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Abstract

Safe control of a physical system requires the ability to both detect and avoid dan-
gerous situations, while striving to achieve performance goals. State-of-the-art con-
trollers still tend to rely heavily on classical control theory with feedback, occasion-
ally with some limited use of associational-reasoning (expert systems) to help detect
threatening situations and recall standard recovery procedures [Dvorak, 1987] . The
need for model-based reasoning to control in novel situations and with incomplete
data is widely acknowledged, but largely unaddressed to date. Existing relevant
work has tended to focus on model-based monitoring to track the system state over
time, with little attention to reasoning about control itself. In such work, any pro-
visions for finding safe control actions tend to be mixtures of associational-reasoning
and general-purpose planning or qualitative simulation - which suffer problems of
brittleness and intractability, respectively.

To address those shortcomings, I propose a qualitative theory of safety control.
The goal is to make explicit the kinds of intuitions that human operators use to focus
the task of avoiding dangerous situations . I view the problem of safety control as two
major issues: when to worry and how to control. Intuitively, one often worries about
the need to control only if the chance of danger has increased - assuming the initial
state was safe. Furthermore, different styles of control seem most appropriate in
different types of situations. For example, when safety seems impossible to maintain
it often seems best to try to at least delay the impending doom, in hopes that "buying
time" might help . I argue that qualitative physics can be used to robustly capture
such reasoning, but only with fundamental advances in how and what to qualitatively
simulate .



1 Introduction

Especially in relatively well-engineered systems, such as airplanes and nuclear power
plants, standard operating procedures are often sufficient for achieving one's perfor-
mance objectives. For such systems, the fundamental responsibility of the human
operator is threat control - detecting and evading novel threats to the expected
achievement of the system performance goals . For example, a major reason for still
having a human pilot in the cockpit these days is in case something goes wrong.
In many cases, once a situation has stabilized (i.e . all critical threats are evaded),
standard operating procedures are again sufficient . Yet, while technology continues
to automate more of the routine achievement of goals, robust threat control remains
elusive . This seems to be in part because even in highly-controlled domains, the
ways that things could still go wrong are more subtle and plentiful than the ways to
succeed.

1 .1

	

Qualitative Physics

Robust reasoning about physical systems is a major motivation for the field of quali-
tative physics . Qualitative physics promises increased robustness in novel situations
by using first principles of physics that offer wider coverage than the associational-
rules of traditional expert systems . However, existing work in qualitative physics has
had little to say about reasoning about threat control . The emphasis has been on
developing representations and simulation techniques for explanation, steady-state
diagnosis, and design .

In contrast to those more studied styles of qualitative reasoning, threat control
poses some special difficulties :

1 . Threat detection involves anticipating faults before they happen - whereag diag-
nosis has been viewed traditionally more as a task of explaining existing faults .
Design also could involve anticipating faults, but existing work in qualitative
physics has not addressed the issue of quality control in design.

2 . Threat control requires temporal projection under severe time constraints . For
explanation, diagnosis, and design tasks, it is often acceptable to incur the high
cost of extensive qualitative simulation. However, it is usually critical in threat
control tasks to quickly identify a potential threat and evaluate how it may
progress over time - to provide an opportunity to evade the threat before it
becomes reality.

I will argue that addressing these difficulties requires different sorts of qualitative
simulation than have been provided by earlier work.



1.2 Planning
Reasoning about the dynamics of the physical world is only part of the problem
of threat control - the other part is reasoning about control actions themselves .
Traditionally, reasoning about actions is the domain of planning . Unfortunately,
existing planning work is inadequate for threat control of physical systems .

1.2.1

	

Planning about Physical Systems

Part of the problem is that existing planners are not very good at physics . Much
previous work in planning has either ignored modelling the dynamics of the physical
world [Fikes & Nilsson, 19711 or employed means which suffered from poor modular-
ity that precluded capturing many complex dynamic interactions [Hendrix, 1973] .

Recent work has begun to explore the natural idea of of introducing qualita-
tive physics into the planner . One such planner [Hogge, 1987] transforms quali-
tative physics models into rules and operators for a temporal planner like that of
[Allen & Koomen, 1983 . Unfortunately, for the sake of tractability it seems nec-
essary to make some simplifications which would be intolerable for threat control .
For example, Hogge's rules assume that a positive influence will always result in a
positive change, regardless of any other opposing influences .

Due to the general-purpose nature of such planners, accurate yet efficient reason-
ing about complex dynamic interactions seems difficult to achieve. However, such
reasoning is exactly what qualitative simulation research is working towards . So, the
converse alternative to Hogge's approach is to introduce actions into the qualitative
simulation . Action-augmented envisioning [Forbus, 1989] does just that, hoping to
capitalize on the efficient techniques developed for envisioning [Forbus, 1990]. Un-
fortunately, its focus on total envisioning is unrealistic to address the time-critical
nature of threat control.

1.2 .2

	

Planning . With Negative Goals

Perhaps a more fundamental problem with using existing planners for threat control
is that they are generally ill-suited for reasoning about negative goals . Research in
domain-independent planning has tended to focus on achieving desired facts (goals),
with little concern for the prevention of undesired facts (negative goals) . A notable
exception is Hogge's planner [Hogge, 1988]. In the case of action-augmented envi-
sioning, reasoning is not goal-directed since it employs total envisioning .

Although negative goals may not be important in many planning domains, they
are extremely useful for many threat control tasks . Negative goals seem to be a
natural and tractable way to represent common threats to higher-level performance
goals . For example, without an explicit negative goal to avoid explosions, keeping a
boiler plant running would require inferring that explosions would clobber ways to
achieve a smoothly running plant. Each negative goal indicates a negative condition
to be avoided. Focusing on preventing negative conditions reduces the complexity



of threat control and avoids the need to even model the sometimes complex or even
esoteric reasons why it is often best to avoid certain conditions .

1 .2 .3

	

Reactive Planning and Threat Control: A Good Partnership

To address issues of complexity and practicality, reactive planners [Agre & Chapman, 1987]
[Schoppers, 1987] have recently become popular over more exhaustive classical plan-
ners [Chapman, 1985] . However, because of their increased shortsightedness, con-
trollers using reactive planning to achieve their performance goals would have even
greater need for threat control . An independent threat control mechanism could
offer a sort of "safety net" to avoid novel disasters that a reactive controller might
otherwise get itself into .

2

	

The Problem of Safety Control
What I am working towards is a means for providing just such a safety net . In
this work, the focus is on a simplification of the threat control problem called safety
control. In this view, one assumes that the system is initially in a safe state, one
in which all its key performance goals are achievable . Safety control is the task of
detecting potential ways that the system may be moving towards negative conditions
and then proposing plans of control actions to prevent that from happening . The
negative goals implicitly represent some of the threats to performance goals that a
general threat controller would be trying to avoid. In particular, the negative goals
represent those threats which would actually preclude achieving its key performance
goals . In short, a safety controller acts to keep the system in safe states .

2.1

	

Negative Goals
Concentrating solely on preventing negative conditions promises to be more tractable
than general threat control . This is because it amounts to only worrying about
maintaining the achievability of the performance goals, without having to also show
how they are achievable . This view is also consistent with the intuition that, in order
to prevent unrecoverable errors, human operators tend to think more in terms of
preventing "bad" states than ensuring "good" ones are maintained . This strategy
seems appropriate for safety control because the point is to help avoid disasters
which would prevent ever achieving the performance goals, not to maximize system
performance.

Perhaps a more delicate issue is what should be the negative goals . Clearly,
the answer is domain-specific - it depends on what behaviors need to be avoided.
However, there are some general principles to consider . For one, context-dependency
should be minimized by preferring higher-level negative goals for conditions that are
universally bad. For example, using a negative goal to avoid explosions should be
preferred over using a negative goal to avoid pressures high enough to cause some



explosions. Although human operators do sometimes simply reason about system
parameters leaving nominal ranges, the intent here is to let the qualitative physics
decide under which contexts potentially dangerous conditions, such as high pressure,
should be avoided.

Thornier cases are conditions such as overflowing containers. It seems clear that a
controller should "outlaw" explosions, but what about overflows? On the one hand,
overflows are only really disastrous in cases such as the exported liquid doing damage
to external devices or being unrecoverable and essential for system performance . But
predicting whether such behavior will result from an overflow is often difficult or
impossible . Obviously, the ideal answer involves weighing the chance versus the cost,
but often such information is unavailable .

The tendency here is specify negative goals for conditions such as overflows, leav-
ing it to a conflict resolver to override such goals only in those rare situations where
avoiding such conditions would probably lead to even less desirable behavior . That
would reduce the complexity of safety control for most cases yet still allow for novel
solutions based on first principles for such rare ones . The good news for domains
such as well-engineered systems is that such conflicts are probably much rarer than
in everyday life, simply because designed artifacts are usually made to minimize the
potential for such conflicts .

2.2

	

Separability of Safety Control and Quality Control
The underlying architecture for system control that I propose consists of two au-
tonomous components: a safety controller and a quality controller . The safety con-
troller would provide the safety net which prevents behavior that would unrecoverably
preclude achievement of the key performance goals . This would free the quality con-
troller, perhaps an opportunistic reactive planner, to concentrate on ways of best
achieving the performance goals . The safety controller plays the role of a stabilizer
- helping to bring the system to a functional state in response to novel dangers .

An underlying assumption of this architecture is that the key performance goals
are still achievable as long as all negative goals are achieved . The-intuition is that in
many cases almost anything is possible as long as some fundamental constraints are
not violated . For example, as long as a plane does not crash or lose its wings, it has
a chance to land safely (a key performance goal) . By being able to land safely, it can
be refueled, flown to other destinations that were not optimally visited when it flew
nearby earlier, and so on to finish satisfying the other performance goals .

Of course, things are not so simple in practice because of resource limitations .
For example, making money is usually another key performance goal for an airline .
So, it cannot typically afford to just land and refuel its planes whenever they run
low on fuel due to poor quality control. One might be tempted to simply make
avoiding non-positive net income a negative goal as well and let the safety controller
worry about that condition ever becoming unavoidable . However, I do not expect
this theory of safety control to be suitable for such problems. Unlike allowing safe



landings, a goal for non-positive net income is not related to the dynamics of the
system. The proposed theory of safety control is intended to take advantage of the
relatively high constraint in the dynamics of well-engineered systems . In general, it
will probably not be of much use in preserving the achievability of goals when that
depends more on the actions of external agents than the dynamics of the physical
world . Coupling a theory of how external agents can impact the system with a theory
of safety control could address such problems, but I will concentrate in this work on
the safety control problem; it is a significantly hard problem all by itself.

Since many practical control problems do involve some such troublesome perfor-
mance goals, the burden for making sure such goals can be achieved rests with the
quality controller . It is therefore important that the safety controller minimizes its
own control actions, allowing the quality controller maximum flexibility to control as
required for optimal performance . Towards this end, my theory of safety control em-
phasizes controlling with patience, using qualitative simulation to carefully determine
when further delay in control actions would conflict with the negative goals .

3

	

The Proposed Safety Control Framework
To address the above issues, I have begun to develop a framework for safety control,
called SCOPS (safe control of physical systems) . Figure 1 illustrates the basic structure
of this framework . This framework suggests an incremental observe/interpret/worry/
avoid cycle for processing observations over time . Each component is briefly high-
lighted by the following subsections .

3.1

	

The Simulator
The qualitative simulator provides the means for postdicting how new states could
arise from previous states (interpretation) and predicting how current states could
lead to unsafe states (worrying) . It also provides the means for predicting the effects
of control actions, as required by the avoider . In each case, simulation takes the role
of incrementally building up the relevant portion of the implicit total envisionment
for the system, referring to it to avoid resimulation whenever possible . As noted
earlier, such simulation must be able to account for both the dynamics of physics
and the effects of actions, especially control actions . I assume that a sound and
complete model of the dynamics of the system is available and represented in terms
of Qualitative Process Theory [Forbus, 1984] .

3 .2

	

The Monitor
Typically, the monitor provides the observations to the interpreter for processing .
However, the monitor is also responsible for trying to obtain additional observations
which can disambiguate alternative predicted behaviors, as requested by the worrier
and the avoider .
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Figure 1: Overview of the SCOPS architecture



3 .3

	

The Interpreter

Across-time observations are interpreted as possible states over time. The interpreter
invokes the simulator to determine what kind of state the system might be in at the
current time, based on the new observations and the previous states it might have
been in. This is done using DATMI [DeCoste, 1989] [DeCoste, 1990], resulting in a
space of alternative paths of states over time consistent with the incomplete obser-
vations and the ambiguous qualitative predictions of the simulator. However, for
this task DATMI's simplification of using pre-compiled, total envisionments of total
states to form this interpretation space is inappropriate. Consequently, this inter-
preter must maintain an interpretation space of partial states as the envisionment is
incrementally generated by the simulator.

3 .4

	

The Worrier
As system behavior is tracked by the interpreter, the worrier checks whether the
system may have entered an unsafe state. Knowing when to worry about threats to
safety first requires an operational definition of safety. The proposed theory of safety
control suggests the following one:

Definition 3.1 (Safe state) Let the states which contain the negative conditions
for any negative goals be called the negative states . A state is considered safe when
future negative states cannot arise due to the dynamics of the physical system alone.

A state might then be shownto be safe by simulating to prove that no future behaviors
lead to negative states .

Of course, determining safety by such exhaustive proof could be extremely ex-
pensive because simulation typically branches forward due to qualitative ambiguity
and behaviors can span many states before reaching equilibrium or cycling back into
previous states . In fact, this task is not even decidable unless the implicit total
envisionment is finite .

To address this complexity problem, this framework relies on a key simplifying
assumption : the initial state of the system is safe . This implies that any unsafe
future state must arise due to some harmful external actions in safe states . Using
this assumption, the worrier knows that control actions need only be considered when
new dangers are indicated in the difference between the previous state (P) and the
current one (C) .

Determining whether the differences between P and C mean the system has
entered an unsafe state can be broken into two steps. First, influence analysis on
the differences are checked to see whether they could possibly influence the system
more towards any of the negative states . Such analysis would basically consist of
search through the graph of qualitative influences . If that search indicates C has no
influences towards negative states that P did not also have, C can be considered safe
as well .



d = dangerous state
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Figure 2 : Example state history showing different types of states

Circles represent states and arrows represent transitions . Each circle is labelled at
its center with the type of state it represents . Refinements of partial states are
represented as circles within larger circles .

When influence analysis cannot determine that a state is safe, the worrier invokes
qualitative simulation . Fortunately, the assumption that the initial state is safe
can help reduce the complexity of this simulation as well . As each new state S is
generated during simulation, the same type of influence analysis as suggested above
can be used, with S instead of C now. One goal of this research is to assess when
such influence analysis actually helps . Simulation continues until each path leads to
a negative state or a safe state .

For further efficiency, a distinction can be made among unsafe states :

Definition 3.2 (Dangerous state) Dangerous states have at least one may to reach
a negative state that does not require any actions to occur. Furthermore, doomed
states are dangerous states which cannot even avoid reaching negative states if con-
trol actions occur 1 . Negative states are themselves considered doomed. A state which
is not dangerous is safe .

This means that simulation down a path can also be terminated whenever a known
doomed state is reached.

The result of all of this simulation is the determination of whether possible current
state C is safe . Figure 2 provides a sample state history which illustrates how safe,
dangerous, doomed, and negative states relate to one another.

In cases where the safety controller is thrown into the middle of a complex situa-
tion, the assumption that the initial state is safe might be quite disastrous . However,

'Control actions are considered to be just the subset of the external actions available to the safety
controller. We do not prohibit the possibility of a heroic external agent saving us from an (apparently)
doomed situation .



I suspect that in many cases it would not be unacceptable to start safety control
when the system is at least likely to be in a safe state . If the initial state is not a
doomed state, there is some hope for detecting danger before it becomes unavoidable .

When the assumption of initial safety seems inappropriate, one certainly could
attempt to exhaustively prove (via qualitative simulation) that the initial state is
safe . Such exhaustive proof seems especially undesirable for cases where simulation
is so costly that heuristics for estimating safety are essential (see Section 5.1 .3) . In
such cases, the assumption that the initial state is truely safe may be required for
tractability.

3 .5

	

The Avoider
When the worrier identifies a possible current state C as dangerous, the avoider is
invoked to decide how to control to avoid following the paths from C which reach the
negative states . If C is a doomed state, it might still be useful to try early control
actions which may delay the occurrence of the negative state . The idea is to "buy
time" in hopes that some external actions might fortuitously or intentionally be able
return the system to some safe state if given enough extra time .

On the other hand, if dangerous state C is not doomed, it seems that it would often
be best to postpone control actions as long as possible - that is, until just before a
doomed state is reached. The intuition is that the actual behavior may fortuitously
turn out to follow one of the paths leading to safe states . Due to ambiguity in
qualitative simulation and incomplete observations, the particular behavioral path
a system is following may not be known. Recall that in this framework the safety
controller should strive to control only as necessary - to leave the quality controller
as much room for optimizing as possible.

To decide which of the available control actions might be useful, the avoider can
first invoke influence analysis to find candidate actions which either :

1 . Defeat preconditions or quantity conditions of processes which are influencing
the system towards the negative state . For example, turning off a pump which
is pumping water into a container might help avoid the container overflowing .

2 . Activate new processes which influence the system away from the negative
state. For example, pumping water out of a container can help keep it from
overflowing .

The simulator can then indicate which actions would return the system to a safe
state . Since the interpreter will typically not have been able to uniquely identify
the current state, the avoider should request additional data from the monitor to
reduce the ambiguity. When ambiguity still remains, control actions which bring
the most alternative states to safety should be preferred . Furthermore, alternative
states which are "more dangerous", such as doomed ones or ones with more paths to
negative states, should be given priority.



3 .5 .1

	

A Note About Doom

As doomed states are identified during simulations, a sort of "cloud of doom" will
grow out from each negative state . In a sense, the safety controller is striving to
avoid bumping into these clouds while allowing all other behaviors, to give the quality
controller maximal space to work with . It might seem more efficient to just simulate
backwards from the negative states and determine these clouds directly. Then, the
expensive task of forward simulation to check if a state is safe could be avoided.

Although some amount of pre-growing of these clouds of doom might indeed prove
very useful, I suspect that such backward simulation would not be preferable to the
forward simulation advocated. Its condition for terminating simulation paths is iden
tical to the forward simulation: when a safe or doomed state is reached . The problem
with such backward simulation seems to be that there can be an enormous number
of states which contain the negative condition of any negative goal - thus, there can
be an enormous number of negative states from which to simulate backwards . Con-
sidering only negative states which are much like the current states might be a useful
heuristic, but, then, so might be imposing depth bounds on forward simulation .

3 .6

	

The Quality Controller
My theory of safety control has little to say about how the quality controller should
work. The main concern is that the safety controller be able to deny an unsafe
action suggested by the quality controller . This involves pretending that the action
was performed and seeing if the current states would be dangerous. If dangerous
states could result, the action might still be allowed if the avoider could find ways to
bring the system back to safety.

4 Examples
The following three examples each demonstrate one of the three basic cases identified
so far in this theory of safety control. These examples are all simple ones which our
current qualitative theories of thermodynamics can model reasonably well . More real-
world examples are also being developed, including some in the domain of aircraft
engine failures [Schutte, 1990] .

4.1 Example 1: Calmly Coming Face-to-Face With Doom,
Part I

This example illustrates a case where a dangerous state is detected but control actions
can be deferred until just before a doomed state would be reached. In this case the
doomed state immediately precedes its negative state .

Scenario:
A pump-cycle consisting of two cans of water connected by a pump (from CANI to
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CAN2) and a valved pipe (see Figure 3) .
Negative goals :

Avoid OVERFLOW (CAN 1) being active .
Avoid OVERFLOW(CAN2) being active .

Available controls :
Turn the pump on or off.
Open or close the pipe valve .

Previous state:
WATER-LEVEL(CAN1) > WATER-LEVEL(CAN2) .

Current observations:
WATER-LEVEL (CAN1) is dropping and WATER-LEVEL (CAN1) > WATER-LEVEL (CAN2) .

Worrier:
Detects that there is more danger of OVERFLOW(CAN2) becoming active .

Possible current states :
The pump is on, or the valve is open, or both.

History trees from current states :
All paths lead to safe states - except for the state where the pump is on and the
valve is closed, which can lead to the sole doomed state. (Actually, if HEIGHT(CAN2)
< WATER-LEVEL (CAN 1), then other states could also be dangerous.)

Doomed state:
CAN2 is full and WATER- LEVEL (CAN2) is rising .

Avoider:
Realizes that the system is not in a doomed state yet; discovers that the control
action of turning off the pump, in the state S just before doomed state, would be
sufficient to avoid reaching the doomed state.

Control action:
Turn off the pump, but only when the system enters state S (if ever) .

Note:
If the amount of total water in boths cans is less than the capacity of CAN2, then
there is actually no need to worry. This is a type of global constraint that would be
nice to handle (see Section 5.2.4) .

4.2

	

Example 2 : Delaying Doom
This example illustrates the case where a dangerous state is detected which is doomed.
In this case, the avoider suggests control actions to delay when the negative state is
reached.

Scenario:
A pump-cycle consisting of two cans of water connected by a pump (from CAN1 to
CAN2) and a valved pipe (see Figure 3) .

Negative goals :
Avoid OVERFLOW(CAN1) being active .
Avoid OVERFLOW(CAN2) being active .
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Figure 3: Two-can pump-cycle

Available controls :
Turn the pump on or off.
Open or close the pipe valve.

Previous state:
WATER- LEVEL (CAN 1) is dropping and WATER-LEVEL (CAN1) > WATER-LEVEL (CAN2) .

Current observations:
External water is flowing into CAN1 and WATER-LEVEL (CAN1) > WATER- LEVEL (CAN2) .

Worrier:
Detects that there is more danger of either OVERFLOW(CAN1) or OVERFLOW(CAN2)
becoming active .

Possible current states:
The pump is on, or the valve is open, or both. The relation between WATER-LEVEL (CAN 1)
and WATER-LEVEL (CAN2) can be anything, depending on the relative rates of the
EXTERNAL- FLOW- INTO -CAN 1, PIPE-FLOW, and PUMP-FLOW processes.,

History trees from current states :
All paths lead to either OVERFLOW(CAN1) being active or OVERFLOW(CAN2) being
active .

Doomed states :
All states in the history trees are doomed.

Avoider:
Realizes that system must now be in a doomed state; plans to delay doom, using
reactions over time which depend on which state the system enters .

Control actions :
When WATER-LEVEL (CAN1) is rising : Turn on the pump.

	

Open the valve unless
WATER-LEVEL (CAN 1) < WATER-LEVEL (CAN2) . The idea is to minimize the net flow
into CAN1, to maximize the time before OVERFLOW(CAN1) becomes active .
When WATER-LEVEL (CAN 1) < WATER-LEVEL (CAN2) : Turn off the pump and open the
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valve. The idea is to keep the water levels of the two cans equal, so that neither one
overflows earlier than it has to .

4.3 Example 3: Calmly Coming Face-to-Face With Doom,
Part II

This example again illustrates a case where a dangerous state is detected but control
actions can be deferred until just before a doomed state is reached. However, unlike
Example 1, this doomed state is not temporally adjacent to its negative state . Thus,
this example demonstrates the importance of qualitative simulation in determining
exactly how long control actions can safely be deferred .

Scenario :
A pump-cycle consisting of three cans of water. A valved pipe connects CAN1 with
CAN2 and a pipe connecting CAN2 with CAN3 only allows water to flow through it
from CAN3 to CAN2 . The pump starts pumping water from CAN1 to CAN3 whenever
WATER-LEVEL (CAN1) > TRIGGER-LEVEL . Once this pumping starts, it only stops when
WATER- LEVEL (CAN1) = DESIRED-LEVEL . This pumping action is built into the sys-
tem to help ensure that WATER-LEVEL (CAN 1) stays below TRIGGER-LEVEL and near
DESIRED-LEVEL .

Negative goals:
Avoid OVERFLOW(CAN1) being active .
Avoid OVERFLOW(CAN2) being active .
Avoid OVERFLOW(CAN3) being active .

Available controls :
Open or close the pipe valve.

The Problem:
If water flows from CAN2 to CAN1, then the controller might have to make sure to close
the pipe valve before WATER-LEVEL (CAN1) > TRIGGER-LEVEL becomes true. Other-
wise, the system mightpump enough extra water into CAN2 to activate OVERFLOW (CAN2) .

So, the worrier has to realize that if water is flowing from CAN2 to CANT and
WATER-LEVEL (CAN3) >_ WATER-LEVEL (CAN2), then there is subtle potential danger
of OVERFLOW(CAN2) becoming active . The avoider cannot simply defer the control
action (of closing the valved pipe) until CAN2 is just about ready to overflow - as
was acceptable in Example 1 - because by that point the system might already be
doomed. In particular, the pump could be relentlessly pumping water from CAN1 to
CAN2, through CAN3, until WATER-LEVEL (CAN1) = DESIRED-LEVEL. Careful qualitative
simulation, along with additional monitoring if possible, would indicate at what point
control is required.
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Figure 4 : Three-can pump-cycle with a triggered pump
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Summary of Major Advances Required
In this section, I discuss the major issues and potential approaches which I intend to
explore during the development of this proposed theory of safety control.

5 .1

	

Negative Goals and Safety

One fundamental issue to address concerns the utility of viewing safety control as
the avoidance of negative conditions . The focus on negative goals in this proposed
theory is due to an underlying subtle but significant distinction between "avoiding
danger" and "maintaining safety" . Negative goals represent dangerous conditions
to avoid whereas their dual equivalents represent safe conditions to maintain . For
example, if avoiding the overflow of a container is a negative goal, then the water
level being below the top of the container would be the equivalent positive condition
to maintain in all safe states . Although safe control could theoretically be realized
with either view, the claim here is that avoiding negative conditions can often be
more operational than maintaining positive conditions .

The intuition of this claim can be seen by contrasting the nature of clouds of doom
with their dual : clouds of safety. Just as clouds of doom consist of all the doomed
states, these clouds of safety consist of all the safe states . The proposed view of safe
control is that of avoiding to enter the clouds of doom. The alternative view is that
of staying within the clouds of safety. The intuition is that avoiding clouds of doom
is more operational because the negative states provide suitable "seeds" for those
clouds, whereas clouds of safety typically have no such seeds.

Some measure of the distance between the current state and a negative state can
offer help in estimating whether a system is approaching a cloud of doom. To satisfy
an analogous role, the seed of clouds of safety would have to represent the ultimate
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safe states . That would allow estimates of whether the system is moving towards
the fringes of the cloud of safety it is currently in. Unfortunately, such ultimate safe
states are typically difficult to formulate or require numerous alternative states to
specify adequately. For instance, consider the overflow example mentioned above.
One ultimate safe state might involve the container being empty. However, some
such states might actually be doomed; for example, the empty container might be
under a running sink faucet which is stuck.

By allowing suitable distance-based estimates of whether things are getting worse,
my view of safety control as the avoidance of negative conditions is especially useful
for real-time safety control . In time-critical safety control tasks where the current
state may be one of many alternatives (due to incomplete observations), it is perhaps
far more important to quickly identify as many of the dangerous states as possible
in the time allowed than classifying each state as safe or not. Using negative goals,
search can be focused first on those simulation paths which have high estimates of
leading to negative states . A dangerous state can then be identified as long as a
single potential path to a doomed state is discovered.

5 .1.1

	

Formulating Negative Goals

Despite the potential gains in focusing on negative goals, there are some serious open
issues in how to best formulate them. One issue is that the set of appropriate negative
goals may be somewhat contextually dependent, according to the mode of the system.
During the taxi-ing stage, for example, avoiding the loss of cabin pressure might not
be a negative goal to worry about, but during high-altitude cruising it might be
appropriate to have such a negative goal .

Furthermore, in practice some negative goals may be more critical than others .
For example, it might be best to avoid high turbulence during flight because such
behavior presents significant risk of damage to the aircraft or to its stability. Since
whether such damage will occur seems difficult to simulate with sufficient accuracy
and such turbulence does not typically have any particularly redeeming qualities, high
turbulence seems a reasonable condition to avoid using a negative goal . However,
some situations may require accepting conditions such as high turbulence to avoid
a higher-order negative condition, such as guaranteed damage to the wings . For
example, one might have to avoid the wings hitting a mountain by subjecting the
aircraft to a pocket of strong air currents above it .

Addressing these sorts of difficulties seems to require some sort of theory of the
teleology of the negative goals . For example, this would require an understanding
that high turbulence is a negative condition because it can easily lead to a higher
order negative condition such as aircraft damage. Then, such a negative condition
might be tolerated only in attempts to avoid the higher-order dangers or when the
risk of such higher-order dangers is counteracted by sufficiently high rewards .

An interesting possibility is to use extensive off-line envisioning as a decision tool
in formulating appropriate negative goals . Envisioning could help determine the
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clouds of doom for each candidate negative goal . An action-augmented envisionment
of each particular mode of system behavior could be partitioned by these clouds of
doom to see how well they isolate the normal system states from the undesirable states
which fail to reach the key performance goals . This approach might be especially
useful in domains where there is insufficient experience for suggesting an appropriate
set of negative goals .

5 .1 .2

	

Safety versus Resiliency

A distinction should also be made between safety, as defined in this proposed theory
of safety control, and resiliency, as defined below:

Definition 5 .1 (Resilient state) A state is considered resilient when future nega-
tive states cannot arise due to the dynamics of the physical system nor due to plausible
actions or failures of system components .

Thus, when the system is in a resilient state, it is not only safe but it is also unlikely
to become unsafe even if actions or system faults occur.

The proposed SCOPS architecture does not attempt to keep the system in a resilient
state because :

1 . The simulation required for determining resiliency would be much more expen-
sive than for determining safety. It would require that the worrier consider
branches due to external actions and system faults while following potentially
long simulation paths into the future .

2. In many cases, a sudden occurrence of a system fault or external action will
not immediately move the system into a doomed state . The assumption is that
there will be enough time after the danger first arises for the avoider to prevent
a doomed state from occurring .

Nevertheless, it is important that the interpreter does consider how possible ac-
tions and system faults could lead to the current state. Without such considerations,
the interpreter cannot provide the worrier with a comprehensive set of possible cur
rent sets . That could lead to the worrier not realizing that the system might be in a
(unknown) dangerous state . Unlike the simulation required by the worrier, the sim-
ulation invoked by the interpreter to connect a current state with a state consistent
with the previous observations will not typically involve long paths of states . Thus,
branching for plausible faults and external actions should be much more likely to be
tractable during interpretation .

There are still some types of branching not due to system dynamics which it
might be both highly desirable and computationally acceptable for the worrier to
consider . One type is control actions due to the normal operating procedures that
would be used by the quality controller . When such procedures are represented as
simple associational rules which map a state into one control action, little extra cost
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would be incurred during simulation. In return for this small expense, this scheme
would avoid worrying about dangers that the standard operating procedures can
already handle.

Another type of branching which might be worth the cost to the worrier is those
due to highly likely actions or faults which can easily lead to doomed states . For
example, if one knows that a certain critical pump is acting up and its replacement
will not be available for two days, it might be worth making sure that control actions
are taken to avoid doom if the pump does happen to break . Although SCOPS is not
intended to address the full problem of resiliency control, some small steps in that
direction might be worth exploring in this work once the safety control foundation is
more secure .

5 .1.3

	

Estimating Safety

To accurately determine whether a state is safe or not, the worrier must exhaustively
simulation from that state, to see if any doomed states will be reached. This can easily
result in significant amounts of forward branching due to the ambiguity in qualitative
simulation . Since such simulation is unlikely to be tractable in many real-world
situations, it is of great practical importance to be able to estimate relative degrees
of safety. By having already assumed that the initial state is safe, the worrier would
then be willing to avoid costly simulation as long as the current state is estimated to
be no more dangerous than its previous state.

Since many schemes for estimating safety are possible, one of the goals of this
research is to organize the space of such schemes and explore their tradeoffs. In-
tuitively, a state's measure of safety might best be based on the relative level of
expected danger, as follows:

Definition 5.2 (Relative safety) Let the expected danger of a state be. the sum,
over each negative condition of the negative goals, of the product of the cost of that
negative condition and the likelihood of the system degrading from that state into a
negative state containing that negative condition. State A is considered more danger-
ous than state B if the expected danger of A is greater than the expected danger of
B .

In lieu of accurate numeric measures of such likelihoods and costs, these measures
themselves must be estimated. The costs of negative conditions should be based on
the teleology of the negative goals. For example, higher-order negative conditions
should typically be more costly than lower-order ones.

The following intuitions suggest some heuristics for estimating the relative likeli-
hood of a state being safe :

1 . Time and space metrics . A state's chance of being safe is typically propor-
tional to the distance between a state and a negative state. Thus, as a simula-
tion path from a state increases in length without finding dangerous states, the
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concern that the state is dangerous should generally decrease . This suggests
that in time-critical tasks, where one must concentrate on finding the most
dangerous states first, some sort of branch-and-bound simulation is probably
best .

2 . Likelihoods of alternative branches. Some branches due to qualitative
ambiguity are more likely than others . Those branches which are more likely
should contribute more to the measure of a state's safety. For example, a state
should probably not be considered highly dangerous when the only way it can
lead to a negative state is due to some coincidental behavior - such as two
water levels becoming equal in two non-interacting subsystems and then those
subsystems later interacting in such a way that those levels being equal matters .

3 . Percentage ofdoomed paths. As the percentage of forward branching paths
from a state that lead to doomed states increases, the chance of that state being
safe tends to decrease .

Furthermore, when safety is being estimated instead of proven, the importance
of resiliency increases . Therefore, it seems useful to have some means of estimating
resilency as well, such as :

1 . Degrees of freedom. The expected resilency of a state seems proportional to
the number of control actions which would result in distinct states to which a
state would otherwise not lead . The expected resilency also seems to be pro-
portional to how uniformly the control actions can scatter the future behavior
within the space of states which are likely to be safe . The intuition is that when
the system can be controlled to move from a state into, almost any other state,
the chance of the system being stuck in unsafe states is less .

2 . Time and space metrics . The closer the danger is, the more likely it is that
there will be no way to control the system to a safe state .

3 . Transformability. If a sequence of control actions can be found for moving
the system from the current state to a known safe state, then the current state
can be considered safe as well .

5 .2

	

Qualitative Simulation

Qualitative simulation plays a central role in SCOPS. Some of the more important and
novel issues are mentioned in the following subsections .

5.2 .1

	

Incremental Envisioning

Unlike current qualitative simulators [Kuipers, 1986] [Forbus, 1990] [Forbus, 1989],
SCOPS's simulator must be able to incrementally generate the relevant portions of
an implicit total envisionment as needed, without requiring the states to be totally
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specified. Without such envisioning, the interpreter could not hope to efficiently
maintain a concise interpretation space in most cases.

In a joint project, John Collins and I are developing just such an incremental en-
visioner, called IQE (Incremental Qualitative Envisioner) [DeCoste & Collins, 1991] .
Abstractly, it is a hybrid of novel extensions to history generation [Kuipers, 1984],
means-ends analysis, and action-augmented envisioning [Forbus, 1989] . In addition
to our collaborations on this project, however, we -are each developing independent
extensions which are directed more towards our unique requirements . The following
discussion of qualitative simulation solely concerns those unique requirements of my
work on safety control.

5 .2 .2

	

Temporal Projection

Although IQE will be capable of some limited temporal inference, the SCOPS frame-
work requires a richer capacity for temporal projection . For example, the notion
of state transitions which each directly connect two envisionment states should be
generalized to achievable transitions which can each represent the numerous alterna-
tive paths connecting two states . The motivation is that the interpreter and worrier
do not always require knowing the exact path connecting two states, but simply
whether some such path exists . The idea is to perform less detailed simulation when
such distinctions are not required .

Another complex issue in temporal projection to address is how to inherit tem-
poral constraints between other contexts to avoid the cost of recomputing them in
similar contexts. Since the IQE framework is based on the use of an assumption
based truth maintenance system (ATMS) [de Kleer, 1986] [Collins & DeCoste, 1991],
the ability to cache temporal constraints across contexts seems both desirable and
possible . For example, if one ATMS environment El is an immediate temporal succes-
sor of another environment Ez , then it might follow that subsuming environments of
El must immediately succeed subsuming environments of Ez .

5.2 .3 Durations

In order for the avoider to use its strategy of delaying doom, durations of conditions
and ways of influencing them must be represented. Two types of information seem
required:

1. Causal influences - Determining which control actions can delay the oc-
currence of a condition, requires knowing the causal chains of influences on
the duration of that condition. These influences might be determined in QP
theory by reasoning about the influences on the rates of change in processes .
The influences on the rates of change in processes in turn effect the durations
of the processes themselves, which can then affect the durations of the process
effects.
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2. Duration bounds - Sometimes it is also important to know the partic-
ular range of time that some condition can hold . For one, this informa-
tion can be useful to prune the interpretation space to remove ones incon
sistent with duration constraints . Such bounds are similar to persistence times
[McDermott, 1990], but the idea here is to also model the casual influences
on those duration bounds in order to capture contextual constraints on persis-
tences . I suspect that such modelling can be achieved by appropriately aug-
menting the language of process descriptions .

5.2.4

	

Global Constraints

Since not all global information is represented in the global states of envisionments,
current qualitative simulators tend to suffer from occasional problems of global un-
soundness [Kuipers, 1986] . This is of particular concern for safety control since the
major objective is to only control when required . Globally unsound simulations can
lead the safety controller to controlling in states that actually do not lead to doomed
states .

For example, in Section 4 .1 it was noted that an overflow need not really be
worried about when the total amount of water in the two containers is less than the
capacity of container CAN2. The simplest solution - comparing the capacity of CAN2

against the total amount of water in the entire system - would work in this case but
would be be insufficient for more subtle cases . The general solution probably requires
that the value for such an extra global variable be recorded in the particular states
themselves as it changes over time . For example, if half of the water is removed and
placed in some third container of the system, the relevant portion of the total water
for determining whether the overflow of CAN2 is now only half even though the total
water is still the same. The difficulty seems to be in deciding which extra global
variables to store in the global states and when they are relevant . Without special
care, the number of global states can exponentially explode to represent all possible
combinations of values for all the extra global variables .

Another way that global constraints might be utilized is by noting whether some
previously observed global cycles of behavior, such as an oscillation, could reflect a
peak point in the possible behavior . For example, if one saw a ball bounce up and
down in a room without hitting the ceiling, one would not expect it to do so on
successive bounces. One would no longer worry about the ball hitting the ceiling
until something happens which could causally influence this situation - such as the
room being rocketed away from the earth's gravity or the ceiling being pushed down.
Although the answer seems to be to somehow represent the total energy of the ball
as part of the global state, such extra global variables must be used with extreme
care, as noted above.

The use of extra global variables to address this problem is not new. In fact,
Kuipers has argued for the use of distinct values for these extra global variables,
called landmarks [Kuipers, 1986], to extend the quantity space as potentially relevant
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new values are detected during history generation. However, the unresolved issue to
address here is how to tame the introduction of such landmarks to reduce the danger
of combinatoric explosions mentioned earlier .

5.3

	

Teleology of controls

To most effectively utilize the available controls, the safety controller should have
some knowledge of the teleology of those controls . Knowing why a control was de-
signed into the system is one very strong clue for when to use it . Furthermore, when
several control actions seem promising, there is intuitive appeal to preferring the one
which applies in fewer contexts than the other control actions . The idea is that that
must be one of the few cases where that control action is most appropriate . In the
case of well-engineered systems for which one can assume the designer was competent
and had a purpose for each control, this view may have considerable merit.

Although the actual purpose and nature of each control is largely domain-specific,
several key dimensions of controls seem especially useful to reason about :

1 . utility context - defined by the performance limitations of the control . For
example, pumps usually have limits to how high of a pressure difference they
can maintain .

2 . operating context - defined by how the control action is performed. For
example, closing a valve may be considerably more difficult when the water
current is strong . Also, if the operator is too far away from a valve and a control
action is required immediately, a closer control must be sought - perhaps even
to just delay the danger to buy time for reaching the valve .

3 . reliability - whether the control will be in working order when needed. In
contexts where a control is suspected to be unreliable and alternative controls
are not suitable, strategies such as waiting until just before doom must become
more conservative to provide a margin of error .

4. start-up time - the time between when a control is invoked and when it
begins to function . Obviously, one should also not wait until just before doom
to invoke a control that will take some time to start-up .

In all of these cases, the hope is that by modelling the controls as part of the system
as a whole, these dimensions can be reasoned about in a robust way.

6

	

Summary of Major Assumptions and Claims
1. Negative goals can adequately define safety.

2. The system starts in a safe state .
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3. A sound and complete model of the system is available .

4. Safety control and quality control can be performed largely independently.

7

	

Related Work
This section highlights some of the related work which has not already been discussed
above.

7 .1 Interpretation
SCOPS's interpreter builds on both my earlier DATMI work [DeCoste, 1989] and the
MIMIC process monitoring work [Dvorak & Kuipers, 1989] . Both systems address the
important problem of tracking the system state over time by dynamically pruning
the space of interpretations as observations are made. DATMI employs a top-down
approach, mapping the system envisionment onto the observed history to find the
full set of possible current states, even when the observations are very incomplete.
In contrast, MIMIC uses a more bottom-up approach, using the observations to drive
the incremental simulation as it tries to casually relate previous observations with
the current ones . In order to take advantage of the full potential of the incremen-
tal envisioning used by SCOPS's simulator, the interpreter combines DATMI's use of
envisionments and MIMIC's use of incremental history generation .

7.2

	

Qualitative Physics
Despite some work in using teleological knowledge of system components to guide
explanation [deKleer, 1984], diagnosis, and design [Franke, 1989] of physical systems,
little attention seems to have been given to how teleological knowledge of controls
can be used along with causal models of those controls in control tasks .

Reasoning about how an external action or system fault may move a system more
toward a negative condition is a form of comparative analysis [Weld, 1988] . Whereas
qualitative simulation is the prediction of behavior over time, comparative analysis
is the assessment of how an earlier perturbation would affect that behavior . For
example, comparative analysis could determine that using a heavy block in a spring-
block system would increase the period of oscillation .

However, Weld's differential qualitative (DQ) analysis and exaggeration tech-
niques for comparative analysis are insufficient for SCOPS's worrier . As Weld points
out, there are many cases where his techniques cannot determine the effect of a per
turbation even though qualitative simulation of the perturbed system would. For
example, DQ cannot determine that an increase in the pumping rate for the pump-
cycle of Figure 3 would increase the water level of CAN1 at equilibrium . Yet, in order
to avoid an overflow, a safety controller must be able to make just such a conclusion .
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Although these techniques are insufficient for a theory of when to worry in safety
control, they could still play a useful role . In particular, they could at least let
the worrier avoid expensive qualitative simulation in those situations when such
weak techniques are still sufficient for determining that observed perturbations cause
changes away from the negative conditions .

7.3 Planning
The notion that safety control is the task of maintaining safety (see Section 5.1)
suggests a relation to Gervasio's work on achievability proofs [Gervasio, 1990] . These
achievability proofs are able to assert that a goal is achievable without actually hav-
ing to determine a specific plan of actions to do so. The issue is whether analogous
maintainability proofs could be formulated to determine whether a state is safe with-
out requiring simulation . For example, if a key performance goal is having food to
eat, being near a grocery store might ensure safety with respect to that goal . This
seems analogous to Gervasio's multiple opportunities class of achievability proofs .

However, as Gervasio admits, such proofs are perhaps better viewed as merely
plausible ones since they are typically defeasible in practice . Her call for reasoning
about degrees of achievability may be partially addressed by heuristics for estimating
safety, such as those proposed in Section 5.1.3 .

In most earlier work in planning, the need for practical temporal projection was
largely ignored . Such projection is especially important for tasks such as safety
control where the exact current state is usually not known with much certainty.
Hanks' recent work [Hanks, 1990] argues for the utility of bundling states when they
differ only in ways which are irrelevant to the objective of the projection . The hope
is that through careful use of such bundling, exponential explosions due to forward
branching in the projection tree can be avoided. This bundling technique seems to
be similar to the use of partial states, as opposed to totally-specified ones, in our
incremental envisioner IQE.

The work of Dean and Boddy also shares many of the underlying motivations of
my SCOPS work. Like our IQE work, they are working towards incremental causal
reasoning [Dean & Boddy, 1987] which is both tractable and avoids the weak, often
unsound, projections commonly made by most nonlinear planners . Their analysis of
anytime algorithms [Dean & Boddy, 1988] presents a useful framework for exploring
problems such as time-critical safety control .

Wellman's notion of tradeoff formulation based on qualitative probabilistic net-
works [Wellman, 1990] is relevant to both SCOPS's worrier and avoider . For real-world
problems, safety must typically be estimated, either because the observations are un
certain or because they are too incomplete to allow tractable simulation of the many
alternative consistent behaviors to prove safety. Accurately estimating safety in such
cases requires resolving tradeoffs, such as whether to view an observation as reliable
or not and whether to reduce ambiguity in the observations by assuming some unob-
served condition holds. As Wellman emphasizes, resolving such tradeoffs is often best
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handled by first identifying what the real tradeoffs are . For instance, when trying
to avoid an overflow of CAN2 for the system of Figure 3, the worrier does not require
knowledge of the water level of CAN2 when the pump is off and the valve is closed .

Probabilistic notions of tradeoff formulation, such as Wellman's, are certainly nec-
essary for a general solution to optimal control . However, a weaker, non-probabilistic
notion may often be sufficient for safe control, especially of well-engineered systems.
For example, even if there is some danger that an aircraft engine may fail during
flight, it is not necessarily more dangerous to proceed towards a take-off. It might be
sub-optimal to proceed all the way down the runway when the danger of the engine
failing during take-off is very likely. But it might nevertheless be safe to do so, as
long as take-off can be safely aborted if the danger still exists right before take-off .
In SCOPS, being in a dangerous state is acceptable - as long as there will be a state
before any future doomed states in which evasive action can be taken to return to
a safe state . Even in Wellman's domain of medical therapy, such procrastination is
sometimes possible . For example, people often risk poor health by depriving them-
selves of some sleep or food, realizing that any ill-effects can be detected and treated
if necessary.

Nevertheless, SCOPS's non-probabilistic formulation of tradeoffs can result in overly-
conservative safety control - such as aborting a take-off even when the danger of the
engine failing during the take-off is very low or the likelihood of being able to land
safely if it did fail is very high . Whereas Wellman's probabilistic tradeoff formulations
identify conditions under which a plan must be replaced with another because it is
inadmissible, analogous formulations for SCOPS could be useful to identify conditions
under which a plan of control would be unnecessary.
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