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ABSTRACT 

 

Understanding and Critiquing Multi-Modal Engineering Design Explanations 

 

Jon Wetzel 

 

Designers often use a series of sketches to explain how their design goes through different 

states or modes to achieve its intended function.  Instructors find that learning how to 

create such explanations is a difficult problem for engineering students, thus giving the 

impetus to create a design coach which allows students to practice explaining their 

designs and give feedback on said explanations.  Given the complexity and wide scope 

of engineering design sketches, creating this design coach is a challenging AI problem.  

When communicating with sketches, humans act multi-modally, using language to clarify 

what would often be ambiguous or crude drawings.  Because these drawings can be 

ambiguous even to human viewers, and because engineering design encompasses a very 

large space of possible drawings, traditional sketch recognition techniques, such as 

trained classifiers, will not work.  This dissertation describes a coaching system for 

engineering design, CogSketch Design Coach.  The claims are that (1) descriptions of 

mechanisms, specified multi-modally using sketches and restricted natural language must 

be understood via qualitative reasoning, and (2) the validity and clarity of an explanation 
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of a mechanical design can be evaluated using a combination of design teleology and 

qualitative reasoning.  These claims are supported by a set of evaluations of the system 

on sketched explanations. 

 The work results in the following contributions: (1) new extensions to qualitative 

mechanics, a qualitative model of physics reasoning, for use with sketched input, (2) two 

new algorithms for identifying spatial mechanical relationships, (3) two new algorithms 

for generating items for critique of engineering design explanations, and (4) a teleology 

for describing and critiquing explanations of engineering designs.  Through a classroom 

intervention in a first year engineering design course the work resulted in (5) a corpus of 

240 multi-modal explanations and (6) data on a phenomenon we describe as sketching 

anxiety.  These contributions form a set of resources for building new engineering design 

tools like CogSketch Design Coach and provide insight into future challenges for AI and 

intelligent coaching systems for classroom settings. 
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Chapter 1 

Introduction 

1.1 Motivation 

The motivation for this work comes from the Design Thinking and Communication 

course1 (DTC) at Northwestern University.  DTC is the introductory course for 

freshman in engineering majors.  DTC students work in teams to solve a design 

problem for a real world client over the course of each quarter.  The course is two 

quarters long, and in the first quarter students are taught to use sketching as part of the 

design process.  However, instructors in DTC report that students have trouble learning 

to communicate with sketches.  Sketching is both an important form of representation in 

mechanical design, and the preferred method of external representation for engineers 

(Ullman et al., 1990).  Given the complexity and wide scope of engineering design 

sketches, creating a software coach that could let students practice explaining their 

designs and give feedback on said explanations is a challenging AI problem.  

1 http://segal.northwestern.edu/programs/undergraduate/design-thinking-communication/index.html 
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 When communicating with sketches, humans act multi-modally (see Figure 1), 

using language to clarify what would often be ambiguous or crude drawings.  Because 

these drawings can be ambiguous even to human viewers, and because engineering 

design is a very large space of possible drawings, traditional sketch recognition 

techniques such as trained classifiers (de Silva et al., 2007; Plamondon & Srihari, 2000; 

Wobbrock et al., 2007) will not work.  The goal of this thesis is to show that using 

qualitative reasoning and engineering design teleology, an AI system can understand 

and critique multimodal explanations of early stage engineering designs involving 

mechanisms. 

1.2 Claims and Contributions 

In this thesis, we claim that:  

 
Figure 1: A simple overview of Design Coach  
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1. Descriptions of mechanisms, specified multi-modally, using sketches and 

restricted natural language, must be understood via qualitative reasoning. 

2. The validity and clarity of an explanation of a mechanical design can be 

evaluated using a combination of design teleology and qualitative reasoning. 

 Next we clarify the terms of in these claims.  In the first claim, the descriptions 

of mechanisms we are interested in are explained at the conceptual stage of design, 

lacking precise numerical dimensions and quantities.  Understanding descriptions of 

mechanisms entails the system predicting the behavior of the mechanism given the 

description and maintaining knowledge of the causation of the behavior suitable for 

explaining the behavior to the user.  A numerical physics simulator or engine would not 

satisfy this claim, both because the description may be missing necessary numerical 

information and because such simulators do not maintain a knowledge representation 

which explains the outcome.  The restricted natural language is human-readable 

structured language input of the kind introduced by Thompson et al. (1983).  The user 

may use the structured language to add qualitative statements to the descriptions, such 

as statements about the mechanism’s behavior (e.g. The ball can move; The ball moves 

to the left; etc.) or about its properties (e.g. An object is compressed; An object touches 

another object; etc.).  Understanding and critiquing descriptions with these statements 

further necessitates the use of qualitative reasoning. 

 In the second claim, design teleology entails understanding the function of a 

design.  Qualitative reasoning allows us to see if the behavior of the mechanism helps it 
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accomplish its function.  We say can here instead of must (as in the first claim) 

because the design teleology extends the range of statements and explanations we can 

critique, rather than enabling critiques entirely. 

 

 To support these claims, we present CogSketch Design Coach, a system which 

uses qualitative reasoning to critique explanations of mechanisms consisting of freehand 

sketch and structured language input.  We will evaluate the performance of Design 

Coach on two corpora of sketched mechanisms, one demonstrating the range of designs 

it can understand, and another collected from a series of classroom interventions where 

students from DTC used Design Coach in a homework assignment.  Thus the 

contributions of this thesis are: 

1. New extensions to qualitative mechanics for use with sketched input, including a 

force-centered model of rigid body mechanics and representations for springs, 

gears, cords, and pulleys 

 
Figure 2: An overview of the architecture of Design Coach. 
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2. Two new algorithms for extracting mechanical spatial relationships from 

sketched input: surface contact detection and cord connection analysis 

3. Two new algorithms for generating items for critique of engineering design 

explanations: State Transition Verification and Sequential Explanation Analysis 

4. A teleological ontology for representing higher level functions of designs 

involving mechanisms in the context of a first-year undergraduate engineering 

design course 

Additionally, our classroom intervention resulted in the following contributions: 

5. A corpus of 240 multi-modal explanations from engineering design students. 

6. Data from the results of a sketching anxiety survey, including the detection of a 

significant decrease in anxiety in two out of three quarters in sections where the 

Design Coach assignment was introduced and one out of three quarters in 

control sections. 

1.3 Overview 

 This thesis begins with background information on the AI systems and theory 

used by Design Coach: CogSketch, our sketch understanding system, and qualitative 

mechanics, a qualitative model of physics (Chapter 2).  Chapters 3 introduces Design 

Coach QM, a new, force-centered version of QM for use with sketched input and multi-

modal explanations.  Chapter 4 introduces further extensions to that QM, including 

algorithms for deriving important relationships from freehand sketched input and 
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representations for springs, gears, and cords.  Chapter 5 describes the implementation 

of Design Coach, including its multimodal input, teleological ontology, and algorithms 

for critiquing explanations and giving feedback.  Design Coach was then evaluated over 

two corpuses: one was a variety of mechanisms, and the other a set of explanations 

produced by students during the classroom intervention.  This evaluation is described in 

Chapter 6, along with a description of the intervention and its impacts on students.   

Chapter 7 discusses related work, and Chapter 8 concludes with a summary of how the 

claims were met and a discussion of the limitations and future work. 
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Chapter 2 

Background 

This chapter describes prior work that the Design Coach builds upon.  The first section 

describes CogSketch, the sketch understanding system that takes in the user’s drawing 

and computes spatial relationships useful for reasoning.  The second section introduces 

Qualitative Mechanics, the model of physics used by the system to predict motions in 

mechanisms. 

2.1 CogSketch 

CogSketch is a publicly available, open-domain, sketch understanding system (Forbus 

et al., 2011).  This section describes the core features of CogSketch that existed before 

Design Coach and are relevant to its workings.  The user interface additions for Design 

Coach are described in Chapter 5. 

2.1.1 Knowledge Base and Reasoning 

CogSketch uses a customized version of the OpenCyc knowledge base which includes 

extensions for qualitative reasoning and analogy added by the Qualitative Reasoning 

Group.  Facts and axioms in the knowledge base are represented as predicate calculus 

statements, e.g.  

(isa Gear1 Gear) 
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states that the entity named Gear1 is an instance of the concept Gear.  These 

statements are used to define collections, relations, and rules.  Collections are 

classifications of entities (e.g. Gear, Spring-Device, Cord, RigidObject) and 

they are arranged in an inheritance hierarchy (e.g. all members of the collection Gear 

are members of the collection RigidObject).  Relations convey relationships 

between or properties of entities.  For example, the touchesDirectly relationship 

is used when two entities are in physical contact.  Rules allow the inference of a 

consequent fact from a list of antecedent facts and are represented using Horn clauses.  

For example, when reasoning about a sketch we might assume that if two objects are 

gears and touch directly, then they are enmeshed.  This would be written as: 

(<== (enmeshed ?obj1 ?obj2) 

     (touchesDirectly ?obj1 ?obj2) 

     (isa ?obj1 Gear) 

     (isa ?obj2 Gear)) 

The collections, relations, and rules in the knowledge base are partitioned into logically 

consistent sets called microtheories.  These microtheories are also arranged in an 

inheritance hierarchy such that all the facts believed in a microtheory are believed by all 

of its children. 
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 CogSketch includes a reasoning engine which can perform queries.  When 

working with a sketch, the reasoning engine primarily performs queries in a context 

called working memory which includes the microtheory of the active sketch (see Figure 

3).  The sketch’s microtheory inherits a set of desired microtheories, usually those 

relevant to spatial reasoning and any topics at hand, such as the qualitative mechanics 

knowledge.  In addition to looking up facts in the selected microtheory, the engine can 

use backchaining to use rules to infer answers to the query, or use alternative reasoning 

sources.  One example of an alternative reasoning source would be the use of geometric 

calculations to derive the topological relationship between to objects, or the use of a 

Voronoi diagram to derive adjacency.  Design Coach uses a combination of knowledge 

and reasoning sources to understand the user’s sketch and generate feedback. 

 
Figure 3: The reasoning architecture of CogSketch 
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2.1.2 Sketching 

 

In CogSketch the user draws sketches using digital ink.  This ink is segmented by the 

user into glyphs.  Glyphs consist of their ink and one or more conceptual labels drawn 

from its knowledge base.  As the user (or the system) adds and removes labels, an 

underlying representation of the sketch is updated by adding and removing 

corresponding facts to the working memory of the sketch.  There are three types of 

glyphs that the user can choose from:  

1. Entity glyphs are the standard type of glyph, and represent instances of one or 

more concepts.  Some examples of conceptual labels relevant to this work 

include the collections RigidObject and Gear. 

 
Figure 4: A sketch drawn in CogSketch. 
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2. Relation glyphs represent a relationship between two glyphs.  They are 

assumed to be drawn as an arrow.  An example is the rightmost arrow in Figure 

4, which represents the direct connection between gear3 and the wheel. 

3. Annotation glyphs specify additional information about glyphs such as the value 

of quantity like height or weight.  An example is the leftmost arrow in Figure 4, 

which represents the rotational force applied to gear1.  For annotations involving 

a quantity, the user may supply a precise value (e.g. 10 Newtons) if they wish.  

Design Coach does not use these values at present, relying only on the direction 

of the arrow instead.  A single annotation may be applied to multiple glyphs; 

doing so applies the same information to all of them. 

Design Coach sketches use all three types of glyphs.  The user may also give each glyph 

a name—a string which will be used to refer to it in explanations. 

 

Each sketch can contain one or more separate drawing areas, called subsketches.  

By selecting the metalayer view (see Figure 5), the user can see all of their subsketches 

 
Figure 5: A screenshot of the metalayer in CogSketch.  Relation arrows can be 

used between the subsketch glyphs to create a comic graph. 
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and even add glyphs to provide information about how subsketches relate.  The 

metalayer is important for describing mechanisms operating in multiple states in Design 

Coach (see Chapter 5). 

2.1.3 Spatial relationships and representations 

As glyphs are added and edited, spatial relationships are computed and asserted into the 

working memory of the sketch.  CogSketch computes some spatial relationships 

automatically as glyphs are changed, including topological relationships based on the 

RCC8 relational vocabulary (Cohn, 1996).  Other relationships, such as positional 

relationships (e.g. above, rightOf), may also be computed as needed.  Design 

Coach uses both topological and positional relationships to detect surface contacts and 

perform other spatial reasoning tasks. 

 

 
Figure 6: An example of edge segmentation.  Edges are colored lines, junctions are 

circles. 
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CogSketch also includes routines for segmenting a glyph into edges and 

junctions (Lovett et al., 2006).  Chapter 4 describes how Design Coach uses this 

segmentation to find the surface contacts between objects. 

2.2 Qualitative Mechanics 

Qualitative Mechanics (QM) is a qualitative model of physics used to represent and 

predict the behavior of physical mechanisms (Kim, 1993; Nielsen, 1988; Pearce, 2001). 

Given a description of objects, their surface contacts, and the forces active in a 

mechanism, Nielsen’s QM allows a system to predict where objects in a mechanism 

will move qualitatively in the next instant of time and to envision the future states of 

interaction between said objects.  The QM of Design Coach builds upon the former 

capability.  Nielsen used scanned images of actual machined parts for input, whereas 

Design Coach takes in hand drawn sketches.  This, combined with the additional goal of 

critiquing the users’ explanation, leads to some differences in the approach to Design 

Coach QM, as explained in Chapter 3 and Chapter 7. 
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Chapter 3 

Force-Centered Qualitative Mechanics 

Qualitative Mechanics (QM) is a qualitative model of physics used to represent and 

predict the behavior of physical mechanisms (Kim, 1993; Nielsen, 1988; Pearce, 2001; 

Stahovich et al., 1997).  The Design Coach QM builds upon and adapts the work of 

Nielsen (1988) for use with engineering design sketches.  Force-Centered Qualitative 

Mechanics is the core of Design Coach QM, and its name reflects a major difference 

from Nielsen’s QM.  The end goal has changed from predicting motion to explaining 

(and critiquing explanations of) mechanical behavior, therefore the underlying 

representations require more detail at the level of forces. 

 This chapter describes the representations at the core of Design Coach QM.  We 

begin with qualitative vectors, then define objects, constraint, motion, force and torque. 

3.1 Qualitative Vector Representation 

We represent direction and orientation using qualitative vectors.  In Nielsen’s QM a 

one-dimensional vector has three possible values: + (greater than zero), - (less than 

zero), and 0 (zero).  Design Coach QM adds a fourth value, Ambig (ambiguous), to the 
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original three to represent the case where it is not clear which direction the vector 

points. 

Definition 1 (Senses of One-Dimensional Vectors):  A Sense is a symbol denoting a 

qualitative value.  The set of senses for a one-dimensional vector is {+,0,-,Ambig}. 

The senses + and - have an inverse relationship, defined as follows. 

Definition 2 (Inverse Senses): inverseSense(s1,s2) is true if s1=+ and s2=- 

or s1=- and s2=+. 

The inverse and ambiguous senses allow us to define the sum of senses. 

Definition 3 (Sums of Senses): senseSum(s1,s2,sR) is true if the sum of s1 and 

s2 is sR. The following rules define the sums of senses: 

1. The sum of any sense s and 0 is s. 

2. The sum of any sense s and Ambig is Ambig. 

3. The sum of any sense s and itself (e.g. + and +, Ambig and Ambig, etc.) is s. 

4. The sum of a sense s and its inverse (Definition 2) is Ambig. 

With one-dimensional directions defined, we now move to the two-dimensional case.  

For two-dimensional space there are nine translational directions (zero, up, down, left, 

right, and quadrants 1 through 4 for diagonals) and three rotational directions (zero, 

clockwise, and counterclockwise).  We begin with the translational vectors.  To the first 

nine, we again add an ambiguous vector: 

Definition 4 (Two-Dimensional Translational Vectors):  A 2DQVector denotes a 

translational direction.  The set of two-dimensional qualitative vectors is {Up, 
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Down, Left, Right, Quad1, Quad2, Quad3, Quad4, 

ZeroQVector, AmbigQVector}. 

The translational directions are two-dimensional qualitative vectors with components in 

both the x and y axis of a Cartesian coordinate plane.  See Definition 5 and Figure 7. 

Definition 5 (Senses of Two-Dimensional Translational Vectors):  xSense(v,s) 

is true when Sense s is the direction of the component of v along the x axis.  Similarly, 

ySense(v,s) is true when s is the direction of the component of v along the y axis. 

 

We add qualitative vectors by summing their component senses.  For example, Right 

(+,0) and Up (0,+) sum to Quad1 (+,+).  When we add opposite directions (+ and -), 

the resulting component is Ambig.  AmbigQVector represents any two-dimensional 

vector with an ambiguous component. 2 

2 Alternatively, we could define a set of four ambiguous vectors (e.g. leftwards is (+,Ambig), upwards is 
(Ambig,+), etc.).  This would allow for more specific feedback on the direction of ambiguous vectors 
and allow the user to the more limited ambiguous vectors in their explanations.  However, there was 
never a need for this feature so it remains unimplemented in Design Coach. 

 
Figure 7: The Two-Dimensional Qualitative Translational Directions 
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The two dimensional vectors also have inverse relationships with each other, derived 

from their senses: 

Definition 6 (Inverse Vectors):  inverseVector(v1,v2) is true when all of the 

senses of v1 are the inverse of their respective counterparts in v2. 

In QM it is often important to know which vectors have overlapping direction, 

(e.g. to know if two forces push together).   As in Nielsen’s QM, the concepts of half 

plane and open half plane are used to solve these problems.  Thus, Definition 7 and 

Definition 8 correspond to Definitions 12 and 13 in Nielsen’s QM.  Figure 8 also 

displays the difference between the open half plane and the half plane graphically. 

Definition 7 (Half Plane):  halfPlane(v1,v2) is true when the sign vector dot 

product of the first argument and the second argument is + or 0. 

Definition 8 (Open Half Plane):  openHalfPlane(v1,v2) is true when the sign 

vector dot product of the first argument and the second argument is +. 

 

 
Figure 8: Open Half Plane vs Half Plane for the direction, Left 
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Having introduced translational vectors, we now turn to rotational vectors.  We 

define these similarly to the way they are defined in Definitions 4-6 of Nielsen’s QM, 

with the addition of an ambiguous vector. 

Definition 9 (Rotational Vectors):  A RotVector denotes a rotational direction.  

The set of rotational vectors is {CW, CCW, ZeroRot, AmbigRot}. 

Definition 10 (Senses of Rotational Vectors): rotSense(v,s) is true when Sense s 

corresponds with the direction of the rotational vector v.   

Rotating a translational vector produces a new translational vector.  The following 

relationships determine which rotational direction must be used to perform specific 

rotations (or will be produced as a result of rotation in that direction): 

Definition 11 (Rotating Translational Vectors): rotate90(tv1,tv2,rv) is true 

when tv1 when rotated 90 degrees in direction rv produces tv2.  Similarly, 

rotate45(tv1,tv2,rv) is analogously true for 45 degree rotations. 

We use Rotate90 in rules to infer rotational consequences of translational 

facts, such as determining the direction of a torque produced by a translational force.  

We use Rotate45 to quickly recall a translation vector’s neighboring members in the 

open half plane without getting the vector itself as a result; we also use it to find the 

direction between a cord and a pulley it runs through. 

At any instant of time, an object may only rotate around one point.  We call this 

point the object’s rotational origin. 
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Definition 12 (Rotational Origin Relationship): rotationalOrigin(o,p) is 

true when p is the point that object o rotates around in the given reference pane. 

 

To find the rotational origin, we first look to see if one is given (e.g. sketched by the 

user).  If it is not, we use the object’s center of mass.  Cords and gears creates special 

cases that are addressed in Chapter 4. 

 The last definition we need concerning vectors is the use of a vector in a spatial 

relationship: the direction between two points: 

Definition 13 (Qualitative Vector Between): 

qualitativeVectorBetween(p1,p2,tv) is true when tv is the direction from 

point p1 to point p2. 

With vectors defined, we now turn to the problem of representing the objects involved 

in the engineering design explanations. 

 
Figure 9: The saloon door rotates about the center of x, which marks its rotational 

origin. 
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3.2 Object Representations 

Nielsen’s QM worked on systems of rigid objects.  Design Coach QM extends it with 

additional types (presented in Chapter 4) in order to accommodate a wider variety of 

mechanisms, including those involving non-rigid objects such a springs and cords.  The 

most general category of object is the set of all physical objects, which includes all rigid 

objects: 

Definition 14 (Physical Objects): A PhysicalObject is a member of the set of 

physical objects. 

Definition 15 (Rigid Objects): A RigidObject is a member of the set of rigid 

objects.  Every RigidObject is a PhysicalObject. 

In Design Coach QM, forces may be applied to any physical object, which may cause 

them to move in response.  Rigid objects differ in that they may have their motion 

blocked or redirected by making contact with other rigid objects. Since all motion is 

relative to some frame of reference, two additional object types are useful: 

Definition 16 (Fixed Objects): A FixedObject is a member of the set of physical 

objects which neither rotate nor translate in the current frame of reference. 

Definition 17 (Fixed-Axis Objects): A FixedAxisObject is a member of the set of 

physical objects which do not translate but may rotate around its rotational origin 

(Definition 12) in the current frame of reference. 
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Figure 10 presents two examples of mechanical situations we discuss in this chapter.  

One is a block sitting on a wedge on a ramp, viewed from the side. (A similar example 

appears in Nielsen (1988).  The other is a human arm pushing open the door of a saloon.  

All of the physical objects in these diagrams are rigid.  The “x” labeled “rotational 

origin” is a RotationalOrigin and is not a physical object.  In addition, the ramp 

is a fixed object, and the saloon door is a fixed-axis object. 

Surfaces of objects are represented similarly to Definitions 15-19 of Nielsen’s 

QM: 

Definition 18 (Surfaces): A Surface is a member of the set of the surfaces of a rigid 

object. 

Definition 19 (Normal of a Surface): surfaceNormal(s,tv) is true when the 

surface normal vector of surface, s, is pointed in the direction of translational vector, 

tv. 

Definition 20 (Surface Contact): surfaceContact(s1,s2) is true when 

surfaces s1 and s2 are in physical contact with each other. 

  
Figure 10: Examples of object types in action 
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Definition 21 (Has a Contact Surface): hasContactSurface(o1,o2,s) is 

true when s is a surface of o1 and s has surface contact with a surface of o2. 

The hasContactSurface relationship (Definition 21) replaces Nielsen’s surface 

relationship (Nielsen’s Definition 15), and takes its role in linking the surface to its 

parent object.   In Nielsen’s QM, all of the surfaces of each object were reified, but in 

this work only the contact surfaces are reified.  The non-contact surfaces of the objects 

do not need to be reified for an analysis of a single instant of time, as is the case in 

Design Coach.  In contrast, Nielsen’s CLOCK program used envisionment to find all 

possible future states.  Such an envisionment requires the system to have knowledge of 

all the non-contact surfaces, to see if they may come in contact in the future.  Choosing 

to reify only the contact surfaces can increase efficiency by reducing the search space of 

surfaces.  In our ramp example, four surfaces must be reified: the bottom surface of the 

block, a top right surface of the ramp, a top surface of wedge, and the bottom left 

surface of the wedge.  The former two surfaces are shown in Figure 6.  We discuss the 

method for detecting surface contacts in sketched input in Chapter 4. 

 



 43 

 

3.3 Constraint and Motion 

The most common goal in analyzing the behavior of a mechanism is to determine where 

its parts will move (or not move).  In this section we describe the process of 

determining the next motion of an object.  To start, at any particular instant of time, 

each object possesses one translational motion vector and one rotational motion vector: 

Definition 22 (Motion): translationalMotion(o,tv) is true when object o 

moves in the direction of vector tv in the current frame of reference. tv may be any of 

the vectors in Definition 4, including ZeroQVector. 

rotationalMotion(o,rv) is true when object o rotates in the direction of vector 

rv in the current frame of reference.  rv may be any of the vectors in Definition 9, 

including ZeroRot. 

 
Figure 11: The surfaces which touch the wedge are highlighted. 
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In QM constraint is the property of being unable to move in one or more 

directions.  Like motion, it has translational and rotational components: 

Definition 23 (Constraint): translationalConstraint(o,tv) is true when 

object o cannot move in the direction of vector tv in the current frame of reference.  

(tv cannot be ZeroQVector or AmbigQVector.)  Similarly, 

rotationalConstraint(o,tv) is true when object o cannot rotate in the 

direction of vector rv in the current frame of reference.  (rv cannot be ZeroRot or 

AmbigRot.) 

While an object can only have one translational motion and one rotational motion at a 

time, it may have multiple constraints at once. 

 There are five cases in which an object O may become constrained: 

1. O is a FixedObject or a FixedAxisObject (see Definition 16 and 

Definition 17). 

2. O is a RigidObject in contact with blocking obstacle, B, such that B 

prevents motion of O in one or more directions. 

3. O is directly connected to (e.g. glued to) another object, P, such that it shares the 

constraints on P. 

4. O is tied to another object by a taut cord. 

5. O is a gear, enmeshed with another gear G such that it shares in the some of the 

constraints on G. 
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The first case is self-explanatory; cases 2 and 3 will be discussed next; and cases 4 

and 5 will be addressed in the sections on cords and gears in Chapter 4. 

 Finally, it is also sometimes useful for explanatory or teleological purposes to be 

able to state that an object is able to be moved or rotated at all. 

Definition 24 (Movable and Rotatable): movable(o) is true when object o is not 

constrained from translating in at least one direction in the current frame of reference.   

Similarly, rotatable(o) is true when object o is not constrained from rotating in at 

least one direction in the current frame of reference. 

3.3.1 Transmission of Constraint via Surface Contact 

Constraint transfer occurs through surface contact, as it does in Nielsen’s QM 

Nielsen’s law of contact constraint (Nielsen 1988, pg 23) says that an obstacle prevents 

a contacting object from moving if the obstacle is sufficiently constrained as follows:  

1. Translational motion into the open half plane centered on the contacting object 

surface normal at the point of contact. 

2. Rotational motion clockwise about any point which lies in the open half plane 

centered ninety degrees clockwise from the contacting object's surface normal at 

the point of contact. 

3. Rotational motion counter-clockwise about any point which lies in the open half 

plane centered ninety degrees counter-clockwise from the object's surface 

normal at the point of contact. 
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If an obstacle is sufficiently constrained as above, then the above three constraints are 

transmitted to the object blocked by said obstacle.  Figure 12 shows this graphically.  

The ball cannot translate Left, Quad1, or Quad4.  Also note that while the ball may 

not rotate around points in the halfplanes above and below it, it may rotate around its 

center. 

 

 In our block-and-wedge-on-ramp example (Figure 13), the ramp is constrained 

in all directions.  At the surface contact between the ramp and wedge, the ramp is 

sufficiently constrained, so the wedge inherits those constraints.  At the contact between 

the block and wedge however, the wedge is not sufficiently constrained in the 

downward direction (it may slide down and to the right), so there are effectively no 

constraints on the block.  Similarly, while the saloon door cannot translate anywhere to 

the right, it can rotate counter-clockwise out of the arm’s way.  Therefore it is not 

sufficiently constrained, and the arm can move freely in any direction. 

 
Figure 12: The set of motions constrained for an object (the ball) via contact a 

sufficiently constrained obstacle (the wall).   
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3.3.2 Transmission of Constraint via Direct Connection 

 Another new addition of Design Coach QM is the concept of directly connected 

objects: 

Definition 25 (Direct Connection):  directlyConnected(o1,o2) is true when 

o1 is rigidly connected to o2 (for example, glued together) such that o1 and o2 share 

their constraints and rotational origin. 

Figure 14 illustrates how the constraints in our examples change if we directly connect 

some of the parts in Figure 13 together.  In the case of the block and wedge on the 

ramp, if we directly connect the wedge and ramp then the wedge inherits the ramp’ 

constraints and can no longer move.  Consequentially, the wedge becomes sufficiently 

constrained at the surface contact with the block and transmits its constraints to the 

block accordingly.  If we directly connect the arm to the fixed-axis saloon door (ouch!), 

 
Figure 13: Constraints (solid arrows) transfer from the ramp to the wedge, but not 

from the saloon door to the arm. 
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the arm is constrained from translating, but now will instead rotate around the door’s 

rotational origin. 

 

 The concept of direct connection can be contrasted with the concept of linkage 

in Nielsen’s QM (Nielsen’s Definition 21).  A linkage asserts that two different 

representations of one object are indeed the same object.  Direct connection is for two 

different entities that effectively become one physical entity, from the perspective of 

mechanical constraint. 

3.3.3 Predicting the Next Motion 

Now that constraint has been defined, we return to the problem of predicting the 

next motion of an object.  In Design Coach QM, the next motion of an object can be 

determined if the net force applied to it is known, as follows: 

 
Figure 14: Directly connecting objects (double arrow) causes constraints to be 

shared.  The arm also shares the saloon door’s rotational origin. 
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Definition 26 (Predicting Translation):  Given an object o, and the direction of the 

net force applied to it, d: 

1. If d is AmbigQVector:  

 The result is TranslationalMotion(o,d) 

2. Otherwise, if not TranslationalConstraint(o,d):  

 The result is TranslationalMotion(o,d) 

3. Otherwise, if not TranslationalConstraint(o,d’) s.t. 

  openHalfPlane(d,d’): 

 The result is TranslationalMotion(o,d’) 

4. Otherwise the result is: 

TranslationalMotion(o,ZeroQVector) 

At first glance the clause in line 3 might seem like it could produce either of two results 

because d’ could be either neighboring vector in the open half plane of d.  However, 

whenever a translational constraint is introduced, (either through fixed property or 

surface contact) it is applied to at least an open half plane, guaranteeing that there will 

be at most one free direction within an open half plane of any constraint.  This 

procedure is therefore correct. 

 The procedure for determining rotation is simpler: 

Definition 27 (Predicting Rotation):  Given an object o, and the direction of the net 

torque applied to it, d: 

1. If d is AmbigRot:  
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 The result is RotationalMotion(o,d) 

2. Otherwise, if not RotationalConstraint(o,d):  

 The result is RotationalMotion(o,d) 

3. Otherwise the result is: RotationalMotion(o,ZeroRot) 

 In Design Coach QM, all motions are the result of a net force and torque on the 

object.  This is a major departure from Nielsen’s QM, in which motion is found through 

transmission between objects.  In Design Coach QM, forces/torques are transmitted 

between objects instead. The next section describes the force/torque transfer process 

and how the direction of the applied net force and torque are found. 

3.4 Force and Torque Representation 

In Design Coach QM, the core of the force representation is the following relationship: 

Definition 28 (Force Applied to Object):   

forceAppliedToObject(o,tv,src) is true when PhysicalObject o 

receives a force in direction tv from source src. 

Torques3 are represented similarly: 

Definition 29 (Torque Applied to Object):  

torqueAppliedToObject(o,rv,src) is true when object o receives a torque 

in direction rv from source src. 

3 In this document we use the more colloquial definition of torque, a turning or twisting force.  However, 
“rotational force” is a more accurate term for a mechanical engineering context, so the Design Coach user 
interface uses that term instead. 
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The source is used to distinguish between multiple forces acting in the same 

direction.  The force/torque applied to an object is the second important connection 

point for QM extensions (the first being constraints).  Springs, cords, and gears can 

apply forces and torques to objects using this relationship.  Those applied forces/torques 

then feed into the net force/torque which make each object move.  The net force and 

torque applied are defined as follows: 

Definition 30 (Net Force): netForceApplied(o,tv) is true when the direction of 

the net force applied to o is the translational vector tv. 

Definition 31 (Net Torque): netTorqueApplied(o,rv) is true when the 

direction of the net force applied to o is the rotational vector rv. 

These are computed by summing up the qualitative vectors using their component 

senses (Definition 3).  As noted previously, there are several ways a force/torque may 

be applied to an object.  Some forces may just be given, such as gravity.  Next, we 

describe transmission through surface contact and direct connections. 

3.4.1 Transmission of Force through Surface Contact 

When a force is applied to an object, it produces a force at all of its contact surfaces 

which have their normals in the open half plane of that force: 

Definition 32 (Force at a Surface):  forceAtSurface(s,tv,o) is true when: 

hasContactSurface(o,o’,s) AND 

forceAppliedToObj(o,tv’,src) AND 
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surfaceNormal(s,tv) AND 

openHalfPlane(s,tv’) 

The force is transmitted between surfaces like so: 

Definition 33 (Force Applied to a Surface):  

forceAppliedToSurface(s,tv,src) is true when: 

 hasContactSurface(o,src,s) AND ;; s belongs to o 

 surfaceContact(s,s’) AND 

 forceAt(s’,tv,src) ;; s’ belongs to object src 

Note that in this definition the direction, tv, is guaranteed to be directed at s because it 

is in the open half plane of the surface normal of s’ due to the definition of forceAt. 

 Finally, the force applied to the surface will become a force on the object if the 

object is not sufficiently constrained along that direction.  If it is constrained, we can 

assume that a reaction force from the obstacle cancels the force out and thus not bother 

applying it to the whole object.  We assume that rigid objects are not deformable. 

Definition 34 (Force from Surface to Object):  

forceAppliedToObject(o,tv,src) is true when: 

 hasContactSurface(o,src,s) AND 

 forceAppliedToSurface(s,tv’,src) AND 

      ;; case 1: o is free to move directly that way 

  ((NOT transConstraint(o,tv’)) AND equal(tv,tv’))  

      OR  
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      ;; case 2: o can’t move directly, but can slide 

      ;;         in the general direction 

  (transConstraint(o,tv’) AND openHalfPlane(tv’,tv)) 

In the ramp example (Figure 13), the force of gravity applies to both the block and the 

wedge.  The block’s contact surface normal is Down, which is in the open half plane of 

the direction of gravity so a force appears at that surface.  The wedge is not sufficiently 

constrained in the Down direction, so it receives the force applied to its upper surface, 

giving it two forces in the downward direction; one from the block, and one from 

gravity.  The sum of Down and Down is down, so the net force applied to the wedge is 

Down.  The ramp is fixed and thus sufficiently constrained, so it does not receive a 

force from contact with the wedge.  The wedge has no forces to transmit to the block 

across its upward pointing surface normal, so the net force applied on the block is just 

that of gravity--Down.  According to prediction of translation (Definition 26), the block 

will instantaneously move down since it is not constrained in that direction, while the 

wedge will instantaneously move down and right (Quad4) since it is constrained from 

moving down and from moving down and left (Quad3).  (Friction would normally 

cause the block to move Quad4 as well, but neither friction nor gravity are assumed by 

default.) 

 A force at a surface may also apply a torque if the rotational origin lies on either 

side of the point of contact: 
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Definition 35 (Torque from Surface to Object): 

torqueAppliedToObject(o,rv,src) is true when: 

 hasContactSurface(o,src,s) AND 

 hasContactSurface(src,o,s’) AND 

 surfaceContact(s,s’) AND 

 forceAtSurface(s,tv,src) AND 

 rotationalOrigin(o,p) AND 

 qualitativeVectorBetween(s,p,tv’) AND 

 surfaceNormal(s’,tv’’) AND 

 openHalfPlane(tv’’’,tv’) AND 

 rotate90(tv’’,tv’’’,rv) 

In the saloon door example (Figure 13), the force at the arm points Right, and the 

direction from the contacted surface of the door to its rotational origin is up and right 

(Quad1), which is in the open half plane counterclockwise from Right, therefore the 

door receives a CW torque from the arm. 

3.4.2 Transmission of Force via Direct Connection 

Forces are transferred through a direct connection in the same method as constraints.  If 

two objects are directlyConnected, a force/torque on one becomes a force/torque 

on the other. 
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3.4.3 Assumed Forces and Torques 

Sometimes a force or torque should just be assumed to be working on an object, as in 

our ramp example where we assume gravity is acting on the block and wedge.  In 

Design Coach, this happens when a user draws a force arrow annotation.  In this case, 

the system creates an assumed force relationship. 

Definition 36 (Assumed Force or Torque): forceAssumed(o,tv,src) means 

the system may apply a force on object o in the direction of tv.  Similarly, 

torqueAssumed(o,rv) means the system may apply a force on object o in the 

rotational direction, rv.   src is the source of the assumed force/torque, e.g. gravity or 

a force/torque annotation. 

Note the word “may” in Definition 36.  This is because it is still unclear if a 

force/torqueAppliedToObject relationship should be present.  If the object is 

constrained, then we can assume that a reaction force will cancel out a component or 

even the entire the assumed force.  As with motion, if an assumed force encounters a 

constraint, it will be redirected elsewhere in the open half plane, or be entirely zeroed 

out. 

Definition 37 (Application of Assumed Force): 

forceAppliedToObject(o,tv,src) is true when: 

 forceAssumed(o,tva,src) AND 

   ((NOT transConstraint(o,tva) AND equals(tva,tv)) 

       OR (NOT transConstraint(o,tv) AND  
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          openHalfPlane(tv,tva)))) 

The torque case is simpler, since there is no optional extra directions for the torque to 

redirect into.  

Definition 38 (Application of Assumed Torque): 

torqueAppliedToObject(o,rv,src) is true when: 

 torqueAssumed(o,rv,src) AND 

 NOT rotConstraint(o,rv) 
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Chapter 4 

Extensions to Qualitative Mechanics 

This chapter introduces more significant extensions to QM for Design Coach.  These 

extensions fall into two categories.  The first are algorithms which allow QM to use 

sketched input.  The surface contact detection algorithm is one of two algorithms we 

shall present.  The second are representations for new types of objects.  Early in the 

development of the Design Coach QM, we performed a survey of past mechanical 

projects from the engineering design course.  The survey revealed that QM could 

predict the behavior of a significant proportion of the mechanical designs using rigid 

objects alone, and with the inclusion of springs and gears, we could cover nearly 40% 

more of the designs surveyed (Wetzel & Forbus, 2008). 

 The chapter begins with a description of the process used to identify surface 

contact information from a hand-drawn sketch.  It then describes three new types of 

objects: springs, gears, and cords, including the process used to identify different types 

of cord connections in a hand-drawn sketch. 

4.1 Surface Contact Detection 

For QM, we need to identify each contact surface and the direction of its normal.  

Recall that glyphs can be decomposed into edges and junctions, which gives us three 

possible types of contact between them: edge-to-edge, edge-to-junction, and junction-
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to-junction.  The detectSurfaceContact algorithm in Figure 15 takes two 

glyphs as input and returns these three types of contacts and their normal. 

 

Here edgeDecomp is the edge decomposition algorithm described in Lovett et al. 

(2006).  We also employ a limited scribble fill detection to eliminate excess edges from 

the initial decompositions.  This is discussed further in Section 6.3.1.  Figure 16 shows 

the resulting edges and junctions when edgeDecomp is used on the ramp example. 

1. detectSurfaceContact(Glyph1,Glyph2): 
2.  Decomp1 <- edgeDecomp(Glyph1) 
3.  Decomp2 <- edgeDecomp(Glyph2) 
4.  Contact1 <- contactDecomp(Decomp1,Decomp2) 
5.  Contact2 <- contactDecomp(Decomp2,Decomp1) 
6.   JunctionPairs <- contactJunctionPairs(Contact1,Contact2) 
7.   E-EContacts <- edgeEdgeContacts(Contact1,Contact2, 
8.                                               JunctionPairs) 
9.  E-ENormals <- [] 
10.   For EdgePair in E-EContacts: 
11.     E-ENormals.add(edgePairSurfaceNormal(EdgePair, 
12.                                               JunctionPairs)) 
13.   J-Contacts <- filterJContacts(JunctionPairs) 
14.   J-EContacts <- junctionEdgeContacts(J-Contacts) 
15.   J-ENormals <- [] 
16.   For EdgePair in J-EContacts: 
17.     J-ENormals.add(edgePairSurfaceNormal(EdgePair)) 
18.  J-JContacts <- setDifference(J-Contacts,J-EContacts) 
19.   Return [E-EContacts,E-ENormals,J-EContacts,J-ENormals, 
20.                                                  J-JContacts] 

Figure 15: Surface contact detection algorithm, top level 

 



 59 

 

The routine shown in Figure 17 computes the surface contact decomposition between a 

pair of glyphs by adding new junctions at the points of intersection between the 

perimeters edge cycles of their original decompositions.  intersection uses 

geometry to find the point of overlap between the edge of the first object and the 

intersecting edge or junction from the second object.  A graphical example is given in 

Figure 18. 

 
Figure 16: Edges and junctions found using edge decomposition (edgeDecomp) 
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In these routines, rcc8Connnected? means the two junctions/edges are close 

enough together to be considered topologically connected.   

1. contactDecomp(Decomp1,Decomp2): 
2.   ContactDecomp1 <- Decomp1 
3.   IntersectingPoints <- [] 
4.   For egde1 in perimeterEdges(Decomp1): 
5.     IntersectingJunctions <- [] 
6.     For junction in perimeterJunctions(Decomp2): 
7.       If rcc8Connected?(edge,junction) and 
8.                  not(rcc8Connected?(jctA(edge1),junction) and 
9.                  not(rcc8Connected?(jctB(edge1),junction): 
10.         IntersectingJunctions.add(junction) 
11.     IntersectingEdges <- [] 
12.     For edge2 in perimeterEdges(Decomp2): 
13.       If rcc8Connected?(edge1,edge2) and 
14.                   not setIntersection(endJunctions(edge2), 
15.                                       intersectingJunctions) 
16.                                       and 
17.                   not(rcc8Connected?(jctA(edge1),edge2) and 
18.                   not(rcc8Connected?(jctB(edge1),edge2): 
19.         IntersectingJunctions.add(edge2) 
20.     For object in IntersectingJunctions + IntersectingEdges: 
21.       IntersectingPoints.add(intersection(edge1,object))  
22.   For Intersection in IntersectingPoints: 
23.     ContactDecomp1.addNewJunction(Intersection) 
24.   Return ContactDecomp1 

Figure 17: Routine for creating the surface contact decomposition 
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Once the surface contact decompositions have been computed for both glyphs, the 

junctions which overlap are involved in points or regions of contact.  First, all of the 

pairs are collected (Figure 19).  uniqueClosestPairs sorts the pairs by the 

distance between their junctions and then guarantees that each junction is only party to 

one pair by removing any more distant pairs involving that junction. 

 

The next step is to find the edge-edge contacts, as done by the routine in Figure 20.  For 

example, an edge-edge contact is detected between ramp and wedge on the right-hand 

 
Figure 18: The original edge decomposition of the Ramp (left) gets new 

junctions at the points where junctions of wedge intersect it (right). 
(contactDecomp) 

1. contactJunctionPairs(Decomp1,Decomp2): 
2.   JunctionPairs <- [] 
3.   For Junction1 in junctions(Decomp1): 
4.     For Junction2 in junctions(Decomp2): 
5.       If rcc8Connected?(Junction1,Junction2): 
6.         JunctionPairs.add([Junction1,Junction2]) 
7.   Return uniqueClosestPairs(JunctionPairs) 

Figure 19: Routine for finding the pairs of junctions in contact between two 
surface contact decompositions. 
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side of Figure 18 because the endpoint junctions of the ramp’s new edge contact the 

endpoints of the ramp’s bottom-left edge. 

 

The angle of the contacting edge will determine the direction of its normal.  Since the 

edges are exterior edges, the simplest method for finding the normal would be to rotate 

the edges angle 90 degrees towards the outside of the shape.  However in some cases 

that will produce the wrong result.  Figure 21 shows an example of an inward contact 

with an exterior edge.  If the normal was taken to be the exterior of the armrest’s edge it 

would face away from the contact rather than towards it.  

1. edgeEdgeContacts(Decomp1,Decomp2, ContactJunctionPairs): 
2.   E-EContacts <- [] 
3.   For edge1 in exteriorEdges(Decomp1): 
4.     For edge2 in exeteriorEdges(Decomp2): 
5.       If ([edge1.J1,edge2.J2] in ContactJunctionPairs and 
6.           [edge1.J2,edge2.J1] in ContactJunctionPairs) or  
7.          ([edge1.J1,edge2.J1] in ContactJunctionPairs and 
8.           [edge1.J2,edge2.J2] in ContactJunctionPairs): 
9.         E-EContacts.add([edge1,edge2]) 
10.   Return E-EContacts 

Figure 20: An edge-edge contact is present when the junctions at the endpoints of 
the edges are in contact. 
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 To compensate for this, our surface normal calculations take into account if the 

contact surface is inward or not as done in the routine in Figure 22.  

 
Figure 21: The highlighted contact edge of the arm rest is an example of an inward 

facing contact. 
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The angle of edges is always measured clockwise, and the exterior edges are directed, 

such that they go clockwise around the shape.  So to rotate the angle 90 degrees towards 

the outside of the shape, 90 is added.  If the contact faces inwards, then the angle must 

be rotated counterclockwise to the normal, thus 90 is subtracted. 

 To determine if the contact faces inwards, the routine in Figure 23 is used. 

1. edgePairSurfaceNormal(edgePair,JPairs): 
2.   # if this is a pair of edges, base normal off the 
3.   # straighter one 
4.   If type(edgePair[0]) == Edge and type(edgePair[1]) == Edge: 
5.     straighterEdge <- straightest(edgePair[0],edgePair[1]) 
6.     otherEdge <- edgePair.remove(straighterEdge)[0] 
7.     If inwardContact?(straighterEdge,otherEdge,JPairs) and 
8.                 getInwardContact(straighterEdge,otherEdge) ==  
9.                                               straighterEdge: 
10.       Return (angle(straighterEdge) – 90) mod 360 
11.     Else: 
12.       Return (angle(straighterEdge) + 90) mod 360 
13.   Else If type(edgePair[0]) == Edge: 
14.     If inwardContact?(edgePair[0],edgePair[1],JPairs): 
15.       Return (angle(edgePair[0]) – 90) mod 360 
16.     Else: 
17.       Return (angle(edgePair[0]) + 90) mod 360 
18.   Else If type(edgePair[1]) == Edge: 
19.     If inwardContact?(edgePair[1],edgePair[0],JPairs): 
20.       Return (angle(edgePair[1]) – 90) mod 360 
21.     Else: 
22.       Return (angle(edgePair[1]) + 90) mod 360 

Figure 22: The direction surface normal of an edge contact is the edges direction 
(from end to end) rotated 90 degrees toward the direction of contact. 
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1. inwardContact?(Edge1,Edge2,ContactJunctionPairs): 
2.  Return [edge1.J1,edge2.J1] in ContactJunctionPairs and 
3.           [edge1.J2,edge2.J2] in ContactJunctionPairs 
4.   
5. getInwardContactEdge(Edge1,Edge2): 
6.   J1A <- Edge1.J1 
7.   J1B <- Edge1.J2 
8.   J2A <- Edge2.J1 
9.   J2B <- Edge2.J2 
10.   incomingEdge1 <- perimeterEdgeEnters(J1A) 
11.   incomingEdge2 <- perimeterEdgeEnters(J2A) 
12.   departingEdge1 <- perimeterEdgeLeaves(J1A) 
13.   departingEdge2 <- perimeterEdgeLeaves(J2A) 
14.   EvidenceA <- 0 
15.     If incomingEdge1 != nil and incomingEdge2 != nil: 
16.       EvidenceA <- (angle(incomingEdge1 – incomingEdge2)) 
17.   EvidenceB <- 0 
18.     If departingEdge1 != nil and departingEdge2 != nil: 
19.       EvidenceB <- (angle(departingEdge2 – departingEdge1)) 
20.   If (EvidenceA + EvidenceB) > 0: 
21.     Return Edge1 
22.   Else: 
23.     Return Edge2 
24.  
25. inwardContact?(SuperEdge,Junction): 
26.   closestJunction <- closestJunctionTo(SuperEdge,Junction) 
27.   subEdgeA <- subedgeEnters(SuperEdge,closestJunction) 
28.   subEdgeB <- subedgeLeaves(SuperEdge,closestJunction) 
29.   angleA <- angleFrom(closestJunction,subEdgeA) 
30.   angleB <- angleFrom(closestJunction,subEdgeB) 
31.   otherEdges <- [perimeterEdgeEnters(Junction), 
32.                   perimeterEdgeLeaves(Junction)] 
33.   otherAngles <- [] 
34.   For edge in otherEdges: 
35.     otherAngles <- angleFrom(closestJunction,edge) 
36.   angleEnclosureDir <- angleEnclosure(angleA,angleB, 
37.                                                  otherAngles) 
38.   If angleEnclosureDir == CW: 
39.      Return False 
40.   Else: 
41.      Return True 

Figure 23: Routines for determining if a contact is inward or not. Two different 
inwardContact? methods are needed for edge-edge and edge-junction contact. 
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Determining the inwardness of an edge-to-edge contact is straightforward; because 

the exterior edges move clockwise around the shape if the contact junctions at the end 

of the edges are paired first-to-first and second-to-second, we know one of the edges 

must contact on its inward side.  To figure out which edge is the inward one 

(getInwardContactEdge), an estimate is made by comparing the angles of the 

neighboring pairs of edges on either side of that edge.  The edge whose neighboring 

edges form a larger concave around the opposing edge’s neighbors is assumed to be the 

inward facing edge. 

 Determining inwardness in the edge-to-junction contact case is a bit more 

complex.  Recall the original surface contact decomposition added a junction at the 

point of contact, segmenting the surface of the ramp into two edges.  When it was 

determined that this junction was a junction-edge contact, the edges were merged into a 

single super-edge.  Once again we take advantage of the invariant that exterior edges 

are directed clockwise around the outside of the shape.  Assuming these are solid 

objects, the two exterior edges of the block leaving the junction should both extend 

away from the super edge (rather than crossing it).  Let us call the angle of the inbound 

sub-edge as measured away from the junction “angle A”; the angle of the outbound sub-

edge as measured away from the junction “angle B”; and the edges of the block “1” and 

“2”.  (See Figure 24.) 
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Since 1 and 2 are both on the same side of the super edge, there exists an angle from 

angle A to angle B, “angle AB”, which encloses 1 and 2.  Since going from edge A to 

edge B travels clockwise about the shape, if the angle AB travels clockwise, then 1 and 

2 will be outside the shape.  If angle AB travels counterclockwise, then 1 and 2 will be 

on the inside of the shape.  Therefore, if angleEnclosureDir returns the direction 

of enclosing angle AB, then whenever it returns a counterclockwise result, the edge 

contact faces inward. 

 The inward contact detection adds a limitation; the edges in question must be 

part of a closed loop to guarantee that the perceptual edge decomposition system 

assigns the edges in clockwise order around the outside of the shape.  If the shape is 

open, then this is not guaranteed.  Instructors preferred that their students sketch without 

using stick figures, so making inward contact detection work with stick figures was not 

 
Figure 24: Angle enclosure can be used to determine if an edge-to-junction contact 
is inward or not.  If the perimeter moves clockwise from A to B, then the contact is 

inward whenever enclosing angle AB travels counterclockwise.  
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necessary for our intervention.  Not all students followed those instructions, however; 

examples can be found in Section 6.3.  Ways to address these cases in the future can be 

found in Section 8.2.3. 

4.2 Springs 

 

Springs are one of the new non-rigid objects added in Design Coach QM.  Springs can 

be connected to up to two other objects, one at each end.  Springs may be in one of 

three states: compressed, stretched, or relaxed.  The state is specified by the user via 

assigning collections from the KB. Depending on the state, a spring may apply a force 

to an object: 

Definition 39 (Force Applied by Compressed Spring): 

forceAppliedToObj(o,tv,spg) is true when: 

  connectedToDirectly(o,spg) AND 

 
Figure 25: An example of a mechanism involving a spring.  
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  qualiativevBetween(o,spg,tv) AND 

  isa(spg,Compressed) 

Definition 40 (Force Applied by Stretched Spring): 

forceAppliedToObj(o,tv,spg) is true when: 

  connectedToDirectly(o,spg) AND 

  inverseVector(tv,tvi) AND 

  qualiativevBetween(o,spg,tvi) AND 

  isa(spg,Stretched) 

Relaxed springs do not apply any force to their connected objects.  Unlike rigid objects, 

the springs in this model do not create any constraints on motion for their connected 

objects.  In the example pictured in Figure 25, the button will have a force applied 

upwards from the spring because the spring been labeled Compressed. 

4.3 Gears 

In the simplest sense, gears are merely rigid objects of a certain shape, and could be 

modeled as such.  They were modeled this way in the Clock program using Nielsen’s 

QM (Forbus et al., 1991).  However in sketching it is difficult to draw a gear such that 

the surfaces would interact as desired.  A more abstract representation for gears avoids 

the need for the gear to be drawn accurately. 

Definition 41 (Gear): A Gear is a member of the set of objects which are gears. 
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Additionally, for convenience the system assumes the origin of rotation for a gear is 

its center, unless another origin is given.   

When two gears interlock to rotate against one another, they are enmeshed.  For 

sketched input, we infer enmeshment based on contact alone, rather than based on the 

geometry of the shapes. 

Definition 42 (Enmeshed): enmeshed(g1,g2) is true when the teeth of gear 1 are 

interlocked with the teeth of gear 2. 

 Gears transfer rotational constraints to their enmeshed neighbors. 

Definition 43 (Constraint Transfer through Enmeshment): 

rotConstraint(g1,rv) is true when: 

  enmeshed(g1,g2) AND 

  fixedAxisObject(g1) AND 

  inverseVector(rv,rvi) AND 

  rotConstraint(g2,rvi) 

Similarly, enmeshed gears transfer torque to each other. 

Definition 44 (Torque Transfer through Enmeshment): 

torqueAppliedToObject(g1,rv) is true when: 

  enmeshed(g1,g2) AND 

  fixedAxisObject(g1) AND 

  inverseVector(rv,rvi) AND 

  torqueAppliedToObject(g2,rvi) 
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An example is shown in Figure 26.  A counterclockwise torque is applied to gear 1, 

which causes an opposite torque on gear 2.  Gear 2 is enmeshed with gear 3, so gear 3 

receives a counterclockwise torque.  The wheel is connected to gear 3, and thus receives 

the same counterclockwise torque. 

 

4.4 Cords 

Cords represent rope, strings, or wires that can create taut connections between objects.  

These connections can transfer force and constraint; unlike surface contact, cords pull 

rather than push.  Because the goal of Design Coach QM is to predict instantaneous 

motion and a slack cord has no immediate effect on constraints or forces, we will focus 

on the case where cords are taut.  Detecting if a cord is slack or not is important to 

understanding designs involving cords.  Because the interesting case for QM is the taut 

 
Figure 26: An example of a mechanism involving gears.  
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case, that will be the focus of this work.  Distinguishing slack cords from taut ones is 

discussed in Chapter 8.  Given they are always taut, it would simplify things if the 

system could assume all cord connections produce the same constraint/force transfer; 

however, tautness alone is not sufficient.  For instance, if the cord is arranged tautly 

around an object which is free to move in response to the force on the cord, the force 

would move the intermediate object instead, leaving the fate of the object at the far end 

ambiguous.  To simplify things, the cord representation in Design Coach QM is 

organized around handling two cases: 

1. A taut cord connects two objects, and does not travel through or around any 

objects such that the cord can pushed them away from itself.  Since this 

arrangement is similar to a kinematic pair, it will be referred to as a kinematic 

cord connection. 

2. A taut cord connects two objects, and there are one or more movable pulleys 

between them.   
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Figure 27 shows an illustration of both cases.  The second case is limited to pulleys 

because this includes all the cases in the mechanism corpus for this thesis.  Generalizing 

to objects other than pulleys will be discussed in future work (Section 8.2.2, pg. 175).  

With these restrictions, the problem of finding the forces and constraints resulting from 

cords becomes: 

1. Identify the topology of the cord system. 

2. Find any kinematic cord connections, and their forces/constraints 

3. Find any movable pulleys, and their forces/constraints 

The next sections describe the new object representations, cord system topology, and 

force and constraint transfers for the two cases handled. 

 
Figure 27: A sketch with a kinematic cord connection (left) and one with a 

movable pulley (right). 
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4.4.1 Cords and Pulleys 

The following definitions form the representation for a cord system in Design Coach 

QM.  The first new category of object required is cords. 

Definition 45 (Cords):  A Cord4 is a thin, unstretchable length of substance similar in 

behavior to a string, rope, or wire. 

When a cord goes around a corner or a pulley, it forms two cord segments with different 

directions.  Determining the direction of the last length of cord is crucial to determining 

how that cord affects the connected object.  To enable this, the cord is divided into cord 

segments. 

 

Definition 46 (Cord Segments):  A CordSegment is a portion of a Cord whose ends 

are each either: where the cord terminates in an object, where the cord bends around a 

corner, or where the cord enters a pulley. 

4 For generality, the actual Cyc collection used is CordLikeArtifact.  We use Cord in this 
document for brevity. 

 
Figure 28: The cord glyph is divided into two segments. 
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We derive cord segments from the edges in the edge decomposition of glyphs labeled 

Cord.  An illustration is given in Figure 28.  The algorithm for finding edges and their 

connections will be described in Section 4.5. 

 The final category of object required is the pulley.   

Definition 47 (Pulleys):  A Pulley is a RigidObject with one or more grooves for 

Cords to travel around it. 

At the level of the QM theory, the number of blocks is not limited.  However, all the 

pulleys presented in the mechanism corpus of this thesis take either one cord (i.e. the 

pulley is a single block) or two cords (i.e. a double block).  UI restrictions make it 

challenging but not impossible to rig up larger blocks as explained in the next section. 

 

4.4.2 Cord System Topology 

 The following relationships describe the topology of cord systems.  The first 

relationship keeps track of which cord is the parent of a given segment.  This is 

determines which cord segments are part of a kinematic cord connection. 

Definition 48 (Cord Segment of Cord): cordSegmentOf(cs,c) is true when cs 

is a CordSegment that is part of Cord c. 

 The end of a cord segment could connect to an object, or be the point where the 

cord enters a sheave (one of the grooved slots) of a pulley. 
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Definition 49 (Connected at End of Cord): connectedAtEnd(cs,o) is true 

when one end of CordSegment c is connected to object o. 

Definition 50 (Cord Segments Enter Pulley): cordSegEntersPulley(cs,p) is 

true when one end of CordSegment cs enters Pulley p. 

For both of the above relations, it is useful to know what direction the cord segment 

enters or arrives at the object, giving us the following relationships. 

Definition 51 (Direction to and from a Cord Connection): 

qvFromCord(cs,o,tv) is true when: cs is connected to or enters object o from 

the direction of translational vector tv.  qvToCord(o,cs,tv) is true when cs is 

connected to o and leaves it in the direction of translational vector tv. 

 For pulleys, there are two other necessary topological facts.  First, since a pulley 

might have more than one sheave (and thus more than one cord), the following 

relationship is used to keep track of which cord segments connect to each other inside a 

sheave. 
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Definition 52 (Cord Segments Connecting through a Pulley): 

cordSegsConnectThroughPulley(cs1,cs2,p) is true when cs1 and cs2 

are CordSegments of a single cord passing through Pulley p. 

 Second, as the cord segments connect through a pulley, the cord wraps around 

the sheave.  If both ends of the cord were pulled and/or fixed, the cord would exert a 

force (and/or confer a constraint) on the pulley.  Therefore, the system needs to know 

the direction from the cord to the pulley. 

Definition 53 (Normal of Cord inside a Pulley): 

normalOfInnerCord(p,cs1,cs2,tv) means cs1 and cs2 connect through 

pulley p, and the direction from the cord inside p to the center of the p is tv.  It is true 

when: 

  (qvToCord(p,cs1,tv) AND qvToCord(p,CS2,tv))   

  OR (qvToCord(p,cs1,tv) AND qvToCord(p,cs2,tv2) AND   

 
Figure 29: The segments of the left cord and right cord glyphs connect through 
the pulley, despite the part of the cord inside the pulley not being drawn, and 

the two cords being separate glyphs.  (The system also concludes that the 
bottom segment does not enter the pulley.)  
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      rotate45(tv,tv2,rv) AND diagonal(tv)) 

  OR (qvToCord(p,cs1,tv1) AND qvToCord(p,cs2,tv2) AND 

      rotate45(tv1,tv,rv1) AND rotate45(tv2,tv,rv2) 

The above formula for determining the normal can be explained as: if the directions to 

both cord segments is 0 or 90, the normal is the vector between them.  Otherwise, it is 

the diagonal vector between them.  This way, normal can be determined even if the 

interior cord is not drawn (Figure 29). Graphical examples are given in Figure 30.  Note 

that the normal is not defined for the case where the difference between the vectors is 

greater than or equal to 180 degree, because in that case pulling the cord won’t affect 

the pulley. 

 

 

 
Figure 30: Examples of normal vectors of cords inside pulleys  
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 With the aforementioned relationships available, the system can use the 

following three relationships to find the kinematic cord connections and movable 

pulleys.  The first identifies when two cord segments are part of a larger cord. 

Definition 54 (Same Cord): sameCord(cs1,cs2) means cord segments cs1 and 

cs2 are both part of the same cord. This is true when: 

  cordSegsConnectThroughPulley(cs1,cs2) 

  OR (sameCord(cs1,cs3) AND sameCord(cs2,cs3)) 

For example, the two upper cord segments in Figure 29 are sameCord, but the bottom 

cord is not.  The second relationship identifies a cord connection. 

Definition 55 (Cord Connection): cordConnection(o1,o2,cs1,cs2) means 

objects o1 and o2 are connected at opposite ends of a cord and the connecting cord 

segments are cs1 and cs2.  It is true when: 

  sameCord(cs1,cs2) AND  

  connectedAtEnd(cs1,o1) AND 

  connectedAtEnd(cs2,o2) 

Note this cord connection relationship does not depend on what happens to the cord 

between the two objects.  If a movable pulley is present, then the connection is not a 

kinematic cord connection.  Thus, the third relationship the system needs to know is 

when a movable pulley is on the cord. 

Definition 56 (Movable Pulley on Cord): movablePulleyOnCord(cs,p) means 

cs belongs to a cord which goes through p.  It is true when: 
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  sameCord(cs,csp) AND 

  cordSegEntersPulley(csp,p) AND 

  normalOfInnerCord(p,csp,csp2,dir) AND 

  NOT sufficientlyConstrained(p,dir) 

With these two relationships available, detecting a kinematic cord connection becomes 

trivial. 

Definition 57 (Kinematic Cord Connection): 

kinematicCordConnection(o1,o2,cs1,cs2) means that o1 and o2 form a 

kinematic pair through cord segments cs1 and cs2.  It is true when: 

  cordConnection(o1,o2,cs1,cs2) AND 

  NOT movablePulleyOnCord(cs1,p) 

The algorithm for deriving connectedAtEnd and cordSegmentEntersPulley 

relationships from sketched input is discussed in Section 4.5. 
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4.4.3 Effects of Kinematic Cord Connections 

 

A kinematic cord connection between objects A and B creates the following effects: 

1. If A is sufficiently constrained such that it cannot move in response to the cord 

being pulled, then B is constrained from moving in directions that would pull the 

cord. 

2. If a force is applied to A such that the cord is pulled, then that force is applied to 

B if B is not sufficiently constrained. 

 

 
Figure 31: If the three sets of constraints hold for the wall (above) then the 

three constraints hold for the ball (below). 
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A kinematic cord connection may also create the following effects: 

3. If a force is applied to A such that the cord is pulled, then that force may apply a 

torque to B. 

4. If A is sufficiently constrained such that it cannot move in response to the cord 

being pulled, then it may create a new rotational origin for B. 

5. A force applied to A may create a torque on A about the new rotational origin 

(case 4) if B is sufficiently constrained. 

The constrained directions for sufficient constraint at a cord connection are analogous to 

those of surface contact: 

1. Translational motion into the open half plane centered on the vector out along 

the cord segment from the point of connection (i.e. the direction of the 

qvToCord relation). 

2. Rotational motion clockwise about any point which lies in the open half plane 

centered ninety degrees clockwise from the vector out along the cord segment 

from the point of connection. 

3. Rotational motion counter-clockwise about any point which lies in the open half 

plane centered ninety degrees counter-clockwise from the vector out along the 

cord segment from the point of connection. 

 As before, the first set of motions (the translational motions) are referred to as being 

sufficiently constrained from translating.  The second and third sets (rotational motions) 

are sufficiently constrained from rotating.  A kinematic cord connection to an object 
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with the above three properties will prevent the motion of the connected object as 

pictured in Figure 31. 

 

 The next class of effects are the force transfers.  Assuming object A is not 

sufficiently constrained in the direction of the force, a force applied to A should have 

the following consequences as pictured in Figure 32: 

1. Create a force on B if B is not sufficiently constrained from translating 

2. Create a torque on B, if B is not sufficiently constrained from rotating 

3. Create a torque on A, if B is sufficiently constrained and A is free to rotate 

 The remaining effect of a kinematic cord connection is a new rotational origin.  

If the object does not already have a rotational origin given by the user, the center of the 

junction at the far end of the object’s cord segment in the cord connection relationship 

becomes its rotational origin (see the rightmost example in Figure 32). 

 
Figure 32: The three possible force transfers for a kinematic cord connection. 
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4.4.4 Force Transfer to Movable Pulleys 

Movable pulleys may receive force from the cord that moves through them if one end of 

that cord is pulled and another end is constrained or connected to the pulley itself.  This 

requires two new relationships not defined thus far.  The first is the pulling of the cord.   

The cord may be pulled by an assumed force or another segment of the cord through a 

pulley. 

Definition 58 (Force Assumed on a Cord Segment Directly): 

forceAppliedToObject(cs,tv,src) means that CordSegment cs receives 

a force in direction tv from source src.  This is true when: 

  forceAssumed(cs,tv,src) AND 

  qvFromCord(cs,o,tv2) AND 

  axisAligned(tv,tv2) 

Definition 59 (Force Applied to a Cord Segment through Pulley): 

forceAppliedToObject(cs,tv,src) is also true when: 

  cordSegsConnectThroughPulley(cs,cs2,p) AND 

  forceAppliedToObj(cs2,tv2,src) AND 

  qvToCord(p,cs2,tv2) AND 

  qvFromCord(cs,p,tv) 
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Now that forces can be applied to the cord segments traveling through our movable 

pulley, the last thing needed is a relationship to find out if the cord going through the 

pulley terminates at a constrained point.  For a non-ambiguous result, the terminus must 

either be the pulley itself (as in a luff tackle configuration, see Figure 33) or another 

object which is sufficiently constrained so that the pulley can be forced against it (see 

the movable pulley in Figure 27 on pg. 73). 

Definition 60 (Movable Pulley Cord Terminus): 

movablePulleyCordTerminus(p,c,tms) means Cord c terminates travels 

through pulley p and terminates at terminus.  It is true when: 

  cordSegsConnectThroughPulley(cs1,cs2,p) AND 

  cordSegmentOf(cs1,c) AND 

  cordSegmentOf(cs,c) AND ## find any cord segment of c 

 
Figure 33: A luff tackle.  The bottom pulley is movable. 
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  connectedAtEnd(cs,o) AND 

    (equal(o,p) OR 

    (qvToCord(cs,o,tv) AND    

       sufficientlyConstrained(o,tv))) 

With one last definition, the pulley can be forced.   

Definition 61 (Force Applied by Cord to Movable Pulley): 

forceAppliedToObject(p,tv,src) means pulley p is being forced in 

direction tv.  This true when: 

  normalOfInnerCord(p,cs1,cs2,tv) AND  

  cordSegmentOf(cs2,c) AND 

  movablePulleyCordTerminus(p,c,tms) AND  

  forceAppliedToObj(cs1,tv1,src) AND   

  qvToCord(p,cs1,tv1) AND 

  NOT sufficientlyConstrained(p,tv) 

Examples of Design Coach understanding pulley systems can be found in the evaluation 

in Chapter 6.  A contrast of this method for modeling rope and pulley systems with an 

earlier method (Pearce, 2001) can be found in Chapter 7.  

4.5 Cord Connection Analysis 

As was the case for surface contact, cord topology knowledge must be derived from the 

sketch.  This is done by dividing the cord glyph into edges, which then become cord 
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segments.   For each cord segment which touches another object the system needs to 

know if that segment should assert a connectedAtEnd or 

cordSegEntersPulley relationship (or neither).  This is done using a new pair of 

relationships: 

Definition 62 (Edge Contacts Tangentially): 

edgeContactsTangentially(e,o) means edge e touches object o tangentially. 

Definition 63 (Edge Contacts Non-Tangentially): 

edgeContactsNonTangentially(e,o) means edge e touches object o non-

tangentially. 

 

Figure 34 shows the edge contact relationships graphically.  Once these have been 

established, the topological facts can be derived simply: if a cord makes a non-

tangential contact, it creates a connectedAtEnd relationship.  If a cord makes a 

tangential contact with a pulley, then it creates a cordSegEntersPulley 

 
Figure 34: The two types of edge contact relationships. 
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relationship.  Thus in Figure 34, the cords to the sides of the upper pulley will enter 

it, while the cords above and below it will be connectedAtEnd to it. 

 Figure 38 contains the algorithm for characterizing cord contacts.  It takes as 

input the cord glyph and a set of glyphs which contact it.  The set of contacting glyphs 

is the set of all glyphs representing physical objects that directly touch the cord glyph, 

minus any glyphs that have a doesNotTouchDirectly relationship with the cord 

glyph (this relation must be added by the user using a relation arrow). Figure 35 shows 

a graphical example of which glyphs get picked. 

 

 Next the surface contact decompositions are computed.  Recall that surface 

decompositions are created by inserting new junctions at points of contact with other 

 
Figure 35: Choosing the set of contact glyphs.  In this case, Block and Ball are 

chosen because they directly touch cord.  Wall is ignored because of the 
“Does not directly touch” relationship, and the contact with the relationship 

arrow itself is ignored because it does not represent a physical object. 
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objects.  This is demonstrated on the diagram to the right of Figure 36, where blocks 

A and B have a new junction added where the cord touches them.  For the surface 

contact decompositions from the cord to the contacted glyphs, each contacted glyph 

gets its own decomposition.  For the reverse (from the objects to the cord) 

decompositions, the new junctions are accumulated into a single joint decomposition for 

the cord.  This guarantees that the cord is partitioned into one set of edges by the 

junctions.  (If multiple separate decompositions of the cord were used, the same 

portions of ink would get split different ways depending on the junction placement and 

there would be no single common set of edges.)  

 

 Once the glyphs are decomposed, the algorithm iterates through the pairs of 

contact junctions.  In the example in Figure 36, there are three such pairs: one between 

the cord and A, one between the cord and B, and one between the cord and the Big 

Block.  For each cord edge entering the junction pair, the difference in angle is 

calculated between the cord edge and the contacted exterior edges leaving the junction.  

 
Figure 36: The cord is decomposed using surface contact against all three 

contacting glyphs at once. 
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For example, Figure 37 shows the junction pair between A and the cord.  The cord 

has one edge entering this junction, Edge-5.  The exterior edges of Block A leaving that 

junction are Edge-1 and Edge-2.  To determine if Edge-5 meets Block A tangentially, 

the difference in angles between Edge-5 and Edges 1 and 2 are computed in the 

algorithm used in tangentialContact? (Figure 38) which checks if the difference in 

angle between the cord’s edge and each of the axes of the contact edges is less than a 

threshold.  For this work 18 degrees was used based on previous perceptual models 

created within CogSketch for salient angle differences (Lovett, 2012).  By this criterion, 

the contact of Edge-5 in Figure 38 with Block A is non-tangential, while the contact 

with the corner of the big block is tangential. 

 

 Once the tangentialness of each connection is established, connectedAtEnd 

and cordSegmentEntersPulley relationships can be determined as discussed 

earlier in this section, and the system can use that knowledge to reason out the topology 

of the cord system.   

 
Figure 37: A zoomed-in view of the connection between block A and the cord. 
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 Three rules are used to determine which pair(s) of cord segment(s) connect 

through a given pulley.   

1. If there are only two cord segments which enter the pulley, they connect through 

the pulley. 

2. If two cord segments belong to the same cord, and they are the only two 

belonging to that cord entering the pulley, they connect through the pulley. 

3. If four cord segments enter a pulley, and one is from cord A, one is from cord B, 

and two are from cord C, then the segment from cord A and the segment from 

cord B connect through the pulley. 

In Design Coach, if segments are part of the same glyph, then they belong to the same 

cord.  So with the above rules the user may connect any number of cord segments 

through a pulley provided each pair belongs to a different glyph.  Rule #3 only scales up 

to four cords, so while QM can handle any number 

cordSegmentsConnectThroughPulley expressions per pulley, with Design 

Coach there is a soft two-cord maximum.  This was sufficient because the examples 

chosen for the mechanism corpus had at most two cords running through each pulley 

(i.e. all were single or double blocks).  We also do not detect impossible cord 

arrangements, such as one cord segment having multiple 

cordSegmentsConnectThroughPulley relationships in a single pulley. 

 The next chapter will explain how these QM representations are used to give 

feedback on engineering design sketches. 
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1. characterizeEdgeContacts(CordGlyph,ContactingGlyphs): 
2.   EdgeRelations <- [] ##results 
3.  CordDecomp <- edgeDecomp(CordGlyph) 
4.   ContactingDecomps <- [] 
5.   For Glyph in ContactingGlyphs: 
6.     ContactingDecomps.add(contactDecomp( 
7.                                CordDecomp,edgeDecomp(Glyph))) 
8.   CordSurfDecomp <- contactDecomp(ContactingDecomps,Cord) 
9.   For Contactor in ContactingDecomps: 
10.     JunctionPairs <- contactJunctionPairs(Contactor, Cord) 
11.     For JPair in JunctionPairs: 
12.       ContactorEdgePair <-  
13.                     edgesEnteringJunction(Contactor,JPair[0]) 
14.       CordEdges <- edgesEnteringJunction(Contactor,JPair[1]) 
15.       For CordEdge in CordEdges: 
16.         If tangentialContact?(CordEdge,ContactorEdgePair) 
17.           EdgeRelations.add(tangentialRel(CordEdge, 
18.                                                   Contactor)) 
19.         Else:  
20.           EdgeRelations.add(nonTangentialRel(CordEdge, 
21.                                                   Contactor)) 
22.    Return EdgeRelations 
23.  
24. tangentialContact?(CordEdge,ContactorEdgePair): 
25.   contactAngle1 <- angle(ContactorEdgePair[0]) 
26.   contactAngle2 <- angle(ContactorEdgePair[1]) 
27.   cordAngle <- angle(CordEdge) 
28.   CCWDiff <- mod(cordAngle-contactAngle1,360) 
29.   CWDiff <- mod(cordAngle-contactAngle2,360) 
30.   Return (or (and CCWDiff  > 180-Thresh) 
31.                   CWDiff > 180-Thresh)) 
32.              (and CCWDiff  < 180+Thresh) 
33.                   CWDiff < 180+Thresh)) 

Figure 38: The algorithm for characterizing edge contacts.  
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Chapter 5 

CogSketch Design Coach 

CogSketch Design Coach is a sketch-based educational software system which allows a 

student to explain their engineering design using a combination of hand-drawn sketches 

and structured language input, to get on-demand feedback on their explanation.  This 

chapter begins with an example of the system’s use and an overview of its architecture.  

Next, we describe the user input and interface.  Then we introduce the two algorithms 

used to critique the sketch:  state transition verification and sequential explanation 

analysis.  These are followed by a description of a teleological ontology which allows 

the system to understand input concerning higher-level purposes of engineering designs.  

The final section describes how the feedback is arranged and displayed to the user. 

 
Figure 39: A basic overview of Design Coach  
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5.1 Overview 

As explained in Chapter 1, we created Design Coach to help first year engineering 

design students improve their comfort and skill with sketching as a communication tool, 

as well as a source of feedback on their designs.  The following example demonstrates 

the workflow of Design Coach. 

5.1.1 Example 

 

In a homework exercise, a student was asked to explain the design of a detachable cup 

holder (depicted in the photograph in Figure 40) to Design Coach.  (The exercise is 

described further in Chapter 6.) 

 
Figure 40: A photograph of the Under Armrest cup holder design  
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After taking the Design Coach tutorials (which are built into CogSketch), the student 

begins by drawing the parts of her design as glyphs (Figure 41)5.  She starts by 

sketching an orthographic projection of the side view, to keep the motion in a 2D plane.  

She then adds conceptual labels and names to her glyphs, using the properties pane on 

the right.  She also adds a force arrow to indicate how the cup holder is removed. 

5 This example is based on a sketch drawn by an anonymous first-year engineering student, but the steps 
taken have been modified for this example.  The original sketch can be found in the explanation corpus. 

 
Figure 41: A student’s subsketch depicting the side view of the cup holder.  The 
student chose the “fixed object” and “rigid object” labels for the selected part. 
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 She then shows Design Coach what should happen next by creating a comic 

graph.  She moves to the metalayer and clones her subsketch to create another state for 

her design.  Once inside her new subsketch, she moves the cup holder glyph to the right 

to show that it detaches, then returns to the metalayer and adds a causes relation 

arrow between the states, showing that the situation in the first subsketch causes the 

situation in the second (Figure 42). 

 
Figure 42: The metalayer after cloning the subsketch, editing it, and adding a 

causes relation. 
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  She then requests feedback using the button in the lower left (Figure 41).  

Design Coach sees that the cup holder has been displaced to the right, but by using QM 

it reasons that, in the first state, the cup holder is sufficiently constrained to its right 

because of its contact with the attachment panel.  Therefore, the Design Coach gives her 

the following piece of feedback (shown in Figure 43): “To go from State 1 to State 2, 

cupholder has to move to the right in the sketch, but it will not move!”  By clicking the 

small boxes next to the feedback, she can expand it to display the reasons behind it.  

Design Coach would also like to know more about the sketch, so it prompts her to use 

the Tell window to do so.  She decides to address this feedback about motion first.   

 

 
Figure 43: The student expands the second feedback item to reveal its 

explanation.  Selecting feedback highlights referenced parts of the sketch in 
green. 
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 Entering the subsketches again, she changes her sketch so that the cup holder is 

removed vertically instead by repositioning it in the second state and rotating the force 

arrow to point upwards in the first state.  She then decides to address the other piece of 

feedback, and tell the Design Coach about how the cup holder detaches from the base 

and how it rotates. 

 
Figure 44: The student revises the sketch 
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 She opens the Tell window using the button on the lower right of the interface.  

She adds two sentences, shown in Figure 45.  She builds the sentences by selecting 

words from the drop down boxes, which are populated with terms from her sketch and 

the knowledge base.  (The box at the top is for students to describe their design in 

natural language for their instructors to read.  We also read these boxes while 

determining what new vocabulary might be added to the system.) 

 
Figure 45: The student constructs sentences.  Green check marks indicate that 

no fields are left blank. 
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 She presses the button to request feedback again.  Design Coach processes the 

sentences.  The first sentence is about the detachment; Design Coach knows that for 

detachment, the objects should start out attached and become separated.  Design Coach 

confirms this is happening by checking at the sketch, so it agrees (Figure 46).  Also, this 

time Design Coach sees that the cup holder has been displaced upward and uses QM to 

confirm that it will move up. 

 The second sentence says the cup holder is rotatable.  Design Coach checks to 

see if the cup holder is free to rotate.  Since no origin of rotation was given, it chooses 

the center of mass.  The contact with the panel sufficiently constrains the cup holder 

from rotating, so Design Coach responds with feedback saying that it cannot rotate. 

 
Figure 46: Design Coach gives feedback on the new version with sentences. 
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 The student decides to use another view where the cup holder will not be 

constrained from rotating.  She creates a new subsketch called Top View using the 

button on the left panel and draws the top view.  She then returns to the Tell window 

and changes the context of her sentence from “In state 1” to “In top view” and finishes 

the sentence.  She hits the feedback button, and Design Coach checks the sketch again.  

This time, every sentence proved to be true and the motion between state 1 and state 2 

was also valid, so the system responds that the explanation made sense. (Figure 47) 

 

  
Figure 47: Design Coach gives feedback on the third version. 

 



 102 

5.1.2 Architecture 

 

 Design Coach is organized as shown in Figure 48.  This diagram is organized 

into four columns.  The first column (on the far left of the diagram) is user input, which 

includes the sketch and structured language input.  The sketch informs the structured 

language input because the sketch contains the objects the student will tell the system 

about. 

 The second column is the knowledge base, which includes Design Coach QM 

and the teleological ontology.  Design Coach QM was explained in Chapter 3 and 

Chapter 4.  The teleological ontology provides additional vocabulary for use in the 

structured language input, with the goal of allowing Design Coach to understand and 

give feedback on the function of the designs as well as their physical behavior.  It will 

be described in Section 5.5. 

 
Figure 48: An overview of the architecture of Design Coach.  Each arrow means 

one subsystem is providing data to the other. 
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 The third column from the left shows the feedback generators.  The one at 

the top, sketch tips, checks the sketch for user input errors such as disconnected 

annotation or relation glyphs, forgetting to segment their ink into multiple glyphs, or 

forgetting to include a fixed object to create a frame of reference.  The middle box is 

state transition verification, the first feedback algorithm created for Design Coach 

(Wetzel & Forbus, 2009a, 2009b).  State transition verification looks at the comic graph 

on the metalayer and uses QM to see if the transitions in the graph make sense.  The 

third box is sequential explanation analysis, the newer feedback algorithm which uses 

multimodal input (Wetzel & Forbus, 2010, 2012).  It processes the structured language 

input sentence by sentence and verifies if each sentence is proven, unproven, or 

contradictory using QM and the sketched input.  The two feedback algorithms will be 

discussed in Sections 5.3 and 5.4, respectively. 

 The final column is the feedback generation system, which organizes the 

feedback and displays it to the user.  A key feature is the structured explanation system 

which allows the user to drill down into the feedback and see why the system provided 

it.  The knowledge representations for QM and the teleological ontology stored in the 

KB include natural language strings which are used to convert the predicate calculus 

statements into English (connection not shown in diagram).  More detail is given in 

Section 5.6. 
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5.2 User Input 

This section provides details on the input sources Design Coach uses: the CogSketch 

interface and the structured language input. 

5.2.1 Sketches 

Design Coach sketches use a custom skin of the CogSketch interface making specific 

conceptual labels available for the user.  The types of available concepts are listed in 

Table 1.  All three types of glyphs (entity, relation, and annotation) are used in Design 

Coach, as is the metalayer.  Each subsketch is expected to have a single layer, therefore 

the new layer control is hidden in the Design Coach skin.  All other user interface 

features remain available. 

 

Concepts represented by all of the above labels have been discussed in previous 

chapters except for one: Velcro.  Velcro was added to accommodate more designs from 

DTC.  In the Design Coach ontology, it is a specialization of the collection 

Table 1: Lists of Available Concepts in Design Coach Sketches 

Glyph Type Available Labels 
Entity Glyph Rigid Object, Fixed Object, Fixed Axis Object,  

Spring, Compressed Thing, Stretched Thing,  
Gear, Cord, Pulley, Velcro 

Annotation 
Glyph 

Force Arrow, Rotational Force Arrow, Origin of Rotation 

Relation 
Glyph 

Causes (metalayer), Directly Connected To,  
Does Not Directly Touch 
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AdhesiveMaterial.  This concept is relevant in the teleological ontology, 

which specifies that attachment can be attained using adhesive materials (see Section 

5.5). 

5.2.2 Structured Language Input 

 

Language is a natural complement to sketching, in the context of communication.  The 

structured language input allows Design Coach to take advantage of multi-modal input 

without waiting for advances in natural language understanding.  In Design Coach, 

students use the Tell window (Figure 45, pg. 99) to construct restricted sentences using 

templates that can be rendered into understandable natural language.  This structured 

language and its input interface are based on a similar one used in an earlier system 

 
Figure 49: The Structured Language Input 
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from the Qualitative Reasoning Group, nuSketch Battlespace (Forbus et al., 2003).   

The core structure of these constructed sentences is: 

  In <context> <subject> <verb> <object>. 

 An example simple sentence that would be true in our previous example (5.1.1) 

would be “In State1 cup holder moves up.”  Here <context> is the state (i.e. the 

subsketch) being described.  Once a subsketch is selected, the <subject> field is 

populated with the names of entities represented by glyphs in the sketch.  This includes 

all entity glyphs and none of the annotations/relations.  The <verb> field is populated 

with concepts from QM and the teleological ontology (Table 1).  The contents of the 

<object> field vary depending on the selected verb.  If none are available, the 

<object> field will disappear completely.  For instance, in the cup holder example 

one sentence the student made was “In top view cup holder can rotate.”  “Can rotate” is 

one of the verb options that has no object field.  For a list of which verbs allow which 

object choices, see Table 2.  The teleological verb phrases generate an additional 

<way> field; this will be explained in Section 5.5.  Because sentences may introduce 

new forces or additional information about the types of objects, their order matters.  The 

student can use the green arrow buttons to the left of the sentence to quickly change the 

order of their statements. 
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 Sentences may either be simple or compound.  To create a compound sentence, 

the user clicks the blue arrow button and additional fields are revealed.  Structurally, the 

compound sentence is like joining two simple sentences together. 

  In <context> <subject1> <verb1> <object1> <conjunct> 

     <subject2> <verb2> <object2>. 

The <context> is shared between the two conjuncts, but they are otherwise separate.  

The <conjunct> can be either “which causes” or “which prevents”, allowing the user 

to make causal statements such as “In state 1 cup holder is being forced up which 

causes cup holder moves up”.  Given the user’s choice for <verb1>, there may be 

Table 2: List of verbs, and their available objects in the Tell window;  
Italicized verbs are teleological. 

Verb Available Objects 
Moves Up, Down, Left, Right, Up and Left, Up and Right, Down and 

Right, Down and Left 
Rotates Clockwise, Counter Clockwise 
Is being forced Up, Down, Left, Right, Up and Left, Up and Right, Down and 

Right, Down and Left, Clockwise, Counter Clockwise 
Is Rigid, fixed, compressed, stretched, springy, Velcro 
Touches 

List of entities in the subsketch 

Attaches to 
Detaches from 
Adapts to 
change in size of 
Contains 
Is made more 
comfortable 

None Does not move 
Does not rotate 
Can Move 
Can Rotate 
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some limitations on which verbs may be used for <verb2>, as well; these are 

explained in Limitations and Future Work, Section 8.2.5. 

 As sentences are completed, they are added as facts to the working memory of 

the sketch.  However, Design Coach does not immediately believe the facts in the 

sentences.  What it actually stores is a fact that says the student stated the fact.  So in the 

cup holder example the sentence, “In top view cup holder can rotate.” became a fact 

like6:    

 (studentSays (in-context State1 (rotatable CupHolder)))  

It is then up to the Design Coach to decide if the fact should be assumed true or not.  It 

uses the feedback algorithm in Section 5.4 to do so, and then runs the following 

algorithm to check the causal relationships implied by the relation arrows in the comic 

graph (i.e. on the metalayer).   

  

6 In this chapter facts will be formatted in Cyc-style predicate calculus for the benefit of any who want to 
try the examples out in CogSketch and compare results in the knowledge browser.  Note that some terms 
are abbreviated for conciseness, e.g. ist-information. 
 

                                                 



 109 

5.3 State Transition Verification 

 

 The first feedback algorithm, state transition verification (STV), is depicted 

graphically in Figure 50 and in pseudocode in Figure 51.  The algorithm begins with a 

pre-processing step, to ensure all of the surface contact knowledge and cord connection 

knowledge needed for QM is updated.  Then, the subsketch pairs are found by checking 

working memory for the causes relationship created by the relation arrows on the 

metalayer.  In the example pictured in Figure 50, there are two transition pairs (our 

student became even more ambitious), which are represented by the facts (causes 

State1 State2) and (causes TopView TopView2). 

 
Figure 50: A visual description of the state transition verification algorithm 
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 Once the list of transition pairs has been made, state transition requirements 

must be determined for each pair.  The requirements are motion facts that would have to 

hold for the objects to end up in their final positions, e.g. (transMotion 

CupHolder1 Right).  To determine if objects translated, deduceRequirements 

first selects a glyph labeled FixedObject that is present in both subsketches.  Then, 

the relative position of each non-fixed object to that fixed object is computed between 

the two subsketches.  In the example in Figure 50 it is determined that the cup holder is 

displaced to the right between the two subsketches, and the aforementioned fact 

becomes stored as a state transition requirement for the pair.   

 deduceRequirements uses a cognitive model of mental rotation (Lovett et al., 

2007) to determine if an object rotated.  This model uses edge segmentation to find the 

edges of the glyphs and then finds a mapping between the edges in two decompositions, 

matching up their corresponding edges.  This mapping is then used to calculate the 

1. stateTransitionVerification(Sketch): 
2.   For Subsketch in Sketch.subsketches: 
3.     updateSurfaceContactKnowledge(Subsketch) 
4.     updateCordConnectionKnowledge(Subsketch) 
5.   Feedback <- [] 
6.   For SubsketchPair in getTransitionPairs(Sketch): 
7.     For Requirement in deduceRequirements(SubsketchPair): 
8.       For Verification in verifyRequirements(Requirement): 
9.         If Verification == Requirement: 
10.           Feedback.add(recordSuccess(Requirement, 
11.                                                Verification)) 
12.         Else: 
13.           Feedback.add(recordFailure(Requirement, 
14.                                                Verification)) 
15.   Return Feedback 

Figure 51: State transition verification algorithm, top level 
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shortest angle of rotation between them.  While this effectively creates an 

assumption that objects always rotate through the shortest distance, in practice this has 

not yet caused problems with any of the design explanations encountered. 

 Returning to the example at the start of this subsection, the two requirements are 

stored as facts in working memory: 

(stateTransitionRequires State1 State2   

                    (translationalMotion CupHolder Right)) 

(stateTransitionRequires TopView TopView2 

                          (rotationalMotion CupHolder CW)) 

The next step, verifyRequirements, verifies that each requirement is met by using 

QM to see if the predicted motion occurs.  In this example, the system performs the 

following queries to check the directions: 

(translationalMotion CupHolder ?dir) 

(rotationalMotion CupHolder ?rdir) 

These are performed in the context of the first member of the pair, State1 and 

TopView, respectively.  The translational motion query will return ZeroQVector, 

because again, the surface contact with the fixed base of the device prevents it from 

moving.  The rotational motion query will return ZeroRot, because there is no 

rotational force acting on cup holder.  (If you check, you’ll see there’s no force arrow.) 

 When the result of the verification step does not match the requirement, it is 

added to a new feedback item, which will be turned into the English statement like the 
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one seen previously in Figure 43 (page 97): “To go from State 1 to State 2, 

cupholder has to move to the right in the sketch, but it will not move!”  Additionally it 

would give feedback about the top view pair (pictured in Figure 50) too: “To go from 

Top View to Top View 2, cupholder has to rotate clockwise in the sketch, but it will 

not!”  To address this feedback, the student could change the cup holder to be removed 

vertically in both of the side view subsketches as done before, and add a rotational force 

to the cup holder.  After these changes, the results match the requirements, and no 

feedback is generated by STV. 

5.4 Sequential Explanation Analysis 

Sequential explanation analysis (SEA) takes in a list of studentSays facts derived 

from the structured language input (5.2.2) and proceeds through them sequentially, 

checking to see if they can be proven true, can be proven contradictory, or are currently 

unprovable.  This checking is done by a set of verification routines, introduced in Figure 

52. 
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 Non-compound sentences are checked by the routine VerifySimpleFact.  

Compound sentences are sent to VerifyCausesFact or 

VerifiesPreventsFact depending on their conjunct.   Given a fact, F, any of the 

verification routines in this chapter will return one of three values: 

1. (proven F) 

2. (contradiction F C), where C is a fact representing the reason that F is 

contradicted 

3. (unproven F) 

 
Figure 52: Sequential Explanation Analysis, Top Level:  The facts representing the 

sentences are sequentially passed to the appropriate verification routine. 
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 verifySimpleFact passes F to one of four subroutines depending on the 

relation F represents (Figure 53).  For example, when our student in the cup holder 

example told Design Coach that the cup holder can rotate in the side view, the 

structured language input produced a fact like: 

  (studentSays (in-context State1 (rotatable CupHolder))) 

Since this fact is not one of the three special cases, it is handled by the default routine, 

verifyAbsentNegativeFact, which assumes that a fact is negated if it cannot be 

 
Figure 53: Sequential Explanation Analysis, verifySimpleFact: 

Simple facts are proven according to the relation they represent. 
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proven.  Since QM cannot prove the Cup Holder is Rotatable, the routine returns 

(contradiction rotatable(CupHolder) nil).   A more ideal result would 

be to fill this nil in with the missing facts, but the reasoning engine in CogSketch does 

not store the justifications for why previous queries failed.  Systems which do keep 

track of this information could have the default verification routine fill in the reason 

field of the contradiction fact at this point for later processing.  In Design Coach, we use 

the structured explanation system to provide the student with the appropriate details (see 

Section 5.6, Feedback Generation).  

 The third time the student requested feedback in our example, the context of the 

sentence was changed to the top view, where the cup holder was no longer blocked 

from rotating.  In that case, QM concludes that the cup holder can rotate, and the routine 

simply returns (proven rotatable(CupHolder)). 

 Aside from the default, there are three fact-specific routines for Design Coach: 

1. verifyIsAFact  

2. verifyMotionFact 

3. verifyForceFact 

The first, verifyIsAFact, looks at facts of the form (isa <entity> 

<label>).  These facts mean that an entity belongs to the Cyc collection (a category 

of things) specified by label.  Entities may have multiple labels but the KB also includes 

facts about which collections are disjoint, so this routine checks to see if the label in the 

sentence fact is disjoint with any other labels believed about the object in working 
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memory.  If a disjoint label is found, a contradiction fact is produced and that 

disjoint label included as the reason.  If the labels are not disjoint, the result becomes a 

proven fact regardless of whether or not it was believed before. 

 The second routine, verifyMotionFact, uses QM to check and see if the 

translation/rotation in the sentence is indeed the direction the object will travel.  

Because motion queries are designed to always return one answer (including zero or 

ambiguous), the result will either match the direction given in the sentence or not.  If it 

does, it is returned proven, and if it does not, a contradiction is returned with the 

contrary motion fact QM.  For example, if the student opened her sketch with the cup 

holder moving up in state one and added a sentence that said “In state 1, the cup holder 

moves down.” SEA would return a fact like: 

 (contradiction  

  (inContext State1 (translationalMotion CupHolder Down)) 

  (inContext State1 (translationalMotion CupHolder Up))) 

 The third routine, verifyForceFact, also uses QM to check the fact.  

However, since there may be any number of forces applied to an object, Design Coach 

can accept the student’s statement as an unproven assumption rather than a 

contradiction, so here the options are proven or unproven.  The unproven fact will 

prompt feedback asking for more detail, but the system will also assume the fact is true 

until the student changes or removes the sentence.  For example, if the student adds a 
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sentence “In Top View, the cup holder is being forced clockwise.” the system 

comes to believe a fact like: 

 (inContext TopView (rotationalMotion CupHolder CW)) 

But it also stores a fact like:  

 (unproven  

    (inContext TopView (rotationalMotion CupHolder CW))) 

The presence of this unproven fact produces a new feedback item: “Why is it the case 

that cupholder is being forced clockwise in Top View?” 

 Now that we have covered all of the cases in verifying simple sentences we turn 

to compound ones.  As noted before, compound sentences can be thought of as two 

simple sentences with a conjunct in between them.  They are represented as facts like: 

  (studentSays (<conjunct> factA factB))  

There are two verification routines for compound sentences, one for when the conjunct 

is causes (Figure 54) and the other for when the conjunct is prevents (Figure 55).  Both 

procedures make use of verifySimpleFact to verify their individual clauses.  Both 

also verify their A (antecedent) clause first, since if this clause is false then the 

statement is moot—an instant contradiction.  If A is unproven, both assume A to be true 

and proceed with their verification of their B (consequent) clause.  From that point on, 

the behavior of the two diverge. 
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 For verifyCausesFact to prove that A causes B, it must show that B is true 

and that B is true because A is true.  If B is unproven or contradicted, then “A causes 

B” is contradicted right away by that fact.  In this case the contradiction/unproven fact 

itself becomes the reason for the contradiction.  Returning to the cup holder example 

(Figure 47, pg. 101), consider the case where the student adds the sentence “In Top 

View, cup holder is being forced clockwise which causes cup holder rotates 

counterclockwise.”   Because the antecedent is a force statement, and there are no force 

 
Figure 54: Sequential Explanation Analysis, verifyCausesFact: 

A causes B if both are proven and A justifies B. 
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arrows in that subsketch, the antecedent is found unproven, and thus assumed true.  

When SEA verifies the consequent, the clockwise torque applies to the cup holder.  

However, since the student said that causes the cup holder to rotate counterclockwise, 

the result is a contradiction.  Therefore verifyCausesFact returns a fact like: 

  (contradiction (causes  

                   (torqueAppliedToObject CupHolder CW  

                                                  ?source)  

                   (rotationalMotion CupHolder CCW)) 

    (contradiction (rotationalMotion CupHolder CCW) 

                   (rotationalMotion CupHolder CW)))7   

However, if the antecedent had been another unproven fact, such as saying the 

rotational force should cause an upward force, then the contradiction returned would 

have the unproven fact as its reason instead. 

  (contradiction (causes  

                  (torqueAppliedToObject CupHolder CW 

                                                  ?source)  

                  (forceAppliedToObject CupHolder Up   

                                                 ?source)) 

    (unproven (forceAppliedToObject CupHolder Up)))7 

7 Context wrappers removed for clarity. 
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Finally, if the consequent is true then there are still two more cases; either A caused 

B or A didn’t cause B.  SEA uses the reasoning engine’s facilities to check if A is a 

logical antecedent of B.  If it is, then it is proven that A causes B.  If not, then the result 

is a contradiction.  There could be any number of reasons why B was true without A, so 

B itself is added to the reason slot for the contradiction, leaving the calling system to 

perform its own analysis of B’s antecedents to further explain the contradiction. 

 

 
Figure 55: Sequential Explanation Analysis, verifyPreventsFact: 

A prevents B if A is proven, B is contradicted by C, and C is justified by A. 
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 verifyPreventsFact is somewhat analogous to 

verifyCausesFact: A will be shown to prevent B if 1) A is proven, 2) B is 

contradicted, and 3) the contradiction of B is justified by A.  It proceeds identically to 

the causes version of the routine up until the point after B has been verified; then there 

are two main differences.  First, the consequences for B being a contradiction and B 

being proven are switched.  If B is proven, that contradicts A preventing B.  On the 

other hand, if B is contradicted, then to prove A prevents B, A should play a role in 

causing C, the immediate reason given for B’s prevention.  (Naturally, if A = C, A 

prevented B as well.)  If A is not equal to or an antecedent of C, then (prevents A 

B) is contradicted by the fact that C contradicts B instead of A or some consequent of 

A.  Again, (contradiction A C) is placed in the reason slot of the contradiction 

so the calling system may sort it out. 

 The second change from the causes version is that if B is unproven, then the 

sentence is unproven rather than contradicted.  This is because if A is true but it is 

unclear why B is not proven, that signals a lack of knowledge, whereas in the causes 

case it is clear that A didn’t cause B, or B would be proven.  Thus the result is unproven 

instead of a contradiction. 

5.5 Teleological Ontology 

Design explanations involve more than statements about mechanical behavior, so QM 

knowledge alone could only take Design Coach so far.  With a knowledge of function, 
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i.e. teleology, the system can link the mechanical properties and behaviors it 

understands to their purposes.  The teleological ontology is an organized representation 

of design function.  The ideal is a teleology that will be domain-independent, useable 

with future systems and any future Design Coach projects (e.g. electronic systems, 

physical systems outside the current scope of Design Coach QM, etc.).  This section 

begins with a brief description of the ontology on which the teleology for Design Coach 

is based, then describes the representations used in Design Coach and finally concludes 

with details of the resulting options available to the user through structured language 

input from this teleology, and how those options were selected. 

5.5.1 Way-of-Function Ontology 

After considering several alternatives (see Related Work, Section 7.2), the model of 

ontology of device function developed by Kitamura et al. (2006) was selected as the 

basis for the teleological representations in Design Coach.  Kitamura’s work describes 

artifacts using function decomposition trees, in which the goal function of a system is 

recursively decomposed into a tree of method functions which, when performed, 

achieve their parent goal. In these trees, parents are related to their child functions via a 

type of relationship called a way-of-function-achievement, or a way for short. In their 

ontology, each way has a list of generic functions which accomplish its goal. For 

example, the Heat Water function can be achieved by a Heat Transfer way which 

specifies two generic child functions: Transform Electricity to Heat and Give heat to 

Water.  The core concepts of function and way can be easily expressed and understood 
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as English statements, and recursive nature of this ontology lends it to future 

expansion, making it a good fit for Design Coach. 

5.5.2 Teleological Representations of Design Coach 

The core of this adaptation of way-of-function ontology are the following three 

representations.  The first is the concept of teleological function itself. 

Definition 64 (Teleological Function):  A TeleologicalFunction is a symbol 

denoting a purpose a design may (seek to) accomplish. 

 One example of a teleological function was in the example at the start of 

chapter: the cup holder being detachable.  The next concept is ways to achieve said 

functions. 

Definition 65 (Way of Achieving Function):  A WayOfAchievingFunction is a 

symbol denoting a way to achieve some TeleologicalFunction. 

 An example of the ways of achieving the aforementioned detachment are 

through de-interlocking the parts or disconnecting one or both of them from some 

temporary adhesive. 

Definition 66 (Function Achieved Via):  

functionAchievedVia(tf,w,parts,contexts) is true when the members 

of the list of entities, parts, achieve TeleologicalFunction tf through 

WayOfAchieveingFunction w over the course of progression through the list of 

states, contexts. 
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 The student’s sentence was “In state 1 cup holder detaches from attachment 

panel via interlocking/de-interlocking.” This translates into a fact like: 

(studentsays 

  (functionAchievedVia Detatchment-TF InterlockingPartsWay  

              (TheList CupHolder Panel) (TheList state1))) 

The full vocabulary of teleological functions and ways follows. 

5.5.3 Functions and Ways 

 As part of our classroom interventions (Section 6.2), students were asked to 

submit feedback on Design Coach, including vocabulary they would like to be able to 

use in the Tell window.  Additionally, the students’ work submitted as part of the 

interventions included adding novel refinements to the design, which introduced new 

functions, or alternative means of achieving the original design goal.  After collecting 

feedback from students and instructors, we assembled the following collection of 

functions and ways (Table 3) into the teleological ontology and added it to Design 

Coach. 
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 The teleological functions were added to the structured language input as verbs 

(Table 2, pg. 107).  For four of the five teleological functions, the language like input 

looks like the kind of sentence discussed at the end of the previous section:  

In <context> <subject> <Teleological-Function-Verb> <object> 

via <Way-of-Achieving-Function>. 

The one exception is the function for increasing comfort, where the object is simply 

assumed to be the user of the device and is thereby omitted.  When a teleological 

sentence is constructed, facts are added of the form seen in the previous example. 

(studentsays 

  (functionAchievedVia <TeleologicalFunction>  

                       <WayOfAchievingFunction> 

                      <list of parts>  <list of states>))) 

We added rules to allow the system to prove these facts, so the verification routines of 

SEA can simply query the reasoning engine to prove if they are true.  These rules are 

Table 3:  Ways of Achieving Teleological Functions 

Teleological Function Ways of Achieving Function 

Attachment 
Interlocking Parts 
Adhesive Material 
Temporary Adhesive Material 

Detachment Interlocking Parts 
Temporary Adhesive Material 

Adapting in Size Adjustable Parts 

Containment Enclosure 
Prohibiting Downward Motion 

Increased Comfort Change in Shape 
Moving within Reach 
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listed in Appendix A.  functionAchievedVia is assumed to be negated if 

absent, and thus falls under the default verification routine. 

5.6 Feedback Generation 

When the student presses the feedback button, the three feedback systems are engaged 

in turn.  SEA is run first, then STV, and then finally the sketch tips system.8  SEA is run 

before STV so that STV can benefit from any new QM knowledge that was proven or 

assumed from the structured language input.  At the end, the sketch tips system searches 

the sketch for user input mistakes such as disconnected annotations and relations (user 

forgot to choose (a) target(s) for the glyph), subsketches with only one glyph (user 

forgot to segment their ink), and subsketches connected by a causes arrow which lack 

a common fixed object (necessary for STV).  Each piece of feedback is added to a lisp 

object which includes the English text string for display, the list of glyphs/edges to 

highlight, and if relevant, the fact that prompted this feedback (e.g. an STV verification 

or an SEA contradicts/unproven fact).  If the source of the feedback was a fact, the 

English text is rendered by a language generation system using templates stored in the 

knowledge base and the namestrings given to entities by the user.  Lastly, if no 

feedback items are found, then the message “Ah that explanation makes sense. Thank 

you.” is added to the feedback list instead. 

8 Though the sketch tips system is run last, it is actually independent of the other two algorithms.  We 
also move the sketch tips to the top of the list of feedback displayed to the student, so they may fix their 
input errors first. 
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 The feedback items are then displayed in the feedback pane below the sketch as 

shown in Figure 56 (see also Figure 43, Figure 46, and Figure 47 in Section 5.1.1).  The 

expanding tree structure is a structured explanation system similar to one used in 

CyclePad (Forbus et al., 1999).  We developed this to help Design Coach explain its 

feedback to students, who sometimes could not figure out why Design Coach did not 

understand their explanations.  The structured explanation system is based on two sets 

of knowledge: a set of axioms that define which facts warrant further explanation, and a 

set of rules which determine which facts should be used to explain a given fact.  The 

former is used to determine if an item in the outline is expandable or not.  The latter is 

used when a student clicks on the icon to expand the feedback (lazy evaluation).   

 The default rule for explaining a fact is to state any antecedents of that fact for 

which the system has an English string template.  (In other words, if you can’t say it, 

don’t bother.)  This works well when facts have justification involving QM facts; for 

example in Figure 56 when the system is explaining why the fact that the net force on 

 
Figure 56: A close-up view of the Design Coach feedback pane from Figure 43 
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the cup holder is to the right, some forceAppliedToObject fact(s) will be its 

antecedents, so the student can drill down into the net force fact to see where system 

thinks the forces are coming from.   

 

 However, in the case of a contradiction for a functionAchievedVia fact, 

the fact was simply failed to be proved, and it is hard to deduce why.  In the case of 

teleological knowledge, facts have been added to the KB which give explicit 

instructions on the requirements for the function to be achieved by the selected way.  

Rules then specify that the teleological facts should expand to show those instructions.  

For example, if the student removed the causes arrow from between State 1 and State 

2 in the cup holder example, her sentence explaining the detachment would result in the 

feedback shown in Figure 57.  In other cases, rules are used to filter out redundant 

information or skip unnecessary levels of detail. 

  

 
Figure 57: Design Coach feedback for a teleological sentence 
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Chapter 6 

Evaluation 

In this chapter, Design Coach is evaluated on three criterion. 

1. The accuracy of Design Coach QM at predicting motion in a range of sketched 

mechanisms (the mechanism corpus) 

2. The accuracy of Design Coach at giving feedback on student's engineering 

design explanations (the explanation corpus) 

3. Impacts of a Design Coach classroom intervention on the education of 

engineering students, including: 

a. Effects on their self-reported anxiety and skill with sketching and 

b. Correlation between success on design coach homework and overall 

performance in the course. 

c. Correlation between use of the feedback mechanism and performance of 

explanatory tasks using Design Coach 

The chapter begins with a description of the mechanism corpus evaluation, which 

shows the breadth of mechanisms that Design Coach QM can understand.  It continues 

with a description of the interventions which created the sources of data for the second 

and third criteria.  The explanation corpus is evaluated next, showing how well the 

Design Coach did at critiquing engineering design explanations from the intervention 
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and describing the sources of its limitations.  We conclude our evaluation with an 

analysis of the three measures of impact on students. 
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6.1 Mechanism Corpus 

 

 

Table 4: Mechanism Corpus Sources and Features 
(sketches and their descriptions can be found Appendix B) 

Name Source Features Fig. 

Book Holder DTC Preventing/Allowing 
Translation Figure 73 

Detachable Paint 
Roller DTC Preventing/Allowing 

Translation Figure 74 

Mini Baja Go-
Cart DTC Rotation and Translation Figure 75 

Double-Sided 
Switch DTC Translation Figure 76 

One-Handed Nail 
Clipper DTC Multiple Springs Figure 78 

One-Handed Egg 
Cracker DTC Rotation and Translation Figure 79 

Abdominal 
Exerciser DTC Springs, Rotation Figure 80 

Wheelchair 
Stabilizer DTC Preventing/Allowing 

Rotation Figure 81 

Recliner DTC Springs, Rotation Figure 82 
Under-Armrest 
Rotatable Cup-
Holder 

DTC Rotation and Translation Figure 83 

Steering Wheel 
Handle DTC Rotation Figure 84 

Orthopedic 
Trainer DTC Springs Figure 85 

Runner (Block 
and Tackle) Basic Machines Cords & Pulley Figure 86 

Gun Tackle Basic Machines Cords & Pulleys Figure 87 
Luff Tackle Basic Machines Cords & Pulleys Figure 88 
Luff upon Luff Basic Machines Cords & Pulleys Figure 89 
Spring Button Other Springs Figure 90 
Gear Train Other Gears Figure 91 
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 Table 4 lists the designs in the mechanism corpus.  Figures for each design 

in the corpus can be found in Appendix B.  This first twelve designs come from the 

Design Thinking and Communication Course at Northwestern.  Nine of these come 

from the original group of mechanisms surveyed as we started the project (Wetzel & 

Forbus, 2009b), and three come from projects selected by instructors for use in our 

classroom interventions (see the next section).  The final pair were created for 

demonstration purposes, and as of this writing, are included with the CogSketch 

executable.  Together, the designs in this corpus cover a variety of mechanisms, 

including all aspects of QM: transference of constraint and of force, translational and 

rotational motion, springs, gears, cords, and pulleys.  For each design a sketch was 

created and the translation and rotation of each rigid object in the sketch was queried 

with Design Coach QM.  

 

 
Figure 58: The Dynamic Dropper Design, an Orthopedic Device 
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 For example, Figure 58 shows the Dynamic Dropper Design from DTC, 

which helps patients with spinal cord injuries avert rapid decline in bone mineral 

density by allowing them to experience muscle activity.  In response to gravity acting 

on the foot, the mechanism descends.  When it can no longer fall straight down, the 

hinged platform rotates clockwise, and with it the shoe.  Finally the springs exert a force 

upward to send the platform back up.   

 In summary, Design Coach is able to predict the motion of a variety of 

mechanisms within a 2D plane.  Mechanisms which move in three dimensions will be 

discussed in future work. 

6.2 Design Coach In-Class Interventions 

Over the course of a five-quarter series of pilot pull-out studies, the first version of 

Design Coach, Design Buddy, was developed (Wetzel & Forbus, 2008, 2009a, 2009b, 

2010) for Northwestern University’s Design Thinking and Communication course 

(formerly known as Engineering Design and Communication).  The first in-class 

interventions took place in the fall 2011 and winter 2012.  A small pullout study was 

performed in the spring of 2012, followed by three more interventions in fall 2012, 

winter 2012, and fall 2013.  All interventions took the form of a mandatory homework 

assignment, which was developed in collaboration with instructors of the course. 

 Before each quarter, instructors were recruited to try the intervention in their 

section.  In DTC, instructors are paired up and assigned to one or more sections of about 
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16 students, so the pool of students which received the homework assignment was 

determined by which instructors volunteered.  The average number was about two 

sections per quarter, or 32 students.  Each quarter the homework assignment was given 

at a time of the instructors’ choosing, and students were given one week to complete the 

assignment (extensions were allowed upon request).  For the final three quarters, 

students were also given an opportunity to take an online survey on their anxiety and 

skill with sketching before and after the assignment.  The details and results from the 

survey are given in Section 6.4.1.   

 The homework assignment consisted of three parts: 

1. Complete the in-program Design Coach Tutorials. 

2. Explain a given design from a previous quarter to Design Coach using a sketch 

and sentences entered through the Tell window. 

3. Think of one refinement for the design in part 2, and explain the refined version 

to Design Coach. 

The homework assignment also asked the students to write an explanation in English 

for their instructor in the box at the top of the Tell window, and to share their own 

feedback about Design Buddy/Coach in the notes window.  The first design chosen was 

a rotating cup holder (Figure 83), primarily because it involved motions in two separate 

planes without requiring 3D.  Additional designs were tried, including the Gamma 

Handle (Figure 84) and Dynamic Dropper (Figure 85) in the Spring 2012 pilot, and the 

Gamma Handle in section 5 of the Fall 2012 intervention, but in the end it was decided 
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to stick to one design (the cup holder) to lower the number of variables.  For more 

details, copies of a homework assignment handouts have been included in Appendix C. 

 In the first quarter (Fall 2011) there was an additional part between steps two 

and three, where students were told to give Design Coach an explanation of how the 

design was used in a new context of the students choosing.  It was removed after the 

first quarter to shorten the overall length of the assignment after feedback from students 

convinced us it was too long.  As a result of the shortening of the assignment, in fall 

2011, students were asked to create three files (one for each sketched explanation), 

while the remaining quarters they were asked for two.  These submitted files form the 

explanation corpus. 

6.3 Explanation Corpus 

 The explanation corpus contains 240 sketched explanations (sketch files), 

Table 5: Explanation Corpus Sources 

Quarter Section # of Sketched Explanations # of Students 
Submitting 

Fall 2011  6 60 22 
Winter 2012 10 26 14 
Winter 2012 16 24 12 
Spring 2012 N/A 4 2 
Fall 2012 4 27 14 
Fall 2012 5 31 16 
Winter 2013 8 21 11 
Fall 2013 3 27 13 
Fall 2013 12 20 11 
Totals N/A 240 115 
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submitted by 115 students.  A breakdown of the source by quarter and section 

number is given in Table 5.  To evaluate the explanation corpus, each sketched 

explanation was opened and feedback was requested from Design Coach.  When older 

sketches had their sentences removed due to changes in the vocabulary of our structured 

language input, these we re-entered where applicable using the newest vocabulary 

(presented in 5.2.2) before testing.  The ink of the sketches was not modified.  Each 

feedback item was then manually inspected and valid feedback was added to the gold 

standard.  If a piece of valid feedback should have been present but was missing or 

replaced with an invalid feedback item, the missing valid item was also added to the 

gold standard.  Each sketched explanation was then checked again against the gold 

standard to create a list of missing and invalid feedback.  Instances of errant feedback 

were then tallied by inspecting the lists and removing duplicates generated by errors 

with double-entries.  For example, if the correct feedback was “Cup holder moves right 

in the sketch, but it will actually move up!” and the system returned “Cup holder moves 

right in the sketch, but it will actually move down!”, the former is added to the missing 

list while the latter is added to the invalid list—two entries for one error.  If the system 

generated no feedback at all for this fact, then the former would be added to the missing 

list and no addition would be made to the invalid list.  Thus when tallying the feedback 

we ignored errors that are duplicates from the other column.  This was done separately 

for the STV and for the SEA feedback.  All errant feedback from the sketch tips system 

was fixed during debugging, leaving no errors to present here. 
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 35 out of the 240 sketches in the corpus have at least one instance of missing 

or invalid feedback.  Table 6 shows the error rates for both feedback generation 

algorithms separately.  The number of valid feedback responses includes counting cases 

where the correct response was to give no feedback (i.e. SEA in response to a correct 

sentence, STV when objects move as depicted between state transitions). 

 

 

Table 6: Error Rates for Feedback Algorithms 

Feedback 
Source 

Number of 
Valid Feedback 

Responses 
Number of  

Invalid Feedback Responses 
Error 

% 
STV  197 28 12% 
SEA 627 39 5.9% 
Total 824 67 8.1% 

 

  
Figure 59: Overall feedback error rates for STV and SEA published in Wetzel 
& Forbus (2012) (STV = 23.5%, SEA=14.3%) vs running on the explanation 

corpus in 2014 (STV = 12.4%, SEA = 5.85%) 
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The error rate for both algorithms has decreased from when the teleological 

ontology and structured explanation systems were first added (Wetzel & Forbus, 2012).  

The corpus for the original experiment was the fall 2011 and winter 2012 data. 

 

 The invalid feedback consists of extra feedback (false negatives) and missing 

feedback (false positives).  These are shown in Table 7.  As explained in the previous 

section, the sketches in this corpus are from three designs used with a classroom 

intervention with Design Coach.  The breakdown of sketch types and error rates is listed 

in Table 8. 

 

Table 7: Precision and Recall of Feedback Algorithms 

Feedback 
Source 

Number of Missing 
Feedback Items 

Number of  
Extra Feedback Items Precision Recall 

STV  26 2 99.0% 88.3% 
SEA 3 36 94.6% 99.5% 
Total 29 38 95.6% 96.6% 

 

Table 8: Breakdown of Explanation Corpus by Design 

Design 

Number of 
Sections Which 

Used Design 

Number of  
Sketch Files 

Received 

Number of Files 
with Incorrect 

Feedback 

% with 
Incorrect 
Feedback  

Cup Holder 5 205 38 18.5% 
Gamma 
Handle 1 (+ pullouts) 33 2 6% 

Dynamic 
Dropper 

0 (pullouts 
only) 2 1 50% 

Total N/A 240 41 17.1% 
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The sources of the feedback errors are shown in Table 9.  The following subsections 

will describe the errors found and their causes. 

6.3.1 Surface Contact 

Surface contact errors have the highest incidence rate, affecting 22 of the 35 sketch files 

collected with incorrect feedback, see Table 9.  We find that these errors are caused by 

one of three circumstances: 

1. Objects drawn overlapping in 3D or drawn in perspective 

2. A low threshold for the minimum distance needed for contact 

3. False positives due to students drawing messy ink strokes or stick figures 

The number of sketches with each type of error is given in Table 10.   

Table 9: Sources of Error for Explanation Corpus Sketches 

Feedback Error Source Number of Sketches 

Surface Contact 28 

Sentence Critiquing 6 

touchesDirectly Detection 5 

Translation Detection 3 

Arrow Recognition 3 

Rotation Detection 2 

Other 1 
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The most frequent complication involved in surface contact errors were from objects 

overlapping in three dimensions.  For example, in Figure 60, the algorithm detects a 

contact between the cup holder and the arm (see also Figure 64).  This problem is 

discussed in Section 8.2.1. 

 

Table 10: Number of Sketches with Surface Contact Errors by Type 
(Note: some sketches contained more than one type of error) 

Surface Contact Error Type Number of Sketches 

False Positive from 3D 17 

Messy Drawing/Stick Figure 9 

Bad Threshold Values 7 
 

 
Figure 60: A surface contact causes the system to conclude that the rotation is 

blocked. 
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Also visible in Figure 60 is the second source of errors, low thresholds.  The gap 

between the two edges is so large that even if the surfaces were in the same plane they 

should not be blocked.  Another example of this is given in Figure 61. 

 

In this case, the system finds that the junctions at the end points of the highlighted edges 

intersect each other, so the cup holder cannot move into the open half plane of left.  

However, the normal of the right most edge of the cup holder is over the threshold for 

pointing Quad1, preventing the cup holder from moving straight up as well.  Therefore 

 
Figure 61: A surface contact causes the system to conclude that the motion is 

blocked. 
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Design Coach perceives it to be stuck.  Solutions to the issues involving thresholds 

are discussed in Section 8.2.3. 

 

 

 The third type of problem was feedback resulting from surface contacts found 

(or not found) as a result of messy ink, such as in Figure 62 and Figure 63.  While these 

errors raise important questions about sketch understanding, including how to find the 

abstract representation of an object with a messy texture, they are considered outside the 

scope of this work.  We do employ a limited scribble fill detection to eliminate excess 

edges from the initial decompositions created at the start of the surface contact detection 

algorithm, but its effectiveness is limited (see Figure 63). 

 

 
Figure 62: An example of a messy drawing. 
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6.3.2 Sentence Critiquing 

While the structured input language is designed to only allow the student to input valid 

statements, in some cases the student’s statements carried more meaning than the 

system gave them.  Examples of this included moves-causes-moves sentences, 

discussed in 8.2.5.  Other examples included: 

 

 
Figure 63: An example of our scribble fill detection 
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• “In State 2 Velcro strips 1 touches Velcro Strips 2 which causes Cup holder 

arm is being forced up” 

This statement was interesting because in the real world, force could get transferred 

through such a connection.  However, we do not assume Velcro implies a 

connectedTo-Directly relationship, because sometimes the students may want to 

apply a force to separate the Velcro, and connectedTo-Directly our definition 

implies that the objects will remain together in the specified state. 

 

• “You assert that rotating cupholder is being forced downwards which causes 

rotating cupholder rotates clockwise in State 1 but it’s false that rotating 

cupholder rotates clockwise.” 

 
Figure 64: A cup holder drawn in perspective  
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This statement accompanied the drawing in Figure 64 sketched from an oblique 

perspective; the student probably wanted to say “forced clockwise” instead, but that was 

not available vocabulary at the time—this example was from the very first quarter.  A 

surface contact found with the adjacent edge of the under armrest extension prevents 

Design Coach from thinking it will rotate regardless.  An alternative approach to giving 

feedback on perspective is described in Section 8.2.1.  

 

• “You assert that spring is stretched thing which causes large not round cup 

moves nowhere in State 2 but it’s false that large not round cup moves 

nowhere.” 

This last statement came from the design pictured in Figure 65.  The sentence is logical, 

because the spring will hold the clamps shut around the cup, preventing it from moving.  

However there are two reasons Design Coach could not understand this; first, in Design 

 
Figure 65: A cup holder which clamps the cup using a spring.  
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Coach QM motion is inferred from forces, and to infer zero motion, there must be 

zero force.  The idea of a non-zero force causing a zero motion is outside of QM’s 

model, because that entails the force acting over time, either statically as in this case or 

against momentum.  The second and related reason this could not be understood is that 

Design Coach does not model quantities, including quantities of force.  Drilling down 

using the structured language interface reveals the explanation “large not round cup 

moves in an ambiguous direction”.  The opposing forces of the clamps have summed to 

an ambiguous force.  To address this limitation, adding quantities to Design Coach is 

discussed in Section 8.2.2. 

6.3.3 Detection of Other Spatial Relationships 

The systems of detecting translation and rotation between subsketches (STV) both 

caused a few incorrect pieces of feedback.  In STV we assume that students copy and 

paste their glyphs as instructed.  For rotation detection, the weakness of our mental 

 

 
Figure 66: A feedback error in STV (highlighted in the suggestion list)  
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model of rotation is when the user edits the ink of one of the glyphs, getting a 

perfect mapping between the edges becomes impossible, and the ability to calculate the 

rotation of the shape deteriorates.  For translation detection, examples like that in Figure 

66 raise the question of what is the appropriate threshold; in this case the cup holder 

moved just enough to the right for the system to decide that it moved Quad1, but to the 

human eye it could easily be accepted as upwards motion.  (The fact that actually it will 

not move at all comes from the fact that there is no force arrow in state 1.)  Similarly, a 

few errors came from false positives in deriving the touchesDirectly relationship.  

In the example pictured in Figure 67, CogSketch finds the cup holder and beam glyphs 

to be RCC8 edge connected, and our rules use that to infer that they touch.  

Thresholding is discussed further in Section 8.2.3. 
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6.3.4 Other Error Sources 

The final sources of errors involved arrows; in three sketches the head and/or tail of the 

arrow were misinterpreted resulting in forces being applied in the wrong direction.  

CogSketch helpfully overlays the arrow with another arrow indicating its interpretation 

to prevent such mistakes, but the students did not always correct their arrows.  In the 

final undiscussed case (listed as Other in Table 9), the student somehow managed to 

create a connectedTo-Directly relation arrow that also asserted a force.  Because 

these could not be corrected without modifying the students’ ink (or doing some 

 
Figure 67: A feedback error caused by an incorrect topological relationship. 
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hacking of the underlying representations) these sketches remain in the corpus as 

they were found. 

6.4 Impact on Students 

One educational goal of the Design Coach project was to reduce students’ anxiety with 

sketching.  This section details the results of the anxiety measure of the intervention on 

students. 

6.4.1 Sketching Anxiety 

When we met with DTC instructors at the start of this work, they convinced us that a 

major problem for their students was anxiety about sketching.  We hypothesized that it 

might be analogous to math anxiety, a well-known phenomenon which Beilock et al. 

(2010) have shown has harmful impact on math skills in different situations.  To 

attempt to measure sketching anxiety, I collaborated with a graduate student from 

Beilock’s lab at the University of Chicago to design a measure for sketching anxiety, 

based on their lab’s previous work. 

 The measure design produced was a survey of questions about anxiety using a 5-

point Likert scale.  DTC instructors gave us feedback on the questions and final 

approval before giving the survey to their students.  Our original survey included some 

generic questions about sketching (which were eventually cut for length) and a second 

set of questions about student’s self-perceived skill with sketching.  Here we present an 
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analysis of the questions which were relevant to sketching in the context of the 

engineering design course. 

In the past two weeks, how nervous would the following situation make you feel? 

• Joining a group which put you in charge of sketching the design of their 

engineering concept 

• Getting an assignment asking you to draw an engineering design to scale 

• Being asked to sketch an idea you have just suggested in brainstorming 

• Being asked to draw an oblique view of a model 

• Being asked to draw an orthographic projection of a model 

Students ranked their anxiety for each item on a five point Likert scale using the 

following values: Not at all, A little, A fair amount, Much, or Very Much.  These were 

then converted to scores of 0 to 4 and averaged to arrive at the student’s anxiety score.  

The survey also contained other questions which were not part of this analysis.  A full 

copy of the survey questions can be found in Appendix D.   

 Each quarter, the survey was made available online twice, as a pre-test and a 

post-test to the Design Coach assignment.  The survey was identical in both phases, 

however timing varied because each quarter the instructors set a different schedule for 

the assignment, and the survey must close and re-open around it.  A link and invitation 

to the survey were posted on course management system and sent in emails to the entire 

course.  Along with the questions, students were asked for their section number, which 

was used to determine if they were in a section with the Design Coach group or not.  If 
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they were not, they were assigned to the control group.  The number of students 

surveyed are given in Table 11.  The results for each quarter are shown in Figure 68, 

Figure 69, and Figure 70. 

 

 In the following figures the data was unpaired due to the low paired N.  Alas, 

students who filled out both the pre- and post-test surveys were rare.  Because the data 

is unpaired, a Wilcoxon rank sum test is used to calculate the P value.  When 

considering the timing information, it is helpful to know that the pre-test surveys were 

posted in week 1 each quarter, and remained opened until the Design Coach assignment 

was due. After that, the survey was closed and the post-test opened one week later.  

Students were not required fill out the survey at any particular time within these 

periods; it was completely optional, at the instructors’ request. 

Table 11: Number of students who responded to survey in Design 
Coach/Control group by quarter 

Quarter Design Coach N= Control N= 
Pre Post Pre Post 

Fall 2012 16 21 30 16 
Winter 2012 15 7 24 12 
Fall 2013 17 14 91 27 
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 In the fall quarter of 2012, the Design Coach group’s self-reported anxiety 

dropped significantly, while the control group’s did not.  During this quarter students 

responded to the pre-test between the 3rd and 6th week, and the post-test after the 7th 

week.  The Design Coach assignment was due at the end of the 6th week.  This quarter 

was also the first quarter the Sketch Tips system of Design Coach had its complete set 

of feedback.  After this, no additional Sketch Tips were added. 

 
Figure 68: Sketching Anxiety Survey Results, Fall 2012 

DC: Npre=16, Npost=21, p= 0.043   Control: Npre=30, Npost=16, p=0.644  
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 Unfortunately in the winter 2013 quarter there was only one section in the 

Design Coach group, so the Ns were smaller.  Students also filled out the pre-test 

earlier, between the 1st and 4th weeks.  The Design Coach assignment was due week 8.  

They also filled out the survey later, starting in the 9th week.  This quarter had the 

lowest starting scores of the three.  Additionally, this quarter was the first quarter where 

Design Coach could highlight the contact surfaces for students as part of the feedback. 

 
Figure 69: Sketching Anxiety Survey Results, Winter 2013 

Design Coach: Npre=15, Npost=7, p=0.478   Control: Npre=24, Npost=12, p=0.211 
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 In the fall 2013 quarter, there were two Design Coach sections again, and the 

control group had a much higher participation rate than previously.  Significant 

decreases in anxiety were found in both groups, but the difference in change between 

Design Coach and the control group was not significant.  Students filled out the pre-test 

between weeks 1 and 6.  The Design Coach assignment was due Week 6. As in winter, 

students began to fill out the post-test in week 9.  This quarter had the highest mean 

initial scores of the three for both conditions. 

 Overall the Design Coach group achieved a significant decrease in two out of 

the three quarters, while the control group only achieved a significant decrease in the 

third quarter. In fact, the mean of the control group increased in the two previous 

quarters, though the change was not significant in either case.  There are many variables 

to consider, including timing and the wide range of instruction styles and emphasis on 

sketching throughout the different sections. 

 
Figure 70: Sketching Anxiety Survey Results, Fall 2013 

Design Coach: Npre=17, Npost=14, p= 0.026   Control: Npre=91, Npost=27, p= 0.004 
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6.4.2 Course Performance 

Another measure for the Design Coach intervention is to see if performance on the 

homework assignment correlates with students’ performance in the course.  When they 

were first administered, each instructor was allowed to grade the assignment on their 

own.  To unify the scoring, a new rubric was created for the most often used version of 

the Design Coach assignment, the rotating cup holder.  The rubric for grading the 

design worked as follows. 

1. Explain rotation feature (up to 4 points) 

o If student drew the cup holder rotating but not rotation/rotatable fact was 

believed in the sketch’s working memory: 1 point 

o If student drew rotated cup holder and the rotation/rotatable fact was 

believed in the sketch’s working memory: 2 points 

o If the student also gave any functional reason for the rotation (using the 

structured language input), but not all facts involved in that sentence 

were believed by Design Coach (i.e. proven in working memory): 3 

points 

o If the functional explanation was believed: 4 points 

2. Explain how the base of the mechanism attaches to the armrest (up to 4 points) 

o If student stated the parts were attached in the structured language input 

but not all facts involved were believed, 2 points. 
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o If student stated the parts were attached and Design Coach believed 

it, 4 points 

3. Explain how the cup holder part detaches from the base (up to 4 points) 

o If student stated the cup holder detached from the base, but not all facts 

involved were believed, 2 points. 

o If student stated the cup holder detached from the base and Design 

Coach believed it, 4 points 

Credit was awarded to the student if they completed the task but Design Coach failed to 

believe their explanation due to reasons other than student errors/omissions.  Scores for 

each quarter are included in Table 13 in the next subsection.  

 

 Student’s graphics grades, their cumulative score for sketching and drafting 

exercises, was available for the following Design Coach sections: two sections in 

Winter 2012, one section in Fall 2012, one section in Winter 2013, and one section in 

Fall 2013 (five sections total).  Their cumulative score for the entire course (final 

grades) were available for: two sections in winter 2012, one section in fall 2012, and 

one section in winter 2013 (four sections total).  The correlation between Design Coach 

assignment scores and grades in the course were not significant for either type of grade 

Table 12: Correlation between students’ scores on the Design Coach 
assignments and grades in the Design  

Grade Type N Correlation 
Coefficient 

Significant given 
N? 

Graphics Grade  61 0.036 n.s. 
Final Grade 49 0.225 n.s. 
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(Table 12).  Looking at the grading data reveals that this is probably due to the fact 

the grade data was letter grades, and the students mostly fell into a narrow range of 

grades (B+ to A for final grades, B- to A for graphics grades).  Plots of the grades vs the 

scores are shown in Figure 71. 

 

  
Figure 71: Plots of scores   

 



 158 

6.4.3 Effect of Feedback 

Another interesting measure is the correlation between the number of times the students 

requested feedback and their performance on the assignment is in Table 13.  

 

 The correlation was consistently non-negative, and the overall positive 

correlation after fall 2011 is significant.  (Fall 2011 was not included in that sum 

because the assignment was different that quarter; it had three parts and there was no 

teleological ontology, so it automatically fails half of the rubric.)  One possible 

explanation for the drop and then increase in correlation starting in winter 2012 is that 

the teleological ontology had just been introduced, but the structured explanation 

system had yet not been created.  Therefore, students may have been unable to figure 

why their teleological sentences weren’t working regardless of the number of times they 

requested feedback.  (Some might also have given up on feedback more quickly, 

resulting in the lower mean.)  The consistent increase in score over the next three 

Table 13: Correlation between scores on the Design Coach assignment and 
number of times feedback was requested.  Scores are out of 2 for fall 2011 and 

12 for all subsequent quarters. 

Quarter N 

Mean # of 
Feedback 
Requests 

Mean  
Score Correlation 

Coefficient 
Significant 
given N? 

Fall 2011  23 8.5 1.26 / 2 0.38 P < 0.05 
Winter 2012 26 6.6 3.60 / 12 0.04 n.s. 
Fall 2012 14 10.6 4.61 / 12 0.38 n.s. 
Winter 2013 11 15.9 5.63 / 12 0.31 n.s. 
Fall 2013 24 12.8 6.56 / 12 0.40 P < 0.05 

Totals  
(Winter 2012- 
Fall 2013 only) 

75 10.7 5.03 / 12 0.38 P < 0.05 
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quarters is also consistent with the presence of UI improvements, including an 

expanding pool of structured explanations and sketch tips for common errors like 

unattached relations/annotations. 
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Chapter 7 

Related Work 

This chapter compares and contrasts this research with research on qualitative 

mechanics, teleological ontology, sketch understanding, and intelligent tutoring 

systems. 

7.1 Qualitative Mechanics 

Design Coach QM is based on the QM of Nielsen (1988), and introduced several 

differences between the two.  To summarize, in Design Coach QM: 

• Force & torque transfers are explicitly represented at the level of each individual 

object, as forces applied to said objects. 

• Force & torques cause motion, but motion does not cause motion. 

• Ambiguous vectors are represented. 

• New algorithms provide means to extract the necessary qualitative 

representations from freehand sketched input. 

• Only contact surfaces are reified.  The rest of the detail about the object is 

preserved in the sketched input. 

• In addition to rigid bodies, object representations have been added for springs, 

gears, ropes, and pulleys. 
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The shift of focus from the level of motion to the level of force produces a tradeoff 

for the Design Coach; the advantage is that Design Coach can use the force 

representations in explanations.  The disadvantage is that statements like “A moves 

because B moves” become non-trivial to prove because motion is never the antecedent 

of another motion.  This tradeoff is appropriate for the engineering design context 

where a more detailed account based on forces is preferred.  Stahovich et al.’s (1997) 

Qualitative Rigid Body Mechanics also rooted the motions of objects in their respective 

net forces, but it required contact surfaces to be identified manually. 

 Pearce’s ARCHIMEDES system introduced a qualitative model of ropes, 

pulleys, axels, levers, and gears (2001).  ARCHIMEDES took in a list of the system’s 

components and their interconnections in symbolic form as input.  It then used rules to 

determine how the system will move, either in a resting state (gravity is assumed) or 

with external forces applied.  These rules model parts with specific, constrained 

connection points: gears, axles, levers, ropes, and pulleys.  While both systems model 

cords at the level of cord segments, ARCHIMEDES transfers forces along every 

individual segment.  Design Coach QM introduces the idea of a kinematic cord 

connection, allowing forces to be propagated without reifying the force on each 

individual cord segment.  The model for pulleys is also significantly different between 

the two systems.  In ARCHIMEDES a simplified pulley model is used where the pulley 

may only have four connection points with ropes (top, left, bottom, and right).  While 

the pulley may be rotated to any orientation desired, the model is restricted to at most 
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one rope going through the pulley, and two ropes directly attaching the pulley to 

other objects.  In contrast, Design Coach QM can model any number of ropes going 

through the pulley, and comfortably (from a user-input standpoint) accommodates 

sketches with two ropes traveling through a pulley at once.  With proper glyph 

segmentation, any number of ropes may be used (see Section 4.5, Cord Connection 

Analysis, on pg. 86).  Finally, Design Coach QM works with sketched input whereas 

ARCHIMEDES used symbolic input. 

7.2 Teleological Ontologies for Engineering Design 

 A number of ontologies have been proposed for teleology and design rationale.  

As explained in Section 5.5.1 (pg. 122), Design Coach utilizes a way-of-function 

ontology based off of the work of Kitamura et al. (2006).  Kitamura et al. showed that 

engineers at a semiconductor manufacturing plant could use their way-of-function 

ontology to build their own catalogue of functional knowledge covering several kinds of 

manufacturing tasks.  However, in Design Coach the students are never directly 

exposed to the ontology itself because the goal is for the students to explain their 

design, not rather than organize a pool of designs. 

 Two other teleologies we explored included diagrams as part of their 

representation explicitly.  Yaner and Goel (2007) proposed a five level Drawing-Shape-

Structure-Behavior-Function model for linking drawings in a diagram to teleological 

function.  In Design Coach, the representations generated by CogSketch are like their 
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drawing, shape, and structure levels; the metalayer and qualitative mechanics are 

similar to their behavior level; and the structured language input is similar to their 

function level.  Their work was designed for use in case-based reasoning, and so the 

focus was on transferring models from previous cases into the current case rather than 

critiquing an explanation.  However, with QM, our system already was able to derive 

behavior from the drawing without a case library, so all we needed was to add a 

functional layer of description.  Thus we opted for the way-of-function based ontology 

instead. 

 Wang and Kim (2007) created an ontology for supporting form-function 

reasoning.  Their representation combined the shape of an object with its proposed 

generic functions. For example, all containers are assigned the function of limiting 

downward motion of their contained substance.  Such representations bake in 

assumptions, such as gravity in this example. Given that CogSketch produces spatial 

representations, we do opt to focus primarily on the functions of mechanisms which 

involve spatial information, including containment.  However, using the way-of-

function hierarchy allows us to also tackle non-spatial functions, like improving 

comfort, by finding ways of achieving that function for which we have representations 

(i.e. “moving it” and “changing its shape”). 
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7.3 Structured Language Input 

For collecting language-like input, Design Coach uses a structured language input 

system directly derived from the intent dialogs of nuSketch Battlespace.  The progenitor 

of our interfaces was NLMENU, a menu-based natural language interface developed by 

Thompson et al. (1983) as an easier way for users to construct queries for databases.  A 

semantic grammar, generated from a subset of the system’s data the user would be 

interested in, is used to automatically generate a menu-based interface for the user to 

input their query.  The result is an interface that was both easy to use (the choices were 

clear to the user via the menus) and robust (the generation process guaranteed that the 

user’s selections would translate into valid queries).  For Design Coach, we created a 

core grammar from predicates and relations in the KB relevant to QM and our 

teleological ontology.  Most of the predicates were binary, so we arrived at a subject-

verb-object structure for our grammar.  Like NLMENU, Design Coach ensures that the 

student’s input produces well-formed input for critiquing. 

 A knowledge acquisition interface developed by Blythe et al. (2001) combines 

several techniques to allow a user to input data into an AI system using natural 

language.  The user may define new terms and quantities for the system to take into 

account.  While the structured language input to Design Coach does not yet facilitate 

the addition of new concepts, the student may add new entities and information about 

their properties (e.g. forces acting on them, connections between them) using the 
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sketching interface.  We have selected the grammar to complement the sketched 

input, and its vocabulary is dynamically expanded as the user adds information to the 

sketch. 

. 

7.4 Critiquing Explanations and Designs 

Intelligent tutoring system creators may seek to use a student’s explanation for input to 

help detect and/or diagnose misconceptions they have, or to help them improve their 

communication ability.  In the Belvedere system (Suthers et al., 2001) students 

constructed arguments using a visual language and Belvedere critiqued those arguments 

based on their structure.  The feedback focused on the structure, ignoring the specific 

content.  In contrast, Design Coach brings QM (and categorical knowledge in the KB) 

to bear on the content of the individual sentences and their meaning in the context of the 

sketched input.  While there is not a higher order structure to critique with our 

structured language input, sentences may introduce new forces or additional 

information about the types of objects, and thus their order matters.  If the information 

is given late in the explanation, the unproven or contradiction fact produce will cause 

Design Coach to give feedback, and in response the student can change the order of 

their sentences to improve their explanation. 

 The Why2-Atlas system (Jordan et al., 2006) critiqued students’ natural language 

solutions to qualitative physics problems.  It used a combination of three competing 
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analysis methods to create a first-order predicate logic representation of each 

sentence.  It then used an assumption-based truth maintenance system tailored 

individually to the specific problems to diagnose errors.  In contrast, Design Coach uses 

a single larger model to address a range of designs students may try to explain.   

 A variety of computer critiquing systems have been developed for other 

domains including software engineering (Ali, Admodisastro, et al., 2013; Qiu & 

Riesbeck, 2003), architecture (Oh et al., 2004), and furniture design (Oh et al., 2010).  

One such system, Design Evaluator, utilized qualitative reasoning in the form of spatial 

relationships and rules over sketched input to critique the design of floor plans and web 

page layouts (2004).  Unlike Design Coach, Design Evaluator did not take in any form 

of language-like input.  Oh et al.’s (2010) Furniture Design Critic used a set of pre-

defined constraints to critique sketched furniture designs.  Its critique system also 

maintained short-term and long-term models of the user which it used to adjust its 

critiques over time. 

 Ali et al. (2013) defined a taxonomy of computer-based critiquing tools.  In their 

taxonomy, Design Coach would belong to analytical critiquing family of approaches, 

because it uses rules to detect problems in the user’s solution and guides the user away 

from recognized problems.  In contrast the other family of approaches they define, 

comparative critiquing, uses a differential analyzer against its own solution, and then 

guides the user to that known solution.  Sketch Worksheets (Yin et al., 2010), an open-
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domain sketch-based educational software system (also built on CogSketch) would 

belong to that family. 

  

7.5 Sketch Recognition and Understanding 

Sketch-based input systems have been created for tutoring systems in a variety of 

domains, including chemistry (Cooper et al., 2009), circuits (de Silva et al., 2007; 

Johnston & Alvarado, 2013), and physics.  PhysicsBook (Cheema & LaViola, 2012)  

uses a 2D physics engine to create animations from sketched input.  Design Coach uses 

QM instead of a numerical approach primarily because it needs to be able to understand 

and critique the student’s explanation of the design and to be able to explain its own 

reasoning to the student.  Another reason we use QM is at the conceptual design stage, 

the precise physical parameters are usually not available. 

 Sketch-based systems have provided tutoring in the mechanical engineering 

domain as well.  Mechanix, a sketch-based tutoring system for statics courses 

(Valentine et al., 2012), was used to create statics problems involving trusses, and then 

guide students through them.  Newton’s Pen II and Newton’s Tablet (Garcia, 2014; Lee 

et al., 2011) guided undergraduate students through the construction of free body 

diagrams and equilibrium equations.  Students draw outlines over a background to 

identify the bodies, then add force arrows to those bodies individually, and finally write 

equations describing the situation they sketched.  The system gives them feedback by 
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checking their work against a predefined solution.  These systems are limited to 

specific lists of problems.  These limitations exist in part because the sketch recognition 

techniques used limit the range of understandable input.  Trained recognizers limit the 

user to a pre-defined set of symbols, while comparative systems require known 

solutions.  Newton’s Tablet uses the former for understanding handwritten equations 

and arrows, and the latter to check if the student’s free body diagrams fit the boundaries 

given in the problem description.  Mechanix and Sketch Worksheets similarly check 

input against that of an authored solution.  A comparative system is inherently limited 

to its bank of given solutions, and the breadth of that bank is limited by the flexibility of 

the techniques used for comparison.  Design Coach avoids the need for given solutions 

by using a general physics model and algorithms (surface contact detection and cord 

connection analysis) which will produce the input needed by that model. 

 FEASY (Murugappan & Ramani, 2009) is a sketch-based computer aided 

design tool for performing finite element analysis.  The system was also trained to 

recognize a set of finite element symbols which the user may draw in their sketch to 

create regions of constraint, apply forces and more.  Design Coach currently uses 

labeling at the level of whole glyphs to create the initial sources of constraint (i.e. 

FixedObject).  However, adding the ability to label parts of glyphs (through a 

combination of edge decomposition and the concept picker or recognition) could 

provide the input needed for a future QM of deformable objects.  FEASY is also limited 

to the set of symbols it has been trained to identify, whereas CogSketch gives access to 
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rich variety of concepts found in the knowledge base.  Rather than using trained 

classifiers over all the strokes in the sketch, Design Coach uses top down information 

(i.e. glyph labels and user segmentation) to select the right targets, then uses human-like 

visual processing to identify the relevant qualitative relationships (surface contact, cord 

connection).  While there are limitations to our techniques (see Section 8.2), they tend 

to be at the level of spatial relations rather than recognizing symbols. 
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Chapter 8 

Conclusion 

We have described a system for critiquing multimodal engineering design explanations 

of mechanisms, Design Coach, which was deployed in an intervention in a first-year 

undergraduate engineering design course at Northwestern University.  Chapter 1 

presented an overview of the claims and contributions.  Chapter 2 provided background 

information on the AI systems and theory used by Design Coach: CogSketch, our 

sketch understanding system, and qualitative mechanics, a qualitative model of physics.  

Chapters 3 introduced Design Coach QM, a new, force-centered version of QM for use 

with sketched input and multi-modal explanations.  Chapter 4 introduced extensions to 

that QM, including algorithms for deriving important relationships from freehand 

sketched input and representations for springs, gears, and cords.  Chapter 5 detailed the 

implementation of Design Coach, including its multimodal input, teleological ontology, 

and algorithms for critiquing explanations and giving feedback.  Design Coach was then 

evaluated over two corpuses: one was a variety of mechanisms, and the other a set of 

explanations produced by students during the classroom intervention.  This evaluation 

was described in chapter 6, along with a description of the intervention and its impacts 

on students.  Finally, chapter 7 discussed related work. 
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 This chapter discusses our claims presented in Chapter 1 in light of 

evaluation of this work.  We close with a summary of the limitations of Design Coach 

and future work. 

8.1 Discussion of Claims and Contributions 

The first claim of this thesis is: 

1. Descriptions of mechanisms, specified multi-modally, using sketches and 

restricted natural language, must be understood via qualitative reasoning. 

To support this claim, we showed that by extending QM with new representations and 

algorithms for interpreting sketched input, the system could achieve coverage of a 

meaningful range of mechanisms, including mechanisms from an engineering design 

course (Wetzel & Forbus, 2009b) and from a chapter on block and tackle mechanisms 

in a textbook (6 examples out of 10 figures) (Basic Machines, 1994). 

 Qualitative reasoning supports the ability of our system to understand in two 

ways.  First, our new algorithms for detecting surface contact and cord connections use 

qualitative representations of the sketched input (e.g. perceptually salient edges and 

junctions) to extract the necessary qualitative spatial relationships for QM.  Second, 

Design Coach uses QM to predict the mechanical behaviors of sketched mechanisms.  

These qualitative representations are also instrumental in providing the critiques of 

student’s design explanations, leading to the second claim of this thesis: 
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2. The validity and clarity of an explanation of a mechanical design can be 

evaluated using a combination of design teleology and qualitative reasoning. 

To support this claim, we demonstrated the ability of Design Coach to critique multi-

modal explanations over a corpus of 240 sketched explanations created by engineering 

design students with an accuracy rate of 92.9%.  These critiques were done using two 

new feedback algorithms which used QM, qualitative spatial reasoning, and a 

teleological ontology to determine 1) if statements made about the mechanism were 

true, contradictory, or unprovable, and 2) if the state transitions present in a comic 

graph reflected the behavior of the mechanism over time.  

 To summarize, the contributions of this thesis are: 

1. New extensions to qualitative mechanics for use with sketched input, including a 

force-centered model of rigid body mechanics and representations for springs, 

gears, cords, and pulleys 

2. Two new algorithms for extracting mechanical spatial relationships from 

sketched input: surface contact detection and cord connection analysis 

3. Two new algorithms for generating items for critique of engineering design 

explanations: State Transition Verification and Sequential Explanation Analysis 

4. A teleological ontology for representing higher level functions of designs 

involving mechanisms in the context of a first-year undergraduate engineering 

design course 

Additionally, our classroom intervention resulted in the following contributions: 
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5. A corpus of 240 multi-modal explanations from engineering design students. 

6. Data from the results of a sketching anxiety survey, including the detection of a 

significant decrease in anxiety in two out of three quarters in sections where the 

Design Coach assignment was introduced and one out of three quarters in 

control sections. 

7. A finding of significant correlation between the amount of feedback requested 

and performance on the Design Coach assignment. 

8.2 Limitations and Future Work 

 Our work with Design Coach reveals several areas that could be improved 

through future research.  Our initial survey of 39 past projects from the engineering 

design course, revealed that about half of them (19) involved mechanisms.  Adding 

springs and gears enabled QM to be able to perform STV over descriptions covering 16 

of these designs (Wetzel & Forbus, 2009b).  Non-mechanical designs in the DTC 

course include projects such as teddy bears that tell stories, a rooftop garden plaza for 

the university’s student center, and an artificial whale stomach for training aquarium 

veterinarians.  Mechanical projects which involve motion and contact in three 

dimensions are also difficult for Design Coach to understand, as are certain 

combinations of structured language input.  The following sections address these areas 

of future research. 
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8.2.1 Three-Dimensional Spatial Reasoning and Representations 

 A number of designs encountered in the DTC class projects involved three-

dimensional spatial relationships beyond the current representations of our CogSketch 

platform and QM implementation.  Scaling up QM to three dimensions may be 

relatively straightforward; the vector representation could easily accommodate 

additional senses.  However, determining 3D surface contacts from sketched input 

appears to require additional information.  Even with top and side views provided, 

ambiguities about depth persisted, preventing us from being able to accurately derive 

surface contacts based on the sketch alone.  One approach would be to ask the user for 

additional input about the 3D topology (e.g. using additional types of relation glyphs, 

using the visual-conceptual relationship chooser interface in CogSketch, or by adding a 

sentence like “The Cup Holder goes through the base.”)  Our explanation corpus 

includes 77 examples where matching labeled glyphs are drawn from at least two 

different perspectives for future use. 

 While students were instructed to use orthographic views, sometimes they drew 

sketches from an isometric or perspective view.  When orthographic views are required 

by instructors, it would be helpful if Design Coach could identify when the student has 

mistakenly used a non-orthographic view.  Fortunately, it is possible to determine when 

a sketch depicts a three-dimensional view by the presence of certain types of junctions 

(Lovett et al., 2008).  The next step would be to use this information to correctly judge 

when a glyph is drawn in a three-dimensional view and give feedback to the student 
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accurately.  This will be complicated by students leaving in hidden lines (i.e. edges 

which are present in the object but obscured in the current view).    

8.2.2 Richer Qualitative Reasoning 

 There are several areas where richer qualitative reasoning would improve 

feedback and/or expand the range of designs.  For one, by predicting only the 

immediate motion of objects in the sketch, Design Coach encourages students to draw a 

new state for every qualitative change in behavior.  This is reasonable for simple 

designs, but for complex ones we would prefer to let students leave out intermediate 

states which might seem obvious to a human.  Design Coach will need more qualitative 

reasoning to fill in those missing states and evaluate when they make assumptions that 

are inconsistent with a student’s explanation.  A good starting point might be previous 

work on configuration space, including Nielsen’s (1988) QM and Stahovich et al.’s 

(1997) work with sketched input. 

 Student design projects often incorporate quantities which change over time and 

additional types of non-rigid materials, some of which also have quantity as a property 

(e.g. fluids).  Qualitative Process Theory (QPT) can be used to provide reasoning about 

quantities (Forbus, 1984).  Incorporating Qualitative Process Theory would also allow 

for the understanding of concepts such as energy, momentum, and work.  A QPT model 

of mechanical advantage could also be introduced to allow critique of additional 

teleological statements common to machines, such as “In State 1, a luff tackle system 

makes it easier to lift barrel.”  Models for the other machines such as levers, gear trains, 
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axles, and differential hoists could also be added and analyzed using spatial 

information in the sketch (e.g. relative length from fulcrum, relative difference in radii).  

Kim’s bounded stuff ontology (Kim, 1993) would allow us to handle fluids.  Kim’s 

work also includes a model for linkages which would further extend the applicable 

range of designs. 

 The model of force in Design Coach QM could itself be enriched to allow for 

gravity and friction to be applied by default.  Currently gravity and friction often work 

against other forces on an object, resulting in ambiguous force directions.  By 

considering the type of the source of the force (e.g. is it from the actuator of the 

motion?) a system can disambiguate cases where a mechanism moves against gravity 

and friction, while still taking into account their effects (Stahovich et al., 1997).  

 Our model of cords currently does not include the transfer of forces from a cord 

to an object that contacts its side, except for pulleys that cord runs through.  The model 

of ropes introduced by (Pearce, 2001) also lacks this feature.  We hypothesize that, 

given the normal of the cord to the object, force may be imparted in a way similar to 

movable pulleys.  Similarly, we lack a model for what happens to an object attached to 

a cord at a location somewhere between the ends of a cord segment.  Such a model 

would allow the system to predict the motion of flags on a flag hoist and the yard and 

stay tackle (Basic Machines, 1994). 
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8.2.3 Improving Surface Contact Detection 

 

 These threshold problems came from the fact that the choice to use the same 

threshold that had been set based on the results of using CogSketch to develop cognitive 

models of spatial reasoning, to arrive at a threshold for what a human would consider 

connected.  In the context of engineering design sketches, this first choice turned out to 

be a bit too loose.  The two thresholds that are important for determining surface contact 

are the RCC8 tolerance, which determines how far apart edges and junctions must be to 

be considered disconnected, and junction radius which determines how large junctions 

are.  In the example on the left of Figure 72, the RCC8 tolerance and junction radii are 

such that three junction-junction contacts are made between the bag-of-chips glyph and 

the holder.  We would prefer for this to result in an edge-junction contact between the 

right side edge of the bag-of-chips and the top right junction found in the holder.  

Similarly, even though there is a gap between both pairs of edges of the two glyphs in 

the example on the right of Figure 72, surface contacts are found.  Cases like these are 

the primary source of error in surface contact.  We hypothesize that such errors might 

  
Figure 72: Erroneous surface contact resulting from when tolerances are too 

high. 
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be avoided by altering the thresholds dynamically.  Lovett (2012) uses various 

techniques to vary thresholds, including using different thresholds between objects and 

within objects, and degrading thresholds over space as they get further away along the 

shape from a set reference point.  Another, possibly complimentary, approach would be 

to use dual thresholds, i.e. to have a separate threshold for contact and non-contact, and 

let the more confident measure win out. 

 Detection of inward contacts requires the shapes be closed.  In order to handle 

stick figures, the system could first be augmented to detect if a given edge is part of a 

stick figure or not.  To distinguish between a closed shape with an accidental gap and a 

stick figure, we could a gap-detection algorithm to close the gaps in the initial edge 

decompositions before proceeding with surface contact detection. 

8.2.4 Classifying Taut and Slack Cords in Sketched Input 

 In Chapter 4 we described a QM model for cord systems, such as ropes and 

pulleys.  Since slack cords do not affect the immediate motion of attached objects, we 

ignored them in QM.  However, designs involving cords may have states where the cord 

is slack, therefore it will be useful to be able to detect if a sketched cord is taut or not.  

One way to do this would be to use the edge decomposition routines used previously in 

this work.  Junctions are placed at perceptually salient points in a contour; if a junction 

occurs in a contour and it does not contact another object on its concave side, then we 

can assume there is a bend in the cord and classify it as slack.  Similarly, if the edge is 

curved and there is no object against its concave, then it is slack as well.  If setting the 
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thresholds for inserting junctions and detecting curves proves unworkable, 

annotations glyphs modified to annotated edges could be used instead. 

8.2.5 Improving the Range of Language Understanding 

A more ideal way to use the system would entail speech recognition coupled with a full 

natural language understanding system, but this is beyond the state of the art in those 

areas currently.  Further extensions would be useful to capture a broader range of 

semantics.  In the structured language of Design Coach, compound sentences take the 

form “In <context>, <subject1> <verb1> <object1>, <conjunct> 

<subject2> <verb2> <object2>.”  In compound sentences, the choices for 

<verb2> are also affected by the choice of <verb1>.  This is because some 

causes/prevents statements which might make sense to a human do not make 

sense to the system.  The two restrictions in Design Coach are: 

1. Moves, rotates, and the teleological functions may only cause or prevent a 

function.  (e.g. “Hand moves up which causes Cup Holder moves up.”) 

2. Touches may not be caused or prevented by any verb (e.g. “Cup Holder moves 

down which causes Cup Holder touches base.”).  It is simply omitted from 

<verb2>.   

These restrictions are due to the underlying representations and the way contradictions 

are proven in compound statements (see Section 5.4, Sequential Explanation Analysis).  

Because the contradiction facts come from an analysis of the system’s own justification 
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trail, and because the system does not use moves, rotates, or teleological functions 

in rules to prove the predicates behind the other verbs, some other logic must be added 

to understand them.  For other contradictions, we can use built-in responses in our 

structured explanation system, like we do for explaining nil contradictions for 

teleological statements.  The above cases, however, are more complex. 

 For the first case, we might want to reinterpret the statement such that the 

ultimate cause of the statement is shared with the second.  So, if the students says “In 

State 1 Hand moves up which causes Cup Holder moves up.” the system could look up 

the reason for Hand moving (i.e. a force) and then see if that force and the existence of 

Hand play are in the justification for the Cup Holder.  Similarly, the way-of-function 

model is arranged such that functions are deduced from behaviors, not the other way 

around.  But if the system could re-represent the function as its behavioral causes, or if 

more rules were added so that behaviors can be produced by some functions, e.g. 

connectedTo-Directly could be deduced from teleological Attachment if the 

way of achievement is PermamentAdhesiveMaterials. 

 The second case is more subtle.  touchesDirectly facts are derived from 

visual analysis of the sketch, so for the sentence “In State 1 Cup Holder moves down 

which causes Cup Holder touches base.” the moves fact cannot be used to justify the 

cup holder touching the base.  But this is technically correct because the context given 

is a single state.  What the student really needs to be able to say is “In State 1 Cup 

Holder moves down which causes Cup Holder touches base in State 2.”  Then, 
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something like the logic in STV’s transition requirements (see Section 5.3) could be 

added to determine if motion occurs between states that supports this statement being 

true. 

 Additionally, some statements we allow have multiple meanings in plain 

English; for example if the student says “The cup holder does not move.” she may mean 

the cup holder is not actively moving or that it cannot move at all.  Future work is 

needed to determine when such distinctions are important to the rest of the explanation 

and to decide which interpretation should be critiqued and how.
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Appendix A 

Rules for the Teleological Ontology 

In response to student feedback, these rules were made as loose as possible. 

Attachment Rules 

(functionAchievedVia Attachment AdhesiveMaterials  
       (TheList ?obj1 ?obj2 ?adhesive) (TheList ?context)) 
is true when: 
  (and  
   (in ?context (touches ?obj1 ?adhesive)) 
   (in ?context (touches ?obj2 ?adhesive)) 
   (isa ?adhesive AdhesiveMaterial)))) 
 
(functionAchievedVia Attachment TempAdhesiveMaterials  
       (TheList ?obj1 ?obj2 ?adhesive) (TheList ?context)) 
is true when: 
  (and 
   (in ?context (touches ?obj1 ?adhesive))  
   (in ?context (touches ?obj2 ?adhesive))  
   (isa ?adhesive TempAdhesiveMaterial)))) 
 
(functionAchievedVia Attachment InterlockingParts  
       (TheList ?obj1 ?obj2 ?adhesive) (TheList ?context)) 
is true when: 
  (in ?context (touches ?obj1 ?obj2)) 
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Detachment Rules 
(functionAchievedVia Detachment TempAdhesiveMaterials  
      (TheList ?obj1 ?obj2 ?adhesive) (TheList ?c1 ?c2)) 
is true when: 
  (and 
  (functionAchievedVia Attachment TempAdhesiveMaterials  
     (TheList ?obj1 ?obj2 ?adhesive)) (TheList ?c1))) 
  (in ?c2 (doesNotTouch ?obj1 ?obj2))  
  (in ?c2 (doesNotTouch?obj1 ?adhesive)) 
  (in ?c2 (doesNotTouch?obj2 ?adhesive))) 
 
(functionAchievedVia Detachment InterlockingParts  
       (TheList ?obj1 ?obj2 ?adhesive) (TheList ?c1 ?c2)) 
 is true when: 
  (and 
  (functionAchievedVia Attachment InterlockingParts 
            (TheList ?obj1 ?obj2)) (TheList ?c1))) 
   (in ?c2 (doesNotTouch ?obj1 ?obj2))) 

Adapts to Change in Size Rules 
(functionAchievedVia AdaptInSize AdjustableParts 
      (TheList ?base ?changingPart) (TheList ?c1 ?c2)) 
Is true when: 
  (and 
  (functionAchievedVia Attachment ?way  
     (TheList ?base ?changingPart)) (TheList ?c1))) 
    (functionAchievedVia Attachment ?way  
     (TheList ?base ?changingPart)) (TheList ?c2))) 
  (in ?c2 (movable ?base)) 
 
 
(functionAchievedVia AdaptInSize AdjustableParts 
      (TheList ?base ?changingPart) (TheList ?c1 ?c2)) 

Containment Rules 
(functionAchievedVia Containment Enclosure 
    (TheList ?containedObj ?container) (TheList ?context)) 
Is true when: 
  (or  
   (in ?context (rcc8-TPP ?container ?containedObj)) 
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   (in ?context (rcc8-NTPP ?container ?containedObj))) 
 
(functionAchievedVia Containment ProhibitDownwardMotion 
    (TheList ?containedObj ?container) (TheList ?context)) 
Is true when: 
  (and  
   (in ?context (transConstraint ?containedObj Down)) 
   (in ?context (transConstraint ?containedObj Quad3)) 
   (in ?context (transConstraint ?containedObj Quad4))) 

Increase Comfort Rules 
(functionAchievedVia IncreaseComfort ChangingShape 
    (TheList ?changedPart) (TheList ?c1 ?c2)) 
Is true when: 
   (differentInk ?changedPart ?c1 ?changedPart ?c2) 
 
(functionAchievedVia IncreaseComfort MoveWithinReach 
    (TheList ?part) (TheList ?context)) 
Is true when: 
   (or  
    (and (in ?context (transMotion ?part ?dir)) 
         (different ?dir ZeroQVector)) 
    (and (in ?context (rotMotion ?part ?rdir)) 
         (different ?rdir ZeroRotDir))) 
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Appendix B Mechanism Corpus Sketches 

The following figures show screen captures of a few mechanisms drawn in CogSketch, 

to demonstrate the range of mechanisms Design Coach QM can handle.  In each sketch 

QM was used to identify the direction of motion of every rigid object in the sketch 

(translation and rotation).  Blue arrows indicate the direction of each object’s motion.  

Bent arrows indicate rotation, and an empty circle indicates zero translational motion.  

(These arrows were drawn using the “Draw Next Motion” feature found in the Design 

menu of CogSketch Design Coach.) 
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DTC Designs 

Book Holder 

  

The book holder project used page holders to hold the book open.  In the sketch in 

Figure 73, we draw the book holder from the bottom w.r.t. the book being held open.  

We assumed a clockwise force acting on the page to represent the tendency of the page 

to attempt to flip upwards.  The page will rotate as long as the holder is not in place. 

 

 

 
Figure 73: Book Holder 

(The page is modeled as a RigidObject.) 
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Detachable Paint Roller 

 

The detachable paint roller project allowed a paint roller to quickly be released from its 

handle.  Here we drew the roller from the end.  In the first state, the stoppers prevent the 

tube from moving down in response to gravity.  The stoppers are pulled out of the way 

via forces from another mechanism in the handle (not shown) and the tube is then free 

to fall. 

 

 

 
Figure 74: Releasing the Detachable Paint Roller 
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Mini Baja 

 

The Mini Baja is a small 4-wheeled vehicle.  Here we show how reactionary friction 

forces applied to the wheels will cause them to move forward as they roll. 

Double-Sided Switch 

 

 
Figure 75: Mini Baja  

   
Figure 76: Double-Sided Switch 
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This switch can be pressed from two different angles, connecting different sides of the 

electrical contact inside. 

One-Handed Nail Clipper 

 

The One-Handed Nail Clipper allows a user to clip their nails with one hand by using 

spring forces to actuate a nail clipper. 

   
Figure 77: Picture of the One-Handed Nail Clipper Prototype 
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 Figure 78: One-Handed Nail Clipper sketch 
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Tobeggan 
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The Tobeggan allows a user to crack an edge with one hand; the contents of the egg 

then move down a slide into a bowl. 

 
Figure 79: Tobeggan (One-Handed Egg Cracker) 
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Abigator 

 

The Abigator is a device for exercising ones abdominal muscles while seated or in a 

wheel chair.  Its parts rotate in response to the user leaning forward. 

 
Figure 80: Abigator (Abdominal Exerciser) 
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Wheelchair Stabilizer 

 

The Wheelchair Stabilizer allows a batter to swing without rotating their chair.  Without 

the blocks, the batter will rotate. 

Recliner 

 

  
Figure 81: Wheelchair Stabilizer (for playing baseball) 

 
Figure 82: Recliner 
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The recliner uses rotates backwards in response to the user leaning back. 

Under-Armrest Rotatable Cup Holder 

 

The Under-Armrest Rotatable Cup Holder attaches to an armrest using Velcro, and the 

cup holder part can rotate or be removed for easy washing. 

 

 
Figure 83: Under-Armrest Rotatable Cup Holder 
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Gamma Handle 

 

The Gamma Handle attaches to a steering wheel, allowing the user to apply force to it 

to rotate the wheel instead applying force to the wheel directly. 

Dynamic Dropper 

 

  
Figure 84: Gamma Handle  

 
Figure 85: Dynamic Dropper 
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The Dynamic Dropper is designed to allow patients with paralysis exercise their leg 

muscles by simulating the motion of walking.  The foot is attached by Velcro to a 

hinged platform which is connected to a springy platform.  As the foot steps down in 

response to gravity, the platform moves down until the springy platform is in contact 

with the base, then the hinged platform rotates.  Once down, springs will cause the foot 

to rise up again. 

Basic Machines 

The following four examples come from Chapter 3 of Basic Machines (#CITE 1994). 
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A Runner 

 

A runner is used to lift objects with upward force, and consists of one movable pulley.  

 
Figure 86: A Runner 
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Gun Tackle 

 

A gun tackle lifts objects with a downward force, using one fixed and one movable 

pulley. 

 
Figure 87: Gun Tackle 
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Luff Tackle 

 

A luff tackle uses a downward force to lift a weight with even more mechanical 

advantage, while using the same number of mechanical pulleys. 

 
Figure 88: Luff Tackle 
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Luff Upon Luff 

A luff upon luff configuration uses two luff tackles connected together to get even more 

mechanical advantage. 

Other Examples 

The following examples were created for further demonstration purposes. 

 
Figure 89: Luff Upon Luff 
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Spring Button 

 

In this spring-loaded button design, the user can press down the button to bridge two 

electrical contacts.  When they let go, the button pops back up into place. 

Gear Train 

 

 
Figure 90: Spring Button 

 
Figure 91: Gear Train 
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In this gear train, gears transferring rotational torque in series and transfer it to the front 

wheel. 

Appendix C Design Coach Assignment Handouts 

The following handouts are included: 

• Under Armrest Cup Holder  (3-part version; used Fall 2011) 

• Dynamic Dropper (2-part version; used Spring 2012) 

• Gamma Handle  (2-part version; used Spring & Fall 2012)  

• Under Armrest Cup Holder  (2-part version; used Winter 2011, Fall 2012, 

Winter 2013, and Fall 2013) 
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Appendix D 

Sketching Anxiety Measure Questionnaire 

The following is a reproduction of our sketching anxiety measure as it appeared on the 

web in the fall quarter of 2013.  Questions to part 2 (pictured here) were identical to 

those of part 1). 
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(Survey continues on next page; it has been cut here to fit.) 
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