
Abstract
Many problems having enormous search spaces can
nevertheless be solved because only a very small frac-
tion of that space need be traversed to find the needed
solation(s) . The ability of assumption-based truth
maintenance systems to rapidly switch and compare
contexts is an advantage for such problems, but ex-
isting ATMS techniques generally perform badly on
them . This paper describes a new strategy, the
implied-by strategy, for using the ATMS that effi-
ciently supports problem solving in domains which
are infinite and where the inference engine must re-
tain tight control in the course of problem -solving .
We describe the three mechanisms required to im-
plement this strategy : focus environments, implied-by
consumers, and contradiction consumers . We compare
the implied-by strategy to previous ATMS strate-
gies, and demonstrate its effectiveness by perfor-
mance comparisons in two simple domains. Finally,
we discuss the implications for parallel processing and
future ATMS design .

1 Introduction
For many problems, the search space is vastly larger than
the subset which needs to be explored to find an accept-
able solution . Such problems include the design of en-
gineered systems, interpreting data from multiple sources,
solving textbook physics problems, and scientific discovery.
Problem solvers for such domains must carefully shepherd
their resources, narrowly focusing attention on only a small
number of alternatives, while keeping track of the possibil-
ity that their current focus could be wrong .
Assumption-based truth maintenance provides signifi-

cant advantages for such problems, due to compact repre-
sentation of contexts which allows rapid context-switching
and comparison between alternatives . However, current
ATMSiinference-engine interfaces are oriented towards
finding all (or many) solutions, making them unsuitable for
such problems . Two central issues in such interfaces are
l1) where control resides and (2) how rules are scheduled
for execution . The simplest ATMS-based search technique
fI)r generating global solutions is interpretation construc-
'con, a form of backtrack search . It assumes that (a) all
=ets of alternatives are known in advance, and (b) no new
information is added during the course of problem solving .
These assumptions are false for the kinds of domains de-
_cribed above. The sets of choices that are relevant in a
'lesign, for instance, depend in part on earlier choices in
the design, and the set of potential choices is far too large
to elaborate explicitly before beginning a search . The ex-
isting consumer architecture i31 schedules a rule for exe-
cution whenever all its antecedents simultaneously hold in
some consistent context. For the domains of interest here,

Focusing the ATMS
Kenneth D . Forbus

Qualitative Reasoning Group, University of Illinois
1304 W. Springfield Avenue, Urbana, Illinois, 61801

Johan de Kleer
Xerox Palo Alto Research Center

3333 Coyote Hill Road, Palo Alto CA 94304

this strategy leads to much wasted effort . Consider an in-
telligent design aid for VLSI. If the initial design called
for CMOS, the program might begin elaborating and ex-
ploring the various alternatives under this assumption . If
external factors force the design to use gallium arsenide in-
stead, it should stop working on the CMOS version of the
design . The CMOS design has not become inconsistent, it
has simply become irrelevant (at least for the time being) .
Yet a program based on the simple consumer architecture
will continue to pursue both .
The idea of assumption-based dependency-directed back-

tracking (ADDB) outlined in (4) provides some help, but
not enough . Representing alternatives via explicit, con-
ditional control disjunctions allows new alternatives to
be added during a search, unlike interpretation construc-
tion . But control still resides in the ATMS, with no pro-
vision for exploiting domain-specific information availible
to the inference engine . Control disjunctions allow rules
to be scheduled more efficiently, since only rules whose an-
tecedents are consistent with the currently believed set of
control assumptions are executed . However, this strategy
can still lead to inefficiencies, since rules which are irrele-
vant but consistent can still be executed . While these re-
strictions are tolerable for many problems, the techniques
we describe here transcend them . We provide a more flex-
ible and general ATMS/inference-engine interface which
minimizes total problem-solving work in cases where only
a single (or small number) of solutions are sought .

In this paper we describe a strategy, called the implied-by
strategy, for building ATMS-based problem solvers which
can efficiently explore large search spaces . Three mecha-
nisms are needed to support this strategy . Focus environ-
ments provide the interface between the inference engine's
center of attention and the ATMS . Implied-by consumers
provide an antecedent rule mechanism that respects the
inference engine's focus. Contradiction consumers provide
a signaling mechanism for the ATMS to inform the in-
ference engine about inconsistencies. Each mechanism is
a straightforward extension of existing ATMS technology,
but together they combine to provide the power we seek .

2

	

ATMS Background
We assume that the problem solver consists of the .ATMS
and an inference engine, whose job is to control the
problem-solving process, in part by deciding what assump-
tions and justifications are to be fed to the ATMS . We
also assume that much of problem solver's knowledge is
encoded in the form of rules. The triggering of rules on
data is handled in the inference engine . When rules are
triggered, consumers are created and passed to the AT%lS

Forbus and de Kleer

	

193



to allow it to execute the rules under appropriate circum-
stances. Such rules might implement modus ponens, or
,apply an axiom-schema to assert the consequences of a
definition.

Briefly, the basic ATMS is characterized as follows. Ev-
ery datum the problem solver reasons about is assigned an
ATMS node . The problem solver designates a subset of
the nodes to be assumptions - nodes which are presumed
to be true unless there is evidence to the contrary . Ev-
ery important derivation made by the inference engine is
recorded as a justification:

ri, za, . . . => n.
Here zi , z:, . . . are the antecedent nodes and n is the con-
sequent node. An ATMS environment is a set of assump-
tions. A node n is said to hold in environment E if n can
be propositionally derived from the union of E with the
current set of justifications (viewed as propositional Horn
clauses) . An environment is inconsistent (called nogood) if
the distinguished node 1 (i .e., false) holds in it .
The ATMS is incremental, receiving a constant stream of

additional nodes, additional assumptions, additional justi-
fications and various queries concerning the environments
in which nodes hold . To facilitate answering these queries
the ATMS maintains with each node n a set of environ-
ments {EL , E,2, . . .) called its label. Each node's label has
four properties :

1 . n holds in each E, .
2. E, is not aogood .
3. Every environment E in which n holds is a superset

of some E, .
4. No E, is a proper subset of any other.

Given the label data structure the ATMS can efficiently
answer the query whether n holds in environment E by
checking whether E is a superset of some E, .

Several ways have been developed to organize problem-
solvers around an ATMS . These techniques differ primar-
ily in where control resides and what discipline is used to
control rule executions . The simplest strategy is the IN-
TERN strategy, where a rule is executed as soon as its
antecedents are bound, whether or not they can be consis-
tently believed together at that time . This strategy makes
sense when rules are cheap, much of the search space is go-
ing to be explored, and all consistent solutions are sought .
In carefully crafted programs, this strategy can be very ef-
ficient 17 ; 81 . However, it is unthinkable for infinite search
spaces, and for general problem solving is extremely inef-
ficient .
The next strategy is the IN strategy, where execution of

a rule is postponed until the union of its antecedents can be
consistently believed . This is the strategy of the consumer
architecture described in i31 . While more controlled than
the INTERN strategy, it can still be arbitrarily inefficient
when only a handful of solutions is sought in a space which
is largely consistent .
An important variation of the IN strategy is to use

dependency-directed backtracking (the ADDB strategy,
mentioned above) . The inference engine informs the
ATMS of its interests by asserting explicit control disjunc-
tions. The ATMS maintains a focus environment consist-
ing of one assumption from each control disjunction . Rules

194

	

Automated Reasoning

are executed only when the union of their antecedents is
consistent with this focus. Should the focus become con-
tradictory, the ATMS does not inform the inference en-
gine but performs dependency-directed backtracking until
a consistent new focus is found. Although effective for
some tasks, this mechanism has two limitations . First, it
can be "distracted" by extraneous information, and thus
is ill-suited for infinite domains (See Section 4.2) . Second,
it is too inflexible for general problem solving. The ATMS
is a domain-independent module, hence it cannot have as
much information about the particular task demands as
the inference engine does . The choice of focus, what to do
when it becomes inconsistent, and what to try next, are
more properly the concerns of the inference engine than an
automatic backtracking scheme .

3

	

The Implied-by Strategy
We assume the inference engine has some notion of task to
organize its activities . This can be a node in an AND/'OR
tree, agenda item, etc. For simplicity, this discussion as-
sumes that the inference engine works on only one task at
a time (we mention more general strategies in Section .i) .
Our strategy associates with each task a focus environ-

ment, the set of assumptions underlying it . These assump-
tions include both data of the problem and control assump-
tions which indicate why the task is reasonable . In a natu-
ral deduction system, for instance, the focus environment
can include statements about what is being sought, propo-
sitions assumed by the user, and propositions assumed in
the course of a proof.
When the problem solver begins to work on a task, it

signals the ATMS that the environment associated with
that task is now the focus. We define a new class of con-
sumers, implied-by consumers, which are to be executed
only when the union of their antecedents is implied by the
current focus. By creating implied-by consumers, the in-
ference engine constrains the ATMS to respect its choice
of focus. All new information generated by the rules is a
consequence of the focus, and hence likely to be relevant .
Running the rules may provide the problem solver all or
some of the information it needs to carry out that task .
Every time the problem solver switches to a new task, the
focus environment is changed accordingly.

Notice that including data assumptions in the focus is
essential for the implied-by strategy to work . This is differ-
ent from ADDB, which only has elements from control dis-
junctions in its focus. By only executing consumers which
are implied by the focus, rather than consistent with it, our
strategy provides finer control over problem-solving. Fur-
thermore, ADDB requires that all assumptions appearing
in a control disjunction must be defined before that dis-
junction is asserted . in a particular control disjunction
have to be defined when the control disjunction is asserted .
In the implied-by strategy, assumptions are only created
when needed, thereby creating fewer assumptions and thus
fewer chances for distraction .

Sometimes, rules are used to check consistency of a pro-
posed solution or set of data. A design system, for instance,
must ascertain whether a proposed device will satisfy its
cost/performance constraints . Such rules may install jus-
tifications that result in the focus environment becoming



inconsistent . What happens at this point must depend on
the task . In some cases, the inconsistency could indicate
that user-supplied data is faulty ("the patient's tempera-
ture is 986 degrees F") . In other cases, the inference engine
could be deliberately attempting to generate a contradic-
tion as part of an indirect proof. The inference engine
indicates what should be done by installing contradiction
consumers on focus environments . A contradiction con-
sumer is associated with a particular environment. If an
environment becomes contradictory, all contradiction con-
sumers associated with it are executed .

Contradiction consumers extend the problem-solver's
power by providing an "interrupt" mechanism, the logi-
cal equivalent of a divide-by-zero interrupt in a numerical
program. If the purpose of the task was to find a contradic-
tion, that contradiction can then be analyzed and appro-
priate steps taken (such as installing a justification with
the conflicting assumption discharged) . If a contradiction
was unexpected, then that task might be deactivated, and
another task selected .

Contradiction consumers are executed whenever a focus
environment becomes contradictory, whether or not it is
the problem solver's current focus. This provides the in-
ference engine with maximum information as quickly as
possible . Consequently, these consumers should only per-
form changes on the inference engine's internal represen-
tation of the particular task which installed them . For
instance, if a contradiction is unexpected a useful default
action is to mark the task as unachievable . Other mecha-
nisms in the problem solver must decide what other effects
this change in status should have . The reason is that fo-
cus environments for different tasks often overlap - if task
T~ is spawned by task TI , for instance, it typically is the
case that focus(TI ) = focus(TZ). Thus the control com-
ponent of the inference engine must be able to refocus on
a new task when a number of existing tasks become incon-
sistent simultaneously. Some control mechanisms provide
this ability more easily than others - it is easy using pri-
ority queues or agendas, somewhat harder using a stack-
model, and can be very complicated with arbitrary lisp
code .
A focus environment might be discovered to be incon-

sistent at any time. We suspend execution of implied-by
consumers when the focus is contradictory, deferring fur-
ther action until the inference engine makes a wiser choice
of focus.
These mechanisms are implemented in a problem-

solving language we have developed called ATMoSphere .
AT'.doSphere is a descendent of DEBACLE (61, which is a
descendent of RUP ;101, which is a descendent of AMORD

1' . ATMoSphere contains pattern-directed rules which
are matched antecedently. Three conditions for rule ex-
~cution are provided, corresponding to the three strate-
gies described above: : intern, where rules are executed
on matching; : in, where rules are executed when their
antecedents can be believed together consistently, and
implied-by rules .

4 Examples
We illustrate the implied-by strategy by outlining how to
nse it to build problem solvers for two kinds of prob-

lems . The fint, natural deduction, shows that by using
the implied-by strategy ATMS-based problem solvers can
indeed work efficiently in infinite domains. The second,
cryptarithmetic, shows that the implied-by strategy can
be more efficient even in domains where the other ATMS
strategies are applicable . These systems have been fully
implemented, and statistics from our experiments with
them are presented. Both problem solvers are implemented
on top of a common control component, which we describe
first .

4.1 A Control Component
AND/OR trees are a classical way to organize problem-
solving activity . We built a simple inference engine using
AND/OR trees which interacts with an ATMS using the
implied-by strategy . A problem is specified by a collec-
tion of initial assumptions and a goal . which forms the
root of the AND/OR tree . We refer to elements of these
trees as ao-nodes . Each ao-node represents an inference
engine task . A problem is solved by expanding from the
root ao-node until either (1) resource bounds are exceeded,
(2) no further expansion is possible, or (3) the root goal is
satisfied. The expansion is carried out by a monitor pro-
gram, which uses a scoring mechanism (programmable) to
determine which ao-node to attempt expanding next .

So far, we have described a traditional AND/OR
scheme . This scheme is integrated with the ATMS as fol-
lows . Each ao-node is created with a focus environment .
Its focus is that of its parent, typically extended by an
additional assumption . A contradiction consumer is cre-
ated for the ao-aode's focus whose default behavior is to
deactivate the task associated with that ao-node.
When an ao-node is expanded, all implied-by consumers

relevant to its focus are executed . These consumers have
three functions . First, they detect inconsistencies, and
thus may rule out the current focus. Second, they make
"obvious" inferences (e .g ., modus ponens), which produce
the desired answer. Third, the rules can make sugges-
tions about what to try in order to achieve the current
ao-node's goal, if necessary. Thus, like the other ATMS-
based problem-solvers, much of the knowledge is encoded
in terms of pattern-directed rules . Like other strategies,
we assume that executing individual rules takes finite time,
and that executing combinations of rules will always take
finite time . Each activity suggested by a rule must by itself
take finite effort . The difference is that we allow for the
possibility that following up on all suggestions made by
the rules could require infinite effort . Any activity which
could lead to infinite behavior (such as suggesting that,
given an integer, we consider its successor since it, too, is
an integer) must be proposed as a suggestion . The ao-node
being expanded then becomes an OR ao-node, with each
suggestion comprising a subgoal. Thus the choice of what
to do next (and any responsibility for infinite loops) resides
in the inference engine, not the ATMS .
What happens when an ao-node is expanded depends on

the type of goal . The goal type SHOd-ANY causes the ao-
node to be marked as an OR node, and creates ao-nodes for
each of the arguments . SHO'd-ALL works similarly, except
the expanded node is marked as an AND node . Expanding
SHOW-ANY and SHO'V-ALL ao-nodes does not execute rules, it
just makes explicit the logic which the monitor must follow .

Forbus and de Kleer

	

195



Figure 1: Rules for introducing and eliminating implica-
tioas
The syntax of ADB rules is similar to that of Ill : (rule
condition triggers . body ) . A trigger is either an expres-
sion or expression :var variable where variable is bound
to the the entire expression . These rules implement condi-
tional elimination (modus ponens) and introduction. The
first rule simply carries out modus ponens . The second
rule suggests that showing ?p is a useful thing to do if
?q is sought and you know (implies ?p ?q) . The third
rule provides a way of introducing conditionals ; it suggests
that a new context be sprouted (try-box), in which ?p is
assumed, ?q (or a contradiction) is sought, and if found,
then (implies ?p ?q) is justified.
(rule :implied-by ((implies ,p ?q) :var ?fl

?p)
(rjustify ?q (?fl ?p) :Modus-Ponans))

(rule :implied-by ((show ?q) :var ?fl
(implies ?p ?q) :var ?f2)

(rjustify (suggest-for ?q (show ?p))
(?fl ?f2) :BC-Modus-Ponens))

(rule :implied-by ((show (implies ?p ?q)) :var ?fl)
(rjustify (suggest-for (implies ?p ?q)
(try-box ?p ?q (implies ?p ?q) CI))

(?fl) :BC-CS)))

The real work is done by the goal type SHOW, which asks if
a fact holds. The monitor expands an ao-node whose goal
type is SHOP with the following procedure:

1. Check if the goal is already true. If so, mark ao-node
as succeeding and close it .

2. Execute rules implied by the ao-node's focus.

3. Check if goal is now true . If so, mark ao-node as
succeeding and close it .

4. Fetch suggestions for ao-node's goal .

(a) If none, mark ao-node as failing and close it .
(b) Spawn a child ao-node for each suggestion, mark-

ing the current ao-node as an OR node .

Application programs can add goal types by providing
functions to carry out the expansion.

4.2

	

Natural Deduction
The rules for natural deduction, even for propositional
problems, permit both the number and size of formulas
to grow without bound. In this section, we show how the
implied-by strategy is used to control the potentially infi-
nite search for a proof. The system we describe here has
been verified with numerous examples from introductory
logic textbooks.
The particular natural deduction system we implement

is based on !91 . The metalinguistic predicate show indi-
cates interest in the proposition which is its argument . The
rules are organized around the introduction and elimina-
tion of each kind of connective . The rules for implication
are shown in Figure 1 as an illustration .

196

	

Automated Reasoning

Table 1: Performance versus scheduling technique
This table shows, for a sample of six natural deduction
problems, the number of rules executed under different
scheduling techniques. The small differences indicate that
for this class of problem, focus environments and contra.
diction consumers are the principal source of constraint in
the implied-by strategy .

Implied-By f'

	

o4T'1Z7

	

47-;

	

,30-In

	

,

	

o

	

o
Intern

	

i

	

11

	

o

	

i

	

~

	

Id

	

41

	

, 6

When expanding an ao-node, the AND/OR monitor
fetches all suggest-for assertions which match the cur-
rent goal and are implied by the current focus. The focus
for each new ao-node includes the assumptions of the focus
of its parent, plus the control assumption corresponding to
its goal . New data assumptions are introduced by the spe-
cial goal type try-box. In the Kalish & Montague natural
deduction system, a graphical notation involving boxes is
used to depict a tree of assumptions on paper. Boxes can
only be introduced by particular rules, and upon being
completed, conclusions resting on that assumption cannot
be accessed . -We obtain the same effect by producing a
daughter ao-node whose focus includes the data assump-
tion in question, and installing two procedural hooks. The
first is a procedure which is run whenever the ao-node is
closed successfully, and installs the discharged justification.
The second is a contradiction consumer which installs the
appropriate discharged justification if the focus becomes
contradictory. This consumer implements the notion that
anything follows from a contradiction - one could always
get the desired conclusion in one step by using an indirect
proof. (Indirect proof is also implemented as an explicit
proof rule, using this same contradiction consumer .)'
We used this system to address the following question :

Which of the three mechanisms (contradiction consumers,
implied-by rules, or focus environments) used to imple-
ment the implied-by strategy, provides the most leverage?
It is easy to change all the rules to use either the IN or
INTERN conditions, and the results of doing so are sum-
marized in Table 1. In this class of problem, the IN and
implied-by conditions are more or less equivalent, and both
are better than INTERN (as would be expected) . Two
questions arise: (1) Why does the IN condition perform
slightly better in one case? and (2) Why does the choice
of rule condition make so little difference here?
The answer to the first question relies on a feature our

problem solver shares with most simple systems - rules
are executed until the queue is exhausted. Since simpler

`The search strategy followed by the inference engine is de-
termined by the ao-node scoring function . Here . we use a sim-
ple measure which multiplies the depth of the ao-node times
the depth of the expression, times a factor indicating relative
difficulty of the type of goal . The first term biases the search
toward shorter proofs, the second biases it towards simpler sub-
goals, and the third biases it against introducing assumptions .
Two resource limitations were imposed, a bound on total num-
ber of ao-nodes and a bound on the maximum size of focus
environments . The former prevents infinite searches, the latter
restricts the size and complexity 3f proofs which are acceptable.



Table 2: Immunity to extraneous data
This table shows the number of rules executed as a func-
tion of triggering condition, like before, but with irrelevant
assumptions added to each problem. The IN and INTERN
conditions are sensitive to extra data, whereas the number
of rules executed for the implied-by condition is the same .
This illustrates that the implied-by strategy is relatively
immune to distraction from extraneous information .

DC-3
-
~X 6i

Implied-By

	

i

	

04

	

Z'4-"IT-'4'f-'M
In

	

27 71 ~3 34 06 78
Intern 27 al 33 34 o 9

foci are examined before more complicated ones (the focus
of a child ao-node is always larger than the parent), this
means contradictions will be discovered as early as possible
- in some cases earlier than they would in the implied-by
condition. For more realistic problems this is clearly not
a reasonable technique [51. If there are resource bounds
within the execution of a task (as opposed to just bounds
on the number or size of tasks), the IN condition simply
does not provide enough fine-grained control. The ability
of the implied-by strategy to guareatee that every rule ex-
ecution is relevant to the chosen task would be essential in
such cases.
The answer to the second question is slightly more sub-

tle . The first reason is that, in all three cases, the in-
troduction of new assumptions remains tightly controlled .
Without contradiction consumers to close off lines of at-
tack, and focus environments to tell the inference engine
what is still feasible, arbitrary amounts of work could be
wasted. Suppose, for instance, that two implications were
being sought in order to use disjunction elimination2 . If
the search for one implication fails, the search for the other
is fruitless. But a purely ATMS-based mechanism would
probably continue to attempt proving it, since it would be
consistent to do so .
The second reason is that these textbook problems are

very simple - exactly the right amount of data required
to solve the problem is provided, and no more . To show
that this is the case, we added extraneous information, in
the form of extra assumed propositions' . As can be seen
in Table 2, the number of rules executed in the implied-by
condition remain unchanged, while both IN and INTERN
conditions waste effort on executing irrelevant rules . As
the amount of irrelevant- material grows larger, so does the
degree of constraint contributed by the implied-by rules.

'The proof rule of disjunction elmiaation is

p v q, p :=> r, q =:> r - r

The associated suggestion rule says that if we wanted r and had
pvq, we should look for p =::,. r and q => r .

"We took the union of the premises of the original six ex-
amples, re-named the ground terms so as not to bias the so-
lution, and assumed them before starting each problem in all
conditions .

Table 3 : Relative performance: Crypt arithmetic
This table shows the ATMS statistics for three simple
problem solvers, one using the standard consumer archi
cecture, one using ADDB, and one using the implied-by
strategy, in solving the cryptarithmetic puzzle SEND -
MORE = MONEY.

Standard

	

j.

	

mpuea-oy
Consumers Strategy Strategy

Assumptions r-nT--'-u7

	

dam"
Rules 4163 1923 1454

4.3 Cryptarithmetic
The natural deduction system illustrates that the implied-
by strategy allows us to use the ATMS effectively in infi-
nite domains, something which no other strategy allows .
Here, we show chat even for finite domains, the implied-by
strategy can be more efficient.

Cryptarithmetic is a standard example of a combinato-
rial problem [111 . An encoded arithmetic problem, such
as

SEND - MORE = MONEY
is provided, and the problem is to find an assignment
of digits to letters so that the sum comes out correctly.
We implemented three problem solvers for these puzzles.
The first uses standard ATMS technology, i.e ., IN rules
to install constraints between assumed letter/digit pair-
ings, and interpretation construction to find all consistent
combinations of pairings . The second uses ADDB . The
third uses the implied-by strategy with the AND/OR tree
monitor described earlier . In particular, the goal of each
ao-node is to assign a digit to each of a list of letters. The
constraints imposed by the column of the sum are enforced
by implied-by rules . The focus environments consist of as-
sumed letter/digit bindings, and contradiction consumers
are installed to close the ao-node if the bindings are in-
consistent . If an ao-node is not inconsistent, then it is
expanded by suggesting possible bindings for the next let-
ter in the list with all digits remaining. These suggestions
respect the implications of the choices made so far, in that
if the constraints imply a unique binding for a letter, that
digit will be the only suggestion .
To provide a fair test we attempted to make these pro-

grams as alike as possible, given the radical differences in
strategy . The relative performance of these two systems
is shown in Table 3. Clearly, the ADDB and implied-by
strategies are preferable, even though this kind of problem
is just what the standard consumer architecture was de-
signed for . The implied-by strategy comes out ahead of the
ADDB strategy in total number of assumptions because it
creates them only when needed, instead of building all of
them in advance. Fewer assumptions means fewer consis-
tent environments to trigger consumers, and hence fewer
rules are executed under the implied-by strategy .

Forbus and de Kleer

	

197



5 Discussion

This paper described the implied-by strategy, a new way
to organise ATMS-based problem solvers. This strategy
provides a way to exploit the advantages of an ATMS
in infinite search spaces with extraneous data, a class of
problem-solving situations which previously was viewed as
unsuitable for ATMS usage. By providing implied-by rules,
we allow much of the problem-solver's knowledge to be
encoded in rules which will only be executed when rele-
vant . By allowing the inference engine to select the focus
of attention, we prevent the overall problem-solver from
wandering aimlessly, executing rules which are consistent
but not interesting . By providing contradiction consumers,
we endow the inference engine with the ability to han-
dle inconsistencies gracefully. Carried out correctly, this
strategy prevents combinatorial explosions in the ATMS,
putting responsibility back in the inference engine where
it belongs.
There are several potentially useful extensions to this

work . Although we have assumed only a single focus here,
there is no difficulty in allowing multiple foci to facilitate
parallelism . (Such an implementation might be an excel-
lent candidate for coarse-grained parallel architectures.)
Including intra-task resource bounds is slightly more diffi-
cult, since it requires tighter coupling between the ATMS
consumer scheduler and the inference engine . However,
this is clearly an important avenue to explore in scaling up
the technology.

Originally, the ATMS was viewed as suitable mainly for
finding all possible solutions . By introducing simple back-
tracking, some control over reasoning could be introduced,
but the interface between ATMS and inference engine was
restrictive and inflexible . In both cases, the overhead for
many problems was still high compared to other TMS' .
With the implied-by strategy, we have eliminated every
extra overhead of the ATMS relative to other TMS' save
one: Label updating . Relevant or not, label updating still
occurs globally throughout the ATMS database . It is pos-
sible that this overhead, too, could be removed. Typically,
any label whose environments contain no assumptions in
common with the current focus is irrelevant to the current
problem-solving activity. Adding such a test, and defer-
ing those updates until some overlap is discovered, might
remove the last efficiency disadvantage of the ATMS in
infinite domains. However, the bookkeeping required to
avoid the label updates may outweigh the advantage of
avoiding the updates.

6 Acknowledgments

Marianne Winslett provided useful comments . Pat Hayes
suggested the name AT4oSphere . This research was sup-
ported in part by the Office of Naval Research, Con-
tract No . ^100014-85-K-0225, and by an NSF Presidential
Young Investigator Award .

References

(11 de Kleer, J., Doyle, J ., Steele, G .L . and Sussman, G.J .,
Explicit control of reasoning, in Artificial Intelligence :
An MIT Perspective, edited by P.H . Winston and RH.
Brown, 93-118, (NUT Press, 1979) . Also in : Proceedings of
the Symposium on Artificial Intelligence and Programming

198

	

Automated Reasoning

121

131

141

151

161

171

181

191

1101

Languages, 1977, Also in: Readings in Knowledge Repre-
sentation, edited by R.J . Brachman and H.J . Levesque,
345-3SS (Morgan Kaufman, 1985).
de Kleer, J. 'An assumption-based truth maintenance sys-
tem', Artificial Intelligence, 28, 1986 .
de Kleer, J., Problem solving with the ATMS, Artificial
Intelligence 28 (1986), 197-224.
de Kleer, J. and William, B.C ., Back to backtracking :
Controlling the ATMS, Proceedings of the National Con=
ference on Artificial Intelligence, Philadelpha, PA (August
1986), 910-917
Erman, L.D ., Hayes-Ruth, F., Lesser, V. R, and Reddy,
D.R. 'The Hearsay-II speech-understanding system : In-
tegrating knowledge to resolve uncertainty', Computing
Surveys 12, 213-253, 1980 .
Forbus, K "Qualitative Process theory', MIT AI Lab
Technical report No . 789, July, 1984 .
Forbus, K "The Qualitative Process Engine' Technical
Report No . UIUCDCS-R-86-1288, December, 1986 .
Forbus, K "QPE : A study in assumption-based truth
maintenance' to appear, International Journal of A1 in
Engineering, 1988.
Kalish, A., and Montague, R Logic: Techniques of formal
reasoning 2nd Edition. Harcourt Brace. 1980 .
McAllester, D. `Reasoning Utilities Package, Version
One', MIT AI Laboratory Memo No. 667, April, 1982 .

1111 Newell, A. and Simon, H. A. Human problem solving . En-
glewood Cliffs, N.J .: Prentice-Hall. 1972


