DEPARTANENT OF CO.\IDWTER SCI]: \JCE

UNIVERS!ITY OF ILLI \Oi AT UR3B ‘-._\'A-(“H-\\ID GN

REPORT NO. UTUCDCS-R-91-1699 UILU-ENG-91-1745

DIAGNOSIS AS FAILURE UNDERSTANDING
by

John W. Collins

May 1991

Diagnosis as Failure Understanding
(preliminary report)

John W. Collins

Qualitative Reasoning Group
Beckman Institute
“ University of Illincis at Urbana-Champaign

April 11, 1991

Abstract

This paper reports on research in progress, investigating the use of process-centered quali-
tative models in the diagnosis of continuous variable systems. I view diagnosis as a problem of
minimally perturbing a faulty model of a system until it matches observed behavior. [claim
that qualitative models can account for observed symptoms without relying on explicit fault
models, thereby increasing robustness for novel faults. Both the mechanism of failure and the
resulting state of the failed system can be modeled in terms of their underlying active processes.
By focusing on the process structure rather than the physical structure, the search space is
both smaller and more focused, since only those processes which could influence the system in
the observed directions need to be considered. Several diagnostic strategies are being explored
within this framework. An implementation is in progress, building on a modified ATMS and
an incremental qualitative envisioner. The kinds of systems | am examining are taken from the
domain of thermodynamics, and include piston and gas-turbine engines, a steam boiler and a
thermal control system.

1 Introduction
“Diagnosis begins with a failure to understand.”

We live in a manufactured world. Every day of our lives, we are surrounded by machines
intended to increase our productivity, our mobility, and the quality of our lives. In addition to
death and taxes, there is one undeniable truth in this synthetic world: machines break down.
Whether it is due to planned obsolescence, misuse, poor design or unavoidable wear or fatigue,
machines require almost continual repair and maintenance.

The obvious first step in repairing a broken device is to understand what is wrong with it.
Unfortunately, as machines become more complex, there are more ways for them to fail, and the
failures become more difficult to understand. The general act of understanding the nature, location
and extent of failure in a misbehaving machine is called diagnosis.

This research investigates the application of process-centered qualitative models to understand-
ing novel failure modes—both in terms of the mechanism of failure and the resulting state of the
failed system. By viewing the problem as residing in the model of the system rather than the
system itself, and recognizing that the system continues to obey the laws of nature, it is possible
to apply the same knowledge to derive expectations and to determine why they fail to be met.

1.1 An Example

Consider the following scenario. You are driving your car down [-37, when suddenly your engine
sputters and dies. You pull over and coast to a stop, thinking the worst. Almost instinctively, you
look at your fuel gauge and see that it shows half a tank. As you collect your wits, you begin to
consider your next move.

Without knowing what you’re looking for, you get out of your car and open the hood; nothing
stands out as obviously wrong. You ask yourself what an engine needs to run: “spark, fuel,
timing,...” You decide to pull a spark plug wire to check for a spark while your spouse turns the
key—the shock you receive convinces you that the problem is elsewhere. You remove the air filter
to examine the carburetor; you pump the throttle and watch for gasoline from the accelerator jets:
you see no gas.

A lack of fuel at the carburetor would certainly explain why your engine died. But how can
that be? Maybe you really are out of gas; the gauge might be stuck. You turn on the key and
watch the gauge slowly rise to 1/2. The float in the tank could be stuck; you can’t think of an easy
way to test that. But you know your car’s gas mileage, and there should be a half tank left—unless
there’s a fuel leak, or your fuel economy has decreased significantly. A fuel leak and a stuck float is
one possible explanation, though not a very likely one. Another possibility is that there is fuel at

the carburetor, and the accelerator pump has failed; but that alone would not cause the engine to

stall. You dismiss these possibilities, because they involve too many coincidences. What else could
it be?

You decide to explore the fuel system in more detail. You remove the fuel line from the inlet of
the fuel pump and observe gasoline pouring out. Now you know there’s fuel in the tank but none
at the carburetor. After replacing the inlet line you remove the outlet line from the fuel pump and
crank the engine: no gasoline is seen. The fuel pump must be the culprit! After a few hours and a
new fuel pump, you’re on your way.

This example was drawn from a personal experience; I still remember the thought processes
and actions which eventually led to the correct diagnosis. I include it here because it illustrates
several important aspects of the diagnostic task.

Diagnosis involves search. Troubleshooting a misbehaving machine requires exploring a vast
space of possibilities, looking for possible explanations for the unexpected behavior. Knowledge
about the system and the domain help guide this search down promising paths. This may be very
specific, shallow knowledge such as a memory of a similar problem with this particular artifact;
or it may be very general, deep knowledge of the domain, such as'the concepts of conservation of
matter and energy.

Some faults are more likely than others. There may be multiple diagnoses which are consistent
with what is known about the failed artifact. Choosing one path among many must be based on
estimates of relative likelihood. A search path may be abandoned temporarily, even though it is
still viable, to lock for a more reasonable explanation. A candidate diagnosis inveolving coincidental
multiple faults will generally not be considered until simpler explanations have been ruled out.

Diagnosts involves multiple levels of reasoning. Efficient diagnosis requires reasoning about
the failed system on multiple levels of detail. In the example above, the fuel system was initially
treated as a black box, whose internals were irrelevant to the initial reasoning steps. Later, when
conflicting observations arose concerning the fuel system, it was examined in greater detail as a
series of individual components. Knowing how to represent a system at multiple levels of abstraction
and when to explore a subsystem in greater detail are central issues in diagnostic research.

Diagnosts involves action as well as inference. Diagnosis is not done from an armchair; it
requires interacting with the failed system—observing, probing, even modifying it in order to
understand its condition. Performing measurements is only one of many ways to obtain information
about a failure. Of all the actions in the example above, checking the fuel guage was the only action
resembling a measurement. Deciding what to lock for and what to modify are two important aspects
of this research.

1.2 Background

Diagnosis is a knowledge-intensive cognitive task, and has been an area of active research in Al for

the past two decades. Early attempts at automating diagnosis were based on shallow knowledge,

(3]

such as associations between symptoms and failure modes. Expert systems such as MYCIN [23]
showed impressive diagnostic abilities within their intended domain, but were quite brittle when
applied to novel systems or modes of failure.

Recognizing these limitations, some researchers [4,14] began to investigate the use of deep
knowledge in diagnosis. In certain well-understood domains such as electronics, models of individual
components and their failure modes were developed and used to automatically compose system-level
models from schematic-level descriptions. Qualitative models were shown to be sufficiently rich for
much of this style of reasoning. Model-based diagnostic systems were able to reason effectively with
novel systems constructed from the knocwn component types. However, they still suffered from the
need for explicit fault models. That is, they were brittle when it came to novel failure modes.

A technique called constraint suspension [5| was introduced to overcome the dependency on
explicit fault models, while still identifying components which might be misbehaving. If suspending
the constraints associated with a suspected component eliminates the conflict between observations
and expectations, then that component may be responsible for the observed symptoms. This
approach extends to novel modes of failure which were not anticipated by the model builder. GDE [7]
reimpliments constraint suspension using an assumption-based truth maintenance system (ATMS),
and can handle multiple faults efficiently. Constraint suspension works well in domains such as
digital electronics, where signals propagate only in one direction and interactions are minimal. It
is of little help in systems involving feedback, for example, since the failure of any one component
could potentially account for any anomalous behavior. Another limitation is that symptoms are not
actually ezplained. Without explicit fault models, there is no way to verify that some physically-
realizable mode of failure in the suspected components could actually account for the observed
behavior.

1.2 Overview

I have identified two major weaknesses common to existing approaches to automated diagnosis:

1. The inability to account for symptoms arising from novel failure modes; and

2. The lack of a general strategy for active investigation of the failed artifact.

My research aims at addressing these two issues.

Process-Centered Diagnosis My approach accounts for unanticipated modes of failure by ap-
plying deep-level qualitative models in two novel ways:

Understanding the failed artifact: The state of some artifact after it has become inoperative may
be understood in terms of its underlying process structure. For example, a leak in a fluid
system may be seen as an instance of a fluid flow process. No special fault model for leaks

is required, so long as fluid flows are already part of the domain knowledge. In general, a

<]

fault may activate new processes or deactivate existing ones. By initially focusing on the
active process structure rather than the underlying physical structure of a failed artifact, the
search space is greatly reduced. The search for new process instances is further focused by
knowledge of which quantities are changing unexpectedly, given that each process type only
affects certain types of quantities.

Understanding the failure mechanism: Process-centered models may also be applied to understand-
ing the mechanism of failure—that is, how and why a failure occurs. For example, a leak may
be caused by corrosion or fracture, among other possibilities. Identifying the possible mecha-~
nisms of failure is important for verifiction and evaluation of a fault hypothesis, particularly
when multiple dependent faults are involved.

Active Diagnosis As demonstrated by the above example, diagnosis often involves actively ac-
quiring additional information about a failed system. With the exception of measurement planning,
this area has been neglected by other researchers. My research explores what I call active diagno-
sis: the selection of actions to be performed to a failed artifact for the purpose of obtaining useful
information about the nature of the failure. These actions can take a variety of forms, some of
which have been categorized according to their expected consequences.

The remainder of this paper is organized as follows. Section 2 reviews research in qualitative
reasoning and shows how it relates to this research. Section 3 provides a detailed account of
the diagnostic task and how I plan to approach it. Section 4 describes implemented components
for supporting the diagnostic reasoning, as well as plans for further implementation. Section 5
illustrates my approach to diagnosis on an example drawn from the aeronautics domain. Finally,
Section 6 summarizes the goals and overall approach of the research.

2 Qualitative Reasoning

Qualitative reasoning attempts to describe or predict the continuous behavior of physical systems,
without manipulating actual numbers. Typically this is accomplished by partitioning the range of
values of a quantity into a small number of interesting subregions. A common example of such a
partitioning is the sign operator, which maps a quantity into three regions: positive, negative and
zero. A generalization of this approach allows comparisons between any two quantities (instead of
just comparisons with zero). The leverage of qualitative reasoning comes from making only those
distinctions which are relevant to the problem at hand.

Unlike numerical simulation, qualitative reasoning provides the ability to reason from incomplete
information, and with potentially fewer computations. In addition, qualitative reasoning provides
a psychologically plausible account for much of human reasoning. People clearly do not compute
exact solutions or run numerical simulations in predicting or understanding an outcome. Instead, we

often describe behaviors in qualitative terms, without reference to magnitudes or units. Yet we are
able to predict behaviors and postulate the underlying mechanisms responsible for an observation.
Qualitative reasoning plays a major role in human reasoning, and thus holds promise for knowledge
intensive problems like diagnosis.

My research investigates the use of qualitative models in diagnosing continuous-variable systems.
More specifically, I am assessing the potential leverage afforded by process-centered qualitative
models in understanding both the mechanism and resulting state of a novel failure. The following

section reviews Forbus’ Qualitative Process theory, which is the basis for the qualitative models
used in my research.

2.1 Review of Qualitative Process Theory

Qualitative Process (QP) theory [11] is based on the tenet that all change results from the action
of processes. The possible types of processes are defined in terms of the conditions under which
they are active and the conclusions which follow.

A second tenet of QP theory is that qualitatively interesting changes in behavior coincide with
changes in certain inequalities. For example, the flow between two containers stops exactly when
their levels become equal. Thus the qualitative state of a system may be described in terms of a
collection of inequality relations. By considering how these relations can change over time, it is
possible to simulate the sequence of qualitative behaviors of the system being modeled.

QP theory defines a language for expressing a general theory for some domain, as well as a
procedure for automatically deriving a causal model for a given scenario in that domain. Such a
demain theory offers composability, in that an unbounded number of distinct scenario configurations
can be modeled in terms of their underlying process types.

Quantities, Numbers and Inequalities Quantities play a central role in QP theory. A quantity
represents some continuous parameter which is relevant to the model. A quantity belongs to one or
more individuals, and only exists when all its owners exist. Associated with each quantity are two
numbers: its amount and derivative (w.r.t. time). Numbers in turn have a sign and a magnitude.
An inequality relates two numbers by defining the ordering between them. Possible values for
an inequality relation are: {>,=,<,Q}; where @ represents unrelated, indicating that one of the
numbers does not exist.

Objects, Attributes and Relations Objects are defined in QP theory as belonging to one or
more entity classes. Each entity class has a set of attributes which are inherited by its instances.
Typical attributes include the quantities of an object, the causal and inequality relations between
them, and more general entity classes to which the object belongs. Connectivity relations between

two or more objects define the structural connections of the scenario.

Views and Processes Views and processes are conditional descriptions of state and behavior,
respectively. An instance of a view or process exists for each combination of objects matching the
individuals of the corresponding view type or process type, as defined by the domain theory. An
existing view or process instance becomes active when its preconditions and quantity conditions
are satisfied. Preconditions represent modeling assumptions or controls which are manipulated by
some external agent (such as a manually-operated valve). Quantity conditions are a set of inequality
relations required by the view or process. As a consequence of the active instance, the relations of
the view or process become true.

Causal Influences Processes differ from views in that processes have influences. An active
process instance directly influences one or more quantities; the degree of influence is equal to the
rate of the process. For example, a liquid flow process directly influences the amounts of liquid at
the source and destination of the flow. It is possible for more than one process to directly influence
the same quantity; the derivative of the influenced quantity is equal to the sum of the rates of the
influencing processes. Processes and their influences are viewed as the causal origin of all change;
if there are no active processes, then all quantities must be constant.

Quantities can be indirectly influenced by a process, through chains of gualitative proportion-
alities. As with direct influences, qualitative proportionalities may be either positive or negative.
The relation: Q; xg+ Q2 states that Q, will change in the same direction as Q; when all other
determiners of Q; are constant. In other words, Q; is monotonically increasing in Q2. Likewise,
Q1 x@- Q2 has Q; monotonically decreasing in Q2. In both cases it is implicitly assumed that a
change in Q2 causes a change in Q. Therefore the qualitative proportionalities must run outward
from directly influenced to indirectly influenced quantities. Since these relations are viewed as
imputing causality, loops among qualitative proportionalities are not allowed.

Qualitative Modeling in Thermodynamics The modeling language defined by QP theory has
allowed the accumulation of a significant domain theory for thermodynamics [2]. In my research I
plan to apply this domain theory to diagnosing thermodynamic systems. This will require extending
the theory to allow hierarchical representation of complex structures. The domain theory will also
be augmented with various fault models; while my approach to diagnosis does not rely on them,
explicit fault models make diagnosis much easier, and should be used when available.

3 A Theory of Understanding Failures

Diagnosis may be viewed either as a task to be accomplished, or as a procedure for accomplishing
that task. Designing a diagnostic procedure requires a careful analysis of the diagnostic task. These

two aspects—the “what” and “how” of diagnosis—are presented in turn.

Figure 1: Diagnosis is a Synthesis Problem

Structure Behavior

3.1 Understanding the Diagnostic Task

Diagnosis is the act of identifying a set of faults given a set of symptoms. More specifically,
diagnosis is the act of inferring the structural deviations of a failed system which explain an observed
deviation from expected behavicr. Diagnosis is generally performed as a subtask of some larger
goal—typically repair or damage control. In either case, it is not always necessary or even desirable
to narrow the set of candidate hypotheses to a single possibility. It may be that two or more
candidates suggest the same corrective action, so that distinguishing between them is unnecessary.
For example, if a problem in an electronic circuit has been isolated down to a single module which
is cheaper to replace than repair, then it does not matter which component of the module has
failed. In other cases different corrective actions may be taken simultaneously without interference
or excessive cost, as a way of “covering all bets”. These possibilities suggest that knowledge of the

overall goals of the problem solver should be made available to the diagnostic reasoning component.

3.1.1 Diagnosis as Synthesis

In the most general view, diagnosis is an instance of a synthesis problem. Whereas analysis involves
a mapping from structure to behavior. synthesis involves the inverse mapping from behavior to
underlying structure (see Figure 1). Other examples of synthesis include design, planning, reverse
engineering, and general understanding of observations.

Synthesis is generally harder than analysis, for several reasons. The mapping from behavior

to structure is not always unique. There may be several different physical devices whose outward

e |

behaviors are indistinguishable. The problem is aggravated by the lack of a complete behavioral
description. In addition, the mapping from behavior to structure is generally not well understood.
Synthesis usually requires a verification phase, where a candidate structure is analyzed to verify
that it produces the desired behavior.

Diagnosis differs from other synthesis problems in that it attempts to reconcile a discrepancy
between observations and expectations. More specifically, diagnosis involves a failure of some
artifact to achieve its intended function. Diagnosis generally concerns a system which has worked
at one time and has stopped working, or whose performance has degraded over time.! If the
artifact worked in the past, then there is some basis for expecting it to continue to perform its
intended function. Given that the laws of nature and the functional requirements of the artifact
have remained fixed, it follows that the physical structure of the artifact has changed in some way.

3.1.2 Failure: Artifact vs. Model

When the behavior of a designed artifact deviates from that predicted by our model of it, the
problem is traditionally viewed as residing in the artifact. I take the opposite view that the
problem is in the model from which our expectations are derived. Specifically, the model has failed
to keep up with changes in the artifact. Regardless of the severity of the “damage” to the artifact,
it continues to operate “correctly”, viewed from the perspective of the laws of nature. It is our
expectations which need adjusting.

By recognizing that a failed or damaged system obeys the same laws as a fully functional cne,
we can apply the same knowledge to understanding failure as we apply to understanding behavior
in general. Specifically, the knowledge used to produce our original expectations can be used again
to explain why they were not met.

3.1.3 Failure: State vs. Mechanism

I view diagnosis as providing answers to two questions: “What s wrong?”, and “What went
wrong?”. Each of these questions provides some leverage in identifying the nature of the problem.
The first question involves the resulting state once the failure has occurred. Answering this question
requires finding a model of the post-failure state of the artifact, capable of explaining its post-failure
symptoms.

The second question involves the nature of the failure itself. It asks for a sequence of behaviors
consistent with observations and leading from the original working condition to the post-failure
condition. This question is secondary to the first question; it is asked as validation or comparison

'The term is occasionally aoplied to the debugging of a newly-designed system which fails to perform “up to spec®;
this differs from the standard usage in that the problem may be with the design itself rather than with the artifact;
that is, the expectations may be unfounded.

of candidate answers to the first question—or to prevent a repetition of the same failure after repair
or in other systems of similar design.

As an example of a mechanism of failure, the development of a leak may be explained by any of
a number of processes, including corrosion, expansion or shrinkage (of mating parts), or fracture.
These processes provide possible answers to the second question. The answer to the first question
in the case of a leak is that there is a fluid path and an active fluid flow process which were not
previously known to exist.

Finding a mechanism capable of explaining why the failure occurred makes a candidate diagnosis
much more plausible. In some cases it may be possible to determine that the failure must have
occurred, given what we know about the environment which immediately preceded the failure; but
this is the exception. Still, inability to find a plausible mechanism in a well-understood domain
may cast considerable doubt on a candidate model of the failed state.

Some failures occur suddenly—one blink and it’s over. In other cases failures occur so gradually
that they go unnoticed. If the failure was missed the first time around, it may be possible to re-
create the failure in a duplicate system in order to fully understand what went wrong. But imagine
trying to duplicate the failure at Chernobyl; or the ten years of corrosicn in a ship’s boiler leading
to its exploding. In any case, we generally do not have the luxury of replaying a failure again and
again while trying different measurements or corrective actions. This makes finding the underlying
mechanism of failure a difficult task—the space of possible failure mechanisms which could be
occurring is too large to search without some guidance.

However, it is possible to carefully observe the failed system, while interacting with the system
to test hypotheses. It is easier to determine the mechanism of failure after first understanding the
resulting state of the failure. That is, the two questions above are most naturally answered in the
given order. Knowledge of the resulting state helps to focus the search for a possible mechanism,
more than the reverse.

3.2 Automating the Diagnostic Task

I view diagnosis as a problem in perturbing a faulty model of a system until it matches the observed
behavior of that system. This follows the Al paradigm of generate and test, whereby candidates
are suggested and then checked against a set of requirements. Efficient search requires that the
generator make intelligent choices about which paths to consider first. Inconsistent paths should
be rejected as early as possible, and the remaining paths should be ordered based on estimates of
their probability of success. For instance, in searching for a model of the post-failure state of some
artifact, it is reasonable to focus the search in the immediate vicinity of the original model. This
assumes that the system has changed only slightly from its original working condition. Knowledge
about possible mechanisms of failure can provide additional guidance in the search for a model of
the post-failure state.

3.2.1 Qualitative Symptoms

Diagnoesis begins with a behavicral description which does not match expectations. These deviations
from expected behavior are called symptoms. I assume that symptoms are represented qualitatively,
and are of one of the following forms:

Inequality Deviation: Some inequality relation was observed to be different than expected; this
includes deviations in directions of change.

Magnitude Deviation: Some quantity or rate is observed to be larger or smaller than expected;
such deviations may not be detectable from a purely qualitative model, but may still provide
useful qualitative information.

Discrete Deviation: Some object or event is unexpectedly absent (or present). In some cases
these may be represented as inequality deviations, where the mass of some object or the rate
of some process has become zero (or non-zero).

3.2.2 Generating Failure Hypotheses

The simplest approach to generating candidate diagnoses would be to randomly pick some pertur-
bation to the model, and then analyze the resulting model to see if it agrees with the observations.
However, the presence of a qualitative model allows us to do better than this. Judicious use of the
model allows the search to remain focused on reasonable possibilities.

The Role of Processes Processes provide an intermediate representation between structure and
behavior. In order for a candidate model to match the observations, its process structure must be
consistent with those observations. If some quantity is unexpectedly changing, then there must be
some active process influencing it. Similarly, if a quantity is expected to change but does not, then
either some process that was believed to be active is not active, or some other process is interfering
with the known process.

The space of possible processes is smaller and more abstract than the space of all possible struc-
tures, so it is more efficient to find a valid process structure before speculating on the underlying
structural details. In addition, processes can be indexed by their influences, so that only those
processes capable of influencing some unexpectedly changing quantity need to be considered.

There are two ways to perturb the process structure of the model: removing an existing process,
or adding a new process. These require different styles of reasoning, and are treated separately.

Removing an Existing Process A process which was active before failure may be suspected
of inactivity, if removal of the process could explain an unexpected observation. The simplest case
involves a quantity which was expected to change but is observed to be constant. It is reasonable to

suspect that the responsible process has failed to be active for some reason; however it is possible

10

that the process is being countered by some competing process. For example, if a liquid flow was
occurring between two containers prior to failure, and after failure both liquid levels are observed to
ke constant, it is likely that the flow has been obstructed in some way. Another case for suspecting
a process of inactivity is when it competes with other processes to influence some wayward quantity.
Removal of a process in competition may explain why a quantity is changing at a different rate or
in the opposite direction than expected.

Adding a New Process It is generally more difficult to consider model perturbations involving
the addition of previously unknown process instances, since there can be an arbitrary number of
them. Still, there are only a fixed number of process types, and only those with the appropriate
kinds of influences need to be considered.

The obvious case for speculating a new process is where a previously-uninfluenced quantity
is unexpectedly changing; since all change is caused by processes, there must be some unknown
process at work. For example, if the water level in some container is believed to be uninfluenced
yet is observed to be dropping, then there must be some process (eg., a leak) which is negatively
influencing the amount of water. On the other hand, if the pre-failure model contains competing
processes, then removing one of them could also explain the change, as stated above. If the quantity
was expected to change but at a different rate or in the opposite direction, then the addition of an
active process provides a possible explanation.

Modifying the Scenario Description After a candidate process structure has been generated,
the next step is to transform it to the underlying structural description of the scenario. We want
to perturb the original description as little as pessible while satisfying the requirements for the new
process structure.

Deletions from the process structure generally can be achieved by removing a component from
the scenario description, so long as it does not still participate in other ways. For example, a fluid
flow process may be eliminated by removing the flow path. This does not imply that the physical
pipe has vanished—rather, that the pipe is no longer behaving as a path (perhaps it is clogged).

Additions to the process structure require positing components to participate in the new process.
These may be new objects which were not previously known to exist; or they may already be part
of the scenario description, but filling unsuspected roles. For example, in the case of a leaking
container, the container itself fills the role of the path for the fluid flow process. We knew about
the container—we just didn’t know it was also a path. Deciding whether to posit new objects or
to use existing ones to fill needed roles is an open issue which this research will address.

11

3.2.3 Active Diagnosis

The underlying goal of diagnosis is to identify the nature of the fault, often as a first step in its
repair. The search for a valid model of a failed system in the ideal case leads to a single consistent
hypothesis. However in many cases there may be too many consistent fault hypotheses to consider
them all, even though only one of them is valid. A general strategy for reducing the set of candidate
hypotheses is to obtain additional information on the failed system. This involves interacting with
the system in various ways, ranging from passive observation to disassembly and attempts at repair.
I call this general process of interaction active diagnosis.

Performing Measurements Candidate hypotheses may be verified or refuted through addi-
tional observations or measurements of the faulty behavior. Some measurements are more easily
obtainable than others, and some will provide more information than others. Ideally one should
choose to perform the measurement with the highest expected informational gain for the least cost.
Determining which quantities are measurable and at what cost requires detailed information about
the failed system as well as the available measurement instruments and procedures. In lieu of
this, I assume that each quantity has an associated measurability parameter indicating the cost of
measuring its value.

Exposing Unobservables Performing certain measurements requires first modifying the system
so as to make the desired quantity accessible. In some cases, partial disassembly may be required. In
the fuel pump example from Section 1.1, the fuel line was disconnected from the fuel pump in order
to reveal the presence (or absence) of gasoline inside. In so doing, the system was altered, making
possible a flow of gasoline which was not occurring previously. In fact it was the consequences
of this fow that were actually observed. It is not uncommon for such actions to yield observable
consequences which provide useful information concerning the condition of the system.

Partial Repair One way to verify a failure hypothesis is to choose a modification which—given
that the hypothesis is correct—will reduce or eliminate the deviation from nominal behavior. Typ-
ically this involves replacing or repairing a suspected faulty component, or providing a redundant
system to operate in parallel with the suspected component. Behavioral improvement resulting
from such a modification provides supportive evidence for those hypotheses which predicted the
improvement, while eliminating those which did not. Similarly, if no improvement results from the
change, then those hypotheses predicting improvement are ruled out.

In the case of multiple faults, this strategy may be repeated until no faults remain. This
assumes that eliminating one of several faults will lead to an observable improvement in the system’s
behavior. This will not always be the case; in fact it is possible that the new or repaired components

may become faulty due to interactions with other faults. For example, if a short circuit causes a

12

fuse to blow, then replacing the fuse will only yield a second blown fuse. However, if the failure is

detectable and the replacement is not too costly, then the resulting gain in information may justify
the cost.

Purposeful Degradation This approach attempts to modify a system so as to degrade its
performance, assuming a particular hypothesis is correct. An example of this approach is pulling a
spark plug wire on a running engine, in order to determine if that cylinder is firing. If the engine’s
performance degrades, then it was firing. This approach often involves removing redundancies in
order to test a component in isolation. Unfortunately it is only applicable when the system is
partially functional—that is, when there is room for further degradation of performance.

3.2.4 Evaluating Candidate Diagnoses

Some types of failures are more common than others. The likelihoocd or probability of a particular
fault represents the expected frequency of that fault occurring in the given environment. Given
a choice between two or more explanations of a faulty behavior, it is reasonable to prefer the one
with the highest likelihood of occurring.

Probabilities may be associated with both the mechanisms and the resulting states of failure.
Identifying the possible mechanisms of failure can influence the perceived likelihood of that failure
mode. A mechanism may explain other suspect observations, or may be likely to occur given
the pre-failure environment. On the other hand, all known mechanisms for a failure mode might
be precluded by the pre-failure environment, making that hypothesis less credible. Associating
possible mechanisms with failure modes is a difficult modeling issue requiring further research.

Multiple Faults Assuming independence allows us to compute joint probabilities for multiple
faults, as the product of the individual probabilities for each fault. However, multiple faults are
seldom independent; generally one primary fault occurs first, initiating a chain reaction of secondary
faults. Identifying the mechanisms underlying this causal chain comprises an integral part of
diagnosis, as it allows one to discard the independence assumption, and thus increase the credibility
of the multiple-fault explanation. Finding explanations for how a primary fault could lead to
secondary faults is similar to the problem of finding a mechanism explaining the primary fault.
Causal models relating two faults are hard to come by but quite useful for evaluating multiple fault
explanations.

3.2.5 Explanation in Diagnosis

In order for any reasoning system to be generally useful, it must be capable of explaining its own
behavior. A diagnostic reasoning system should be able to answer the following kinds of questions:

1. How does the final diagnosis account for the observed symptoms?

2. How or why did a particular failure occur?

.CQ

Why was a particular measurement or other action requested?
4. Why was one candidate hypothesis chosen over another?

5. What led the system to suspect a particular fault?
6

. Why was a particular line of reasoning abandoned?

Answering these kinds of questions requires explicitly representing the reasoning steps leading
to the final diagnosis. I believe that having such explicit representations should prove useful to
more than just explanation—it should help control the diagnostic process as well. For example, the
search for a valid model of a failed system could extend through the space of diagnostic strategies
as well as the space of models.

4 Implementation

The implementation of a diagnostic engine is just getting started. However, several necessary
compenents have been completed or are well underway. A variation of deKleer’s assumption-based
truth maintenance system, or ATMS, has been developed, offering some unique capabilities. A
rule engine provides the interface to the ATMS. An incremental qualitative envisioner is nearly
completed. These components have general utility in other research domains, and were developed
in collaboration with Dennis DeCoste. These systems are described in the following pages.

The diagnostic engine, called PDE (for Process-based Diagnostic Engine) is mostly a collection
of ideas at this point. I outline how I plan to implement it, using the other components described
in this section. Figure 2 depicts the various modules and their interactions.

4.1 Assumption-Based Truth Maintenance

Given the view of diagnosis as a search through the space of models, it is essential that we have
some way of representing and manipulating multiple models efficiently. It is natural to view a
candidate model as a set of assumptions, where each assumption represents the presence of some
component or module.

Assumption-based truth maintenance systems (ATMS) provide an efficient mechanism for rea-
soning with multiple situations simultaneously, thereby avoiding duplication of effort inherent in
most backtracking schemes.

This section describes an approach for maintaining and reasoning with assumptions, based on
a modified ATMS algorithm (CATMS) which uses compressed labels to represent the possible worlds
in which propositions are believed. The CATMS algorithm is highlighted following a brief review of
deKleer’s original ATMS.

14

Figure 2: Diagnostic System Diagram

4.1.1 ATMS Basics

Propositions are represented by ATMS nodes. A subset of the nodes are designated assumptions
by the problem solver. Sets of assumptions are represented by environments, which are used to
represent possible worlds (eg., slices in time).

Logical relations ameng propositions are represented by clauses among nodes. A particular
implementation of ATMS may support Horn clauses (justifications), CNF clauses, or both. Clauses
have the effect of propagating truth between related nodes, starting with the nodes which have
been assumed or asserted to be true.

An ATMS node may be true, false or unconstrained in any given environment. Rather than
caching the deductive closure of every (interesting) environment, an ATMS associates with each
node a label, indicating the set of environments in which the node is believed. The label of a node
does not explicitly list all the environments in which it is true; instead, an ATMS uses a concise
representation made possible by the property of monotonicity:

Definition 1 (Monotonicity Property) If a node is true in a given environment £, then it must

also be true in every (consistent) environment containing £ as a subset.

15

The label of a node lists only those environments which (together with the clauses C) minimally
entail the node. In other words, the label represents the set of most general environments in which
the node must hold. Any consistent superset of some environment in a label (together with ()
necessarily entails the node, due to the monotonicity property. This is what allows a minimal label
to encode a node’s environments, thereby avoiding the explicit mention of an exponentially large
number of environments. The actual set of environments in which a node must hold may be viewed
as a version space, which is bounded below by the node’s label and above by the set of contradictory
environments.

An environment is contradictory, or nogood, if it entails both N and - N for some node V.
Minimal nogoods arise from the “collision” of labels for &N and =N, whenever one of these labels
grows. A non-minimal nogood results when a minimal nogood subsumes some existing environment.
Both types of nogoods must be removed from all labels in order to maintain cconsistency.

4.1.2 Introducing CATMS

CATMS is a modified algorithm for Assumption-based Truth Maintenance. The “C” in CATMS stands
for compressed, representing the fact that CATMS uses a compressed form of the node labels of a
standard ATMS. CATMS differs from a standard ATMS in that the notion of environment is expanded
to include the closure of the assumptions which it entails. That is, if other assumptions logically
follow from the base assumptions of an environment and the clauses C, then those assumptions
are considered to be part of that environment. The consequences of this simple modification are
revealed below.

As defined above, minimality prevents a label from containing two environments such that
one is a subset of the other. If the environments in a label are replaced by their assumption-
closures, then minimality may eliminate certain environments which would be valid in a standard
ATMS. This has the effect of compressing labels in CATMS. A CATMS label is always a subset of the
corresponding standard ATMS label. In the case of an assumption, the label is always a single
environment consisting of the assumption itself. Thus in the extreme case where all nodes are
assumed, there is no label updating in CATMS, since every label will contain exactly one environment.
If no assumptions receive justifications, then the labels in CATMS correspond identically to those in
a standard ATMS.

Because CATMS labels are compressed, a query environment £ must be ezpanded to include
any implied assumptions before comparing it to environments in the node’s label. The important
observation is that by using assumption closures for subset tests during queries, the compressed
label retains completeness; that is, the node is true in £ if aad only if there is an environment in
its compressed label which is contained in the assumption-closure of £.

This need to expand an environment before using it is offset by the smaller labels and overall

16

Figure 3: Hierarchical Representation of an Engine

OK(Engine)
Label: {{C,F.I}}

O
«f*o e,
@ 0
{.@ “EP%&;%J
%

fewer environments which must be explicitly represented. But CATMS provides more than just

increased efficiency. Its compressed labels can be used to advantage, as shown below.

Hierarchical Representation Reasoning in general often proceeds in a hierarchical manner,
starting with the most abstract level and gradually delving into the details. In diagnosis, we may
wish to view a particular subsystem as a “black box” while reascning about the system as a whole.

Later as we begin to suspect that the subsystem is misbehaving, we may want to examine its
internals in greater detail.

The compressed labels in CATMS provide a mechanism for just such hierarchical reasoning.
Consider the example in Figure 3. The total system is believed to be functional when all of its
major subsystems are operating properly. Each subsystem in turn is functional when all of its
components are faultless. This decomposition may be continued to arbitrary depth. By assuming
the status of each subassembly, the resulting labels reflect this decomposition. In the standard
ATMS the lowest level details would be propagated all the way up to the system level, swampmg the
labels with unwanted detail.

Conceptually one could use the justifications themselves to achieve the hierarchy; but justifi-
cations do not generally provide good explanations; they are often too fine grained, and do not
correspond well with explanatory levels a person might provide. Assumptions in CATMS may be
chosen at the appropriate levels to provide the best explanations with the fewest steps to “get to
the bottom of things”.

This ability to reason hierarchically is of great significance to diagnosis. GDE [7] is unable to
reason at multiple levels of detail, because it is based on the standard ATMS. Using CATMS, a GDE-

17

like approach can be extended to allow hierarchical representations and the efficiency of reasoning
which they afford. The implementation of this idea is discussed in Section 4.4.

Implementation The CATMS algorithm described above has been implemented as a LISP pro-
gram in a joint effort with Dennis DeCoste. The implementation has been tested and benchmarked
on a number of examples, and in some cases significantly outperforms deKleer’s ATMS—especially
when assumptions are heavily justified. The CATMS implementation provides the knowledge base
for all other components of the diagnostic system.

4.2 Assumption-based Rule Module: ARM

As with most truth maintenance systems, CATMS supports only propositional logic; variables are
not supported. In order to make a TMS usable, a rule system provides the interface between it and
the problem solver. Typically justifications in a TMS reflect the corresponding rules from which
they were formed.

The rule module for CATMS is called ARM. It supports single and multiple-trigger rules, which
may be conditioned to run immediately, or to wait until the triggers are believed. A focusing
mechanism allows special rules to fire only when their antecedents hold under the current focus.

The body of a rule in ARM may be abitrary LISP code; however, the majority of rules simply
install justifications in CATMS, where the antecedents of the justification correspond to the triggers
of the rule.

Abductive Backchaining Every rule which installs a justification is cached to allow such rules to
be run backwards in search of explanations. This style of reasoning is generally known as abductive
backchaining, or abduction. Unlike deduction, abduction is not logically sound. It implicitly assumes
that all phenomena have a cause; in addition, it requires a closed-world assumption that the known
causes of some phenomenon are in fact the only possible ones. For example, if you walk cutside and
the grass is wet, then you might reasonably conclude that either it has rained or the sprinklers have
been on recently. Explicit representation of the closed-world assumption allows such conclusions
to be revised as other possibilities come to mind. This type of reasoning is very important to
diagnosis, as will be shown in Section 4.4.

4.2 Incremental Qualitative Envisioning

In order to explore the space of qualitative models, we need the capability to reason efficiently
with incremental changes to the original model. It is impractical to reason from scratch for each
new variation of the evolving model. Existing qualitative simulators do not provide the needed
flexibility for reasoning simultaneously with multiple models.

18

This section describes IQE (pronounced “IKE”)—an Incremental Qualitative Envisioner being
developed jointly with Dennis DeCoste. IQE is built on top of CATMS, our assumption-based truth
maintenance system described in Section 4.1.2. The main goal of IQE is to provide a more flexible
tool for analyzing qualitative models.

IQE is not intended to be a stand-alone program; instead it is designed as a component in a
larger system, such as the diagnostic engine. IQE’s flexibility is achieved by relinquishing many of
the traditional duties of a qualitative simulator to the problem solver which calls it. Just as an
ATMS maintains a space of environments, IQE maintains a space of envisionments. This allows for
efficient exploration of the space of models, so that deviations from the initial structural description
may be considered without starting from scratch.

IQE consists primarily of a translator which accepts qualitative domain theories (expressed in
the language of QP theory) and converts these into ARM rules. In addition, IQE provides a set of
rules implementing the constraints underlying qualitative reasoning. Other miscellaneous support
facilities are provided, such as those needed for performing temporal reasoning.

IQE provides the foundation for reascning qualitatively about a given scenario and domain
theory. The domain thecry is compiled into a set of rules in ARM, which is then fed a scenario
description. The resulting justification structure in CATMS is then available for exploration.

4.3.1 Declarative Representation

One of the goals driving the development of IQE has been to develop and utilize a declarative
knowledge base of the constraints underlying qualitative reasoning. In some cases this has proven
impractical due to efficiency constraints—for example, transitivity is enforced using special purpose
code which avoids the introduction of uninteresting inequality relations. Still, most of the reasoning
in IGE is implemented by a single file of antecedent rules. These rules enforce various inequality
constraints, resolve influences on quantities, and perform temporal reasoning. The rules are set up

to infer consequences given the minimal required antecedents, and do not rely on complete state
descriptions.

4.3.2 Representing Inequalities

Inequalities are central to qualitative reasoning in IQE. An inequality exists between two numbers
whose ordering is relevant to the reasoning process. In IQE, a number may be either a quantity Q
or its time derivative (D Q). IQE does not distinguish between variable and constant quantities; in
particular, ZERO is treated as an ordinary quantity. Inequalities are limited to involve either two
quantities or two derivatives; mixed inequalities are not allowed. This greatly simplifies the rules
for reasoning about inequalities—particularly rules for temporal reasoning.

Inequalities are represented in IQE using a single relation: >. This representation scheme was

chosen for its simplicity and expressive power. It avoids the canonical ordering problem of other

19

schemes, since both orderings of two related numbers are represented. It simplifies the rules used to
implement inequality reasoning, since there are fewer cases to handle. It also reduces the number of
nodes needed per inequality from four pairs (in QPE) down to two pairs. Finally, the justifications
required to enforce taxonomy among the nodes are replaced by a single clause, requiring > to be
true for one of the two possible orderings of two related numbers, whenever both numbers exist.
The following table demonstrates how this scheme represents the possible inequality relations:

l Relation | Representation using > |
(@:>Q2[Q:12Q: A Q:2Qi]
Q1=Q2|Q12Q2 A Q22Q;
Qi1<Q2|Q:12Q A Q22Qy
Q:2Q2|Q:12Q;

Q:<Q2 Q22Q,
Q12Q2 |Q12Q2 A QZ2Q:

4.3.3 Assumptions in IQE

In the course of building up a qualitative model, IQE posits four types of assumptions:

Scenario assumptions describe the structure of the given scenario. These are assumed rather
than asserted to allow the problem solver (i.e., the diagnostic engine) to hypothesize structural
deviations, perhaps to explain an observed spurious behavior.

Modeling assumptions represent the approximations and perspectives underlying the domain
theory. Modeling assumptions provide the flexibility in perspective required for robustness over
a broad domain. These may include fault assumptions, representing the belief that a particular
type of fault exists, or no-fault assumptions indicating that a component or subsystem is in fact
operating as intended.

State assumptions encode the qualitative state of the system, in terms of the active views
and processes, or equivalently, the inequalities on which they are conditioned. These assumptions
indicate the current mode of operation of the system.

Closed-world assumptions represent the belief that the individuals currently being considered
are in fact the only ones. By explicitly assuming these facts, the space of their possible values may
be searched for a match between observations and expectations.

4.3.4 Strategies for Manipulating Assumptions

A primary motivation for the development of IQE has been to avoid the combinatorics inherent in
interprelation construction—the process of computing all maximal combinations of assumptions.
There are two basic strategies for doing this. The first is to use base assumptions to focus the
interpretation construction process as much as possible. The second is to avoid interpretation

construction altogether, and instead rely on the label computing mechanism of CATMS to produce
the desired result. Each of these approaches has its strengths and shortcomings, as shown below.

Suppose we are interested in the steady state behavior of a fluid system. We could assert
that all derivatives are zero, thus eliminating from consideration those states which imply change.
Unfortunately, there is no easy way to retract a hard assertion in an ATMS, so we could never again
reason about change without starting from scratch. One alternative which an ATMS makes possible
is to assume the desired behavior (eg. steady state), and then build upon this base assumption when
constructing interpretations. Base assumptions provide a focus to the interpretation construction
process, without eliminating the option of changing focus later.

A second strategy is to configure the ATMS to compute the desired state(s) as part of its label
update process. A behavior node is created to represent the desired behavior, and justified accord-
ingly. Continuing the example above, a steady state node is justified by the conjunction of all
quantities being constant. The label of this node will contain the set of minimal contexts in which
all quantities are known to be constant.

The results obtained from these two approaches will generally differ, for the following rea-
son. Interpretation construction finds all mazimal contexts which are consistent with the given
constraints, while the label approach finds all minimal contexts which entail the constraints. In-
terpretation construction has the advantage of completeness, while label computation assures that
only relevant assumptions are considered.

For example, suppose there were in fact two independent fluid systems in the model, and we
were only interested in the steady state behavior of one of them. Interpretation construction would
combine the steady state behavior(s) of the system of interest with all possible behaviors of the
other system. The label approach would never consider the second system, since it does not take
part in the justification structure leading to the behavior node.

4.2.5 Incremental Temporal Reasoning in IQE

Qualitative reasoning derives much of its power from a few temporal constraints. Change is as-
sumed to be continuous, and must be consistent with known temporal derivatives. Unlike other
qualitative simulators which compute transitions between complete states, IQE performs temporal
reasoning incrementally, requiring only partial state descriptions. Table 1 summarizes the temporal
constraints for two temporally contiguous states, as enforced by IQE.

Temporal reasoning becomes important in diagnosis when symptoms occur across time. For
example, there may be observations of the failure in progress, or the post-failure symptoms may
involve oscillations or other non-steady behaviors. Dealing with dyaamic behaviors is a particularly
challenging aspect of this research.

Table 1: Constraints for Incremental Temporal Reasoning

l Previous State Next State | Clause i

Q:1>Q2 = Q1443 Q2 > Q1 Vlext(Qy > Q1)
Q:1£Q2aAQ1>Q3 = §;>Q; Q1 2 QaV@Q3z 2 @ Vext(Q3 2 Q1)
Q1>Qz < Q1 £Q3AQ<Q; Q2 2 Q1vEext(Qy Z Q3)Viext(Q; > Q3)
Q1>Q2AQ1£Q2 = Q1>Q3 Q3 2 @1VQ; 2 QaVvliext(Q3 Z Q1)
Q:>Q: = Q1>Q3:AQ:1 ¥Qs Q2 2 Q1 VEext(Q2 2 §1)VEext(Qs ¥ G1)
Q1=Q3 = Diverging(Q1,Q3) Q1 2 QavQ@3 2 Q1Viext(Diverging(Q1,932))
Converging(Q1,Q2) < Q1=Qa Next(Q) 2 Qa)Vlext(Q3 ¥ Q,)VConverging(Q1,Q2)
Interval <> —Intarval —IntervalViext(—~Iaterval), IntarvalViext(Iaterval)
Q1> QaA-Iaterval => Q> Q3 Q3 2 QiVviaterval Viext(Qs 2 Q1)
Q1>Q2 < Qi1>QaA-Intarval Q2 2 Q1VEext(Q3z > Q) VHext(Interval)
Q1 =QaAlaterval = @, # Q3 Q1 2 Q2vQ3z 2 Q1v-Interval Viext(Q3 2 Q)
Q1 7Q2 <« Qi=QaAlnterval | Q32> QVYext(Q; > Q2)VNext(Qz > Qy)vNext(—Iatarval)

4.4 Process-Centered Diagnostic Engine: PDE

The Process-based Diagnostic Engine (PDE) is still under development. This section outlines its
planned implementation, utilizing the other reasoning components already described.

The diagnostic engine is the top-level module in the overall system. It controls the other modules
and provides all input and output functions. I assume as input a structural description of a system
in its pre-failure condition, and a set of qualitative symptoms, as described in Section 3.2.1. In
addition, I assume the availability of qualitative domain theory covering the given scenario.

The domain theory and scenaric description are given to IQE, which translates the domain
theory into a set of rules in ARM, and then feeds the scenario description to these rules. The result
is a set of nodes and justifications in CATMS representing the qualitative constraints of the domain
theory as they apply to the given scenario. This justification structure and the resulting node labels
provide the foundation for all subsequent reasoning.

The diagnostic engine implements the Al paradigm of generate and test. Candidate hypotheses
are generated and then tested against the domain theory and available observations. Additional
measurements or other actions may be requested as a way of guiding hypothesis generation. Part
of testing involves comparing alternative candidates to choose the best one. The search does
not necessarily end with the first successful candidate, nor does it exhaustively enumerate all the
possibilities. Some acceptibility criterion, based on the quality and likelihood of the explanation,

must serve as the termination condition for search.

4.4.1 Generating Candidate Diagnoses

The first step in diagnosing the failure is to understand the nature of the conflict between the
current model and the given symptoms. Specifically, the system must identify those aspects of the
model leading to the failed expectations. This immediately removes from consideration all portions
of the model which continue to yield valid predictions of behavior.

Finding Predictive Models In a few fortunate cases, a simple variation of the original model
may actually predict the observed symptoms. Changing a modeling assumption or activating an
explicit fault assumption may be all that is required to make the discrepancies disappear. This
reduces to finding one or more fault assumptions which together imply the observed behavior. This
can be done in CATMS by creating a node representing the faulty behavior and examining its label.
This behavior node represents the conjunction of the individual behavioral observations, and is
Jjustified accordingly. Its label consists of the minimal combinations of faults capable of explaining
the behavior.

This approach has its origins in a similar technique introduced by Falkenhainer and Forbus (10]
as a means of focusing query answering. Note that this technique works equally well for single and
multiple faults. Single faults show up as singleton contexts in the node’s label. It is limited by its
dependence on explicit fault models, which will not always be available.

Finding Consistent Models In many cases, no explicit model of the specific fault behavior
is available. This situation is indicated by an empty label for the behavior node. That is, no
combination of fault assumptions suffices to account for the observations. Having failed to find
a predictive model, we settle for a model which is consistent with observed behavior. Of course,
the null model, consisting of no structural constraints at all, will always be consistent with any
behavior. But we are interested in minimal deviations from the original model which are consistent
with observations.

deKleer’s General Diagnostic Engine (GDE) [7] provides a mechanism for finding maximal as-
sumption sets consistent with cbserved behavior. Each assumption indicates the correct behavior of
a single component. GDE uses an ATMS to find the minimal contexts in which the model’s predictions
conflict with actual observed behavior. These conflicting contexts can be found by examining the
label of a conflict node, which is just the negation of the behavior node discussed previously. The
set of possible culprits is obtained by choosing one assumption from each conflicting context and
combining them, in all possible ways. Non-minimal culprits are discarded. The remaining culprits
represent minimal sets of components whose failure is consistent with observations.

Exploring Consistent Models I plan to borrow the above technique, but use it in a novel way.

In GDE, an assumption always represents the presence of a functioning component. The hierarchical

nature of CATMS allows similar assumptions about the workings of entire subsystems. If a subsystem
is identified as a possible culprit, then it may be recursively examined down to the component level
if desired, in search of an explanation of the observed symptomatic behavior. Another difference in
this approach is that there are modeling assumptions and closed world assumptions which can show
up as culprits. Violation of a modeling assumption suggests that a change in perspective might
yield consistent predictions. By allowing a closed world assumption to be viclated, the system
can hypothesize active processes which were previously unknown (or missing processes previously
believed to be active), by backchaining through the rules of the domain theory.

4.4.2 Testing Candidate Diagnoses

A Candidate diagnosis generated by the above approach is not guaranteed to be valid. The approach
may yield multiple candidates, at most one of which is correct. Each candidate must be analyzed
to verify that it actually explains the anomolous behavior. This is done by simulating the altered
model suggested by the candidate, to see if the observed symptomatic behavior is among those
predicted by the qualitative simulation.

Candidate Selection A candidate diagnosis may explain the anomolous behavior and still not
be the correct diagnosis. When multiple diagnoses survive the verification step above, the candi-
dates must be ordered based on their relative likelihoods. The likelihood of a fault will be estimated
based on knowledge of the reliability of the failed component, or on the likelihood of the believed
mechanism of failure. The exact manner in which these are to be calculated remains to be deter-
mined.

Active Diagnosis Multiple diagnoses may also be resclved by obtaining additicnal information
about the failed system. Since I will not have access to a physical prototype of the systems I
plan to meodel, I will simulate the actions suggested by the diagnostic engine and return their
consequences. Defining the possible actions which may be performed will likely require a formal
language of actions, as well as a good deal of modeling. This work is underway.

5 An Example

There are still many issues to be resolved and the implementation is far from complete, so a detailed
example is not possible; however, walking through a simple example may help to clarify the basic
approach.

Consider a fuel leak in a turbofan aircraft; pressure sensors indicate nominal pressure at the
fuel pump, but sub-nominal fuel pressure at the starboard engine. Engine RPMs and thrust are

also lower than expected.

Diagnosing this situation would proceed as follows. If the domain theory includes a fault model
for a leaky fluid path, then the corresponding fault assumption is propagated and combined with
relevant scenario assumptions to predict the observed behavior—there is a non-empty label for
the behavior node J:eprta:sem:i:l:\gI the symptomatic behavior. Similarly, fault models for the pressure
sensors and other aspects of the engine’s performance may also combine to explain the symptoms.

In the event that no explicit fault model is available, then maximal consistent subsets of the
original model are sought, by identifying minimal culprits and retracting them. In this case, the
fuel subsystem will likely be the only minimal culprit, so retracting the assumption that the fuel
system is operational will regain consistency. The fuel system is then examined in isolation; that
is, the “black box” is opened up. Eventually this process focusses in on the level of individual
components, such as the failed fuel line.

Suspending the constraints associated with the fuel line produces a consistent model, but does
not explain the symptoms; doing so requires replacing the fuel line (in the model, not the aircraft)
with whatever it has become. This is where abduction plays a role. The domain theory is searched
for a process structure consistent with the fuel line’s behavior. Each candidate process structure is
then instantiated by filling roles with posited individuals. One such prccess structure in this case
would have an additional fluid fliow process from the fuel line to some unknown location. Additional
knowledge of spatial continuity could limit the possibilities to those adjacent to the fuel line. The

resulting model is analyzed to verify that the hypothesized failure can account for the observed
behavior of the fuel line.

6 Summary

This research investigates the use of qualitative reasoning in diagnosis. The approach taken is to
view diagnosis as a problem of minimally perturbing a faulty model of a system until it matches
the observed behavior of that ;s,yst.em. This differs from the more traditional view that the fault
lies in the system itself. By recognizing that the system continues to operate “correctly” as viewed
by the laws of nature, we may apply a single domain theory both to derive the model and to repair
it.

A model may be faulty in different ways. It may be that the structural description of the
scenarlo is inaccurate. Simplifying assumptions may have been made inappropriately. Or the
theory underlying the model may be fundamentally flawed. This research focuses on identifying
faults in scenario descriptions and simplifying assumptions.

I claim that qualitative models can account for observed symptoms without relying on explicit
fault models, thereby increasing robustness for novel faults. Both the mechanism of failure and the
resulting state of the failed system can be modeled in terms of their underlying active processes.
By focusing on the process structure rather than the physical structure, the search space is both

smaller and more focused, since only those processes which could influence the system in the
observed directions need to be considered.

A variety of methods may be employed in the search for a valid model. The simplest is to
look for variants of the model which predict or explain the anomalous behavior directly. These
will likely contain nonstandard modeling assumptions or explicit fault assumptions. If this fails,
the search may extend to variants which are consistent with observations. This is guaranteed to
succeed, since removing all structural constraints would necessarily eliminate the inconsistency.

Candidates must be evaluated and compared to determine the most likely diagnosis. Evaluation
is based on the number and nature of the deviations from the original model. By hypothesizing
a mechanism by which the original system is transformed into its faulted form, the evaluation is
reduced to establishing the likelihood of the transformation. For example, a blown fuse provides a
more likely explanation if we know how the fuse might have become blown. Qualitative reasoning
can both provide focus on a suspected failure and explain how and why it may have occurred.

Other diagnostic strategies to be investigated include measurement planning and its generaliza-
tion: active diagnosis, whereby a system is modified to test a working hypothesis. An example of
active diagnosis is pulling a spark plug wire on a poorly-running engine to determine if a cylinder
is misfiring. My goal is to define a theory of interaction, including a language for representing
possible actions and their expected consequences.

This approach to diagnosis will be tested on a number of systems and fault types. An implemen-
tation is in progress, building on a modified ATMS and an incremental qualitative envisioner. So far
I have chosen four test systems: a ship’s boiler; a thermal control system for the US space station; a
gasoline piston engine and a jet turbine engine. The tests will hopefully include dynamic behaviors,
using temporal reasoning techniques being developed jointly with Dennis DeCoste. Specific faults
for each system will be chosen as the research progresses.

7 Acknowledgements

Dennis DeCoste and Gordon Skorstad have contributed significantly to this research. This research
is supported by the National Aeronautics and Space Administration, Contract No. NASA NAG
11023.

References

(1] Allen, J. “Towards a general model of action and time” Artificial Intelligence, 23(2), July 1984.

[2] Collins, J. and Forbus, K. “Building qualitative models of thermodynamic processes”, submat-
ted for publication, 1990

(3l

(6l

[7]
(8

g
[10
(11]
[12]
[13]
[14]
[15]
[16]

[17]
(18]
[19]

[20]

Collins, J. and Forbus, K. “Reasoning about Fluids via Molecular Collections”, in Proceedings
of the National Conference on Artificial Intelligence, Seattle, July, 1987.

Davis, R. et al. “Diagnosis based on Structure and Behavior”, in Proceedings of the National
Conference on Artificial Intelligence, August, 1982.

Davis, R. “Diagnostic Reasoning based on Structure and Behavior”, Artifictal Intelligence, 24,
1984,

de Kleer, J. “An Assumption-Based Truth Maintenance System”, Artificial Intelligence, 28,
1986.

de Kleer, J. and Williams, B. “Diagnosing Multiple Faults”, Artificial Intelligence, 32, 1987.

de Kleer, J. and Brown, J. “A Qualitative Physics based on Confluences”, Artificial Intelli-
gence, 24, 1984,

de Kleer, J. and Bobrow, D. “Qualitative Reasoning with Higher Order Derivatives”, in Pro-
ceedings of the National Conference on Artificial Intelligence, Austin, Texas, August, 1984.

Falkenhainer, B. and Forbus, K. “Setting up large-scale qualitative models”, Proceedings of the
Seventh National Conference on Artificial Intelligence, pages 201-306, St. Paul, MN, August
1988. Morgan Kaufmann.

Forbus, K. “Qualitative Process Theory” Artificial Intelligence, 24, 1984.
Forbus, K. “The Logic of Occurrence”, Proceedings of IJICAI-87, August, 1987.

Forbus, K. “The Qualitative Process Engine” in Readings in Qualitative Reasoning about Phys-
ical Systems, Weld, D. and de Kleer, J. (Eds.), Morgan Kaufmann, 1990.

Genesereth, M. “Diagnosis using Hierarchical Design Models”, Proceedings of the National
Conference on Artificial Intelligence, 1982.

Hayes, P. “The Naive Physics Manifesto”, in Ezpert systems in the Micro-Electronic Age, D.
Michie (Ed.), Edinburgh University Press, 1979.

Hayes, P. “Naive Physics 1: Ontology for Liquids”, in Hobbs, J. and Moore, B. (Eds.), Formal
Theories of the Commonsense World, Ablex Publishing Corporation, 1985.

Haywood, R. W. Analysis of Engineering Cycles, Pergamon Press, 1980.
Iwasaki, Y., and Simon, H. “Causality in Device Behavior”, Artificial Intelligence, 29, 1986.

Kuipers, B. “Common Sense Causality: Deriving Behavior from Structure”, Artificial Intell:-
gence, 24, 1984,

Kuipers, B. “Abstraction by Time-Scale in Qualitative Simulation”, in Proceedings of the
National Conference on Artificial Intelligence, Seattle, July, 1987.

[21] Mohammed, J., and Simmons, R. “Qualitative simulation of semiconductor fabrication” , Pro-
ceedings of AAAI-86, August, 1986.

[22] Reynolds, W. and Perkins, H. (1977) Engineering Thermodynamics. McGraw-Hill Press, New
York, New York.

[23] Shortliffe, E. H. “Computer-Based Medical Consultations: MYCIN”, New York, American
Elsevier. 1976.

[24] Simmons, R. “Representing and reasoning about change in geologic interpretation”, MIT Ar-
tificial Intelligence Lab TR-749, December, 1983.

[25] Skorstad, G. and Forbus, K. “Qualitative and quantitative reasoning about thermodynamics”
Proceedings of the eleventh annual conference of the Cognitive Science Society, Ann Arbor,
MI, August, 1989.

[26] Weld, D. “Comparative Analysis”, Proceedings of IJCAI-87, August, 1987.
[27] Williams, B. “Qualitative Analysis of MOS Circuits”, Artificial Intelligence, 24, 1984.

(28] Williams, B. “The Use of Continuity in a Qualitative Physics”, in Proceedings of the National
Conference on Artificial Intelligence, Austin, Texas, August, 1984.

BIBLIOGRAPHIC DATA 1. Report No. 2 3. Recipient’s

Accession No. |

SHEET UTIUCDCS-3-%1-14699 |

2. litle ana Subcitle 5. Report Dare |
DIAGNOSIS AS FAILURE UNDERSTANDING .

7. Auchor(s) 8. Performing Organization Repr.
JOHN W. COLLINS No. p-91-1699

9. Performing Organization Name and Address

10. Project/Task/VWork Uait No.

Department of Computer Science

1. ™
1304 W. Springfield 1. Contract/Greant No

Urbana, IL 61801

NASA NAG 11023

12 Sponsoring Organization Name and Address

Covered

1. Type of Report & Period

NASA Technical

14

15. Supplementary Notes

16. Abscracts

This paper reports on research in progress, investigating the use of process-—centered quali-
tative models in the diagnosis of continuous variable systems. I view diagnosis as a problem of
minimally perturbing a fanlty model of a system until it matches observed behavior. I claim
that qualitative models can account for observed symptoms without relying on explicit fanit
models, thereby increasing robustness for novel fanlts. Both the mechanism of failare and the
resulting stats of the failed system can be modeled in tarms of their underiying active processes.
By focusing on the process structure rather than the physical structure, the search space is
both smaller and more focused, sinces oniy those processes which could influence the system in
the observed directions need to be considered. Several diagnostic strategies are being explored
within this framework. An implemenstation is in progress, building on a modified ATMS and
an incremental qualitative envisioner. The kinds of systems [am examining are taken from the
domain of thermodynamics, and include piston and gas-turbine engines, a steam boiler and a
thermal control system.

17. Key Tords ana U ocumeat Analysis. 17a. Descriptors

Diagnosis
Qualitative Reasoning

17b. Identifiers/Open-Eaded Terms

17e. COSATI Field/Group

18. Availability Statement 19.. Securicy Class (This 21. No. of Pages
Report) 30
2 IINC 1 ASSIFIED
unlimited [30. Security Ciass (This 22, Price
Pa%c
JNCLASSIFIED

FOMM NTI3 38 (10=70)

USCOWM-0OC 40329-2 71

