. The current theory is only a first step, showing
that a precise and generative theory of qualitative kinematics is indeed possible. We hope that the
place vocabulary can serve as a basis for further research into understanding kinematics and spatial
reasoning in general.

We have also seen that the solutions to spatial reasoning problems are not easy to achieve. Research
in this area is very tedious, and even the simple implementation described in this thesis took well
over 1 year of programming effort. However, we hope the reader will agree that it has led to progress

towards solving the mysteries of spatial reasoning.
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