

NORTHWESTERN UNIVERSITY

Understanding and Critiquing Multi-Modal Engineering Design
Explanations

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

DOCTOR OF PHILOSOPHY

Field of Computer Science

by

Jon Wetzel

EVANSTON, ILLINOIS

August 2014

2

Copyright © 2014, Jon Wetzel

All Rights Reserved

3

ABSTRACT

Understanding and Critiquing Multi-Modal Engineering Design Explanations

Jon Wetzel

Designers often use a series of sketches to explain how their design goes through different

states or modes to achieve its intended function. Instructors find that learning how to

create such explanations is a difficult problem for engineering students, thus giving the

impetus to create a design coach which allows students to practice explaining their

designs and give feedback on said explanations. Given the complexity and wide scope

of engineering design sketches, creating this design coach is a challenging AI problem.

When communicating with sketches, humans act multi-modally, using language to clarify

what would often be ambiguous or crude drawings. Because these drawings can be

ambiguous even to human viewers, and because engineering design encompasses a very

large space of possible drawings, traditional sketch recognition techniques, such as

trained classifiers, will not work. This dissertation describes a coaching system for

engineering design, CogSketch Design Coach. The claims are that (1) descriptions of

mechanisms, specified multi-modally using sketches and restricted natural language must

be understood via qualitative reasoning, and (2) the validity and clarity of an explanation

4

of a mechanical design can be evaluated using a combination of design teleology and

qualitative reasoning. These claims are supported by a set of evaluations of the system

on sketched explanations.

 The work results in the following contributions: (1) new extensions to qualitative

mechanics, a qualitative model of physics reasoning, for use with sketched input, (2) two

new algorithms for identifying spatial mechanical relationships, (3) two new algorithms

for generating items for critique of engineering design explanations, and (4) a teleology

for describing and critiquing explanations of engineering designs. Through a classroom

intervention in a first year engineering design course the work resulted in (5) a corpus of

240 multi-modal explanations and (6) data on a phenomenon we describe as sketching

anxiety. These contributions form a set of resources for building new engineering design

tools like CogSketch Design Coach and provide insight into future challenges for AI and

intelligent coaching systems for classroom settings.

5

Acknowledgements

 First of all, I am grateful to Ken Forbus. He has been a wonderful advisor,

growing my knowledge of AI and training me in the practice of scientific research. He

continually supported me: from my first year at NU as I applied to the National Science

Foundation fellowship and writing our first publication in 2008, to completing this

dissertation and finding my new post-doctoral home, and everything in between.

Through success and failure he encouraged me onward, and I shall be forever grateful.

 I could not have gotten this far without the other members of QRG lab as well.

Many thanks to Matt McLure and Subu Kandaswamy for their collaboration with me in

designing and implementing the surface contact algorithm. Additional thanks to Matt for

adding scribble-fill detection and for collaborating with me on the cord connection

analysis. Special thanks to Maria Chang, for being my educational-software partner-in-

crime; I learned much from all the ideas we bounced around. Thanks to my good friend,

David Barbella, for creating the initial version of the language generation facilities used

by Design Coach. Special thanks to Andrew Lovett, for his sage advice. Many, many,

many thanks to Jeff and Tom, for all their time spent answering my questions about

CogSketch and our reasoning engine, respectively. And thanks to everyone else in the

lab, including alumni, for their support over the years.

 I also am grateful to the National Science Foundation’s Spatial Intelligence and

Learning Center (SILC) for funding my research (NSF SLC Grant SBE-0541957) and

6

providing me with a network of collaborators and colleagues. My experiences with SILC

expanded my knowledge of learning science and cognitive science. I also am thankful to

my colleagues at SILC for their support, especially Sian Beilock, Gerardo Ramirez, and

Nina Sims for their help with the psychological components of my research.

 There are many others who supported me throughout my time in grad school.

Thanks to my family for their continual support, love, and encouragement. Thanks to

everyone at the NU Graduate Christian Fellowship for your friendship and care. Thanks

to my peers in the EECS, Learning Science, and Psychology departments. Thanks to my

church family at Evanston Bible Fellowship, my home away from home. And finally,

praise to my heavenly Father, for making all the aforementioned people and groups so

loving, supportive, and awesome at what they do.

7

Table of Contents

Acknowledgements ... 5

Table of Contents .. 7

Table of Figures .. 13

Table of Tables ... 20

Chapter 1 Introduction .. 21

1.1 Motivation ... 21

1.2 Claims and Contributions ... 22

1.3 Overview ... 25

Chapter 2 Background .. 27

2.1 CogSketch ... 27

2.1.1 Knowledge Base and Reasoning .. 27

2.1.2 Sketching.. 30

2.1.3 Spatial relationships and representations ... 32

2.2 Qualitative Mechanics .. 33

Chapter 3 Force-Centered Qualitative Mechanics .. 34

3.1 Qualitative Vector Representation .. 34

3.2 Object Representations ... 40

3.3 Constraint and Motion .. 43

8

3.3.1 Transmission of Constraint via Surface Contact ... 45

3.3.2 Transmission of Constraint via Direct Connection .. 47

3.3.3 Predicting the Next Motion .. 48

3.4 Force and Torque Representation ... 50

3.4.1 Transmission of Force through Surface Contact ... 51

3.4.2 Transmission of Force via Direct Connection ... 54

3.4.3 Assumed Forces and Torques .. 55

Chapter 4 Extensions to Qualitative Mechanics ... 57

4.1 Surface Contact Detection .. 57

4.2 Springs .. 68

4.3 Gears ... 69

4.4 Cords ... 71

4.4.1 Cords and Pulleys .. 74

4.4.2 Cord System Topology .. 75

4.4.3 Effects of Kinematic Cord Connections .. 81

4.4.4 Force Transfer to Movable Pulleys .. 84

4.5 Cord Connection Analysis .. 86

Chapter 5 CogSketch Design Coach ... 93

5.1 Overview ... 94

5.1.1 Example ... 94

5.1.2 Architecture.. 102

9

5.2 User Input.. 104

5.2.1 Sketches ... 104

5.2.2 Structured Language Input ... 105

5.3 State Transition Verification ... 109

5.4 Sequential Explanation Analysis .. 112

5.5 Teleological Ontology .. 121

5.5.1 Way-of-Function Ontology .. 122

5.5.2 Teleological Representations of Design Coach ... 123

5.5.3 Functions and Ways ... 124

5.6 Feedback Generation .. 126

Chapter 6 Evaluation... 129

6.1 Mechanism Corpus ... 131

6.2 Design Coach In-Class Interventions.. 133

6.3 Explanation Corpus ... 135

6.3.1 Surface Contact .. 139

6.3.2 Sentence Critiquing .. 143

6.3.3 Detection of Other Spatial Relationships ... 146

6.3.4 Other Error Sources ... 148

6.4 Impact on Students .. 149

6.4.1 Sketching Anxiety .. 149

6.4.2 Course Performance ... 155

10

6.4.3 Effect of Feedback ... 158

Chapter 7 Related Work.. 160

7.1 Qualitative Mechanics .. 160

7.2 Teleological Ontologies for Engineering Design ... 162

7.3 Structured Language Input .. 164

7.4 Critiquing Explanations and Designs.. 165

7.5 Sketch Recognition and Understanding .. 167

Chapter 8 Conclusion .. 170

8.1 Discussion of Claims and Contributions... 171

8.2 Limitations and Future Work .. 173

8.2.1 Three-Dimensional Spatial Reasoning and Representations 174

8.2.2 Richer Qualitative Reasoning .. 175

8.2.3 Improving Surface Contact Detection ... 177

8.2.4 Classifying Taut and Slack Cords in Sketched Input 178

8.2.5 Improving the Range of Language Understanding 179

Bibliography ... 182

Appendix A Rules for the Teleological Ontology .. 187

Attachment Rules .. 187

Detachment Rules ... 188

Adapts to Change in Size Rules .. 188

Containment Rules .. 188

11

Increase Comfort Rules... 189

Appendix B Mechanism Corpus Sketches .. 190

DTC Designs ... 191

Book Holder .. 191

Detachable Paint Roller .. 192

Mini Baja .. 193

Double-Sided Switch .. 193

One-Handed Nail Clipper ... 194

Tobeggan... 196

Abigator .. 198

Wheelchair Stabilizer .. 199

Recliner ... 199

Under-Armrest Rotatable Cup Holder .. 200

Gamma Handle ... 201

Dynamic Dropper.. 201

Basic Machines ... 202

A Runner ... 203

Gun Tackle .. 204

Luff Tackle.. 205

Luff Upon Luff ... 206

Other Examples ... 206

12

Spring Button .. 207

Gear Train ... 207

Appendix C Design Coach Assignment Handouts ... 208

Appendix D Sketching Anxiety Measure Questionnaire .. 217

13

Table of Figures

Figure 1: A simple overview of Design Coach ... 22

Figure 2: An overview of the architecture of Design Coach. ... 24

Figure 3: The reasoning architecture of CogSketch ... 29

Figure 4: A sketch drawn in CogSketch. .. 30

Figure 5: A screenshot of the metalayer in CogSketch. Relation arrows can be used

between the subsketch glyphs to create a comic graph. .. 31

Figure 6: An example of edge segmentation. Edges are colored lines, junctions are

circles. ... 32

Figure 7: The Two-Dimensional Qualitative Translational Directions 36

Figure 8: Open Half Plane vs Half Plane for the direction, Left 37

Figure 9: The saloon door rotates about the center of x, which marks its rotational

origin. .. 39

Figure 10: Examples of object types in action .. 41

Figure 11: The surfaces which touch the wedge are highlighted. 43

Figure 12: The set of motions constrained for an object (the ball) via contact a

sufficiently constrained obstacle (the wall). ... 46

Figure 13: Constraints (solid arrows) transfer from the ramp to the wedge, but not from

the saloon door to the arm. .. 47

14

Figure 14: Directly connecting objects (double arrow) causes constraints to be shared.

The arm also shares the saloon door’s rotational origin. .. 48

Figure 15: Surface contact detection algorithm, top level .. 58

Figure 16: Edges and junctions found using edge decomposition (edgeDecomp) on the

ramp example. ... 59

Figure 17: Routine for creating the surface contact decomposition 60

Figure 18: The original edge decomposition of the Ramp (left) gets new junctions at the

points where junctions of wedge intersect it (right). (contactDecomp) 61

Figure 19: Routine for finding the pairs of junctions in contact between two surface

contact decompositions. .. 61

Figure 20: An edge-edge contact is present when the junctions at the endpoints of the

edges are in contact. .. 62

Figure 21: The highlighted contact edge of the arm rest is an example of an inward

facing contact. ... 63

Figure 22: The direction surface normal of an edge contact is the edges direction (from

end to end) rotated 90 degrees toward the direction of contact. 64

Figure 23: Routines for determining if a contact is inward or not. Two different

inwardContact? methods are needed for edge-edge and edge-junction contact.

... 65

Figure 24: Angle enclosure can be used to determine if an edge-to-junction contact is

inward or not. .. 67

15

Figure 25: An example of a mechanism involving a spring. .. 68

Figure 26: An example of a mechanism involving gears. .. 71

Figure 27: A sketch with a kinematic cord connection (left) and one with a movable

pulley (right). .. 73

Figure 28: The cord glyph is divided into two segments. ... 74

Figure 29: The segments of the left cord and right cord glyphs connect through the

pulley… .. 77

Figure 30: Examples of normal vectors of cords inside pulleys 78

Figure 31: If the three sets of constraints hold for the wall (above) then the three

constraints hold for the ball (below). .. 81

Figure 32: The three possible force transfers for a kinematic cord connection. 83

Figure 33: A luff tackle. The bottom pulley is movable. ... 85

Figure 34: The two types of edge contact relationships. .. 87

Figure 35: Choosing the set of contact glyphs.. .. 88

Figure 36: The cord is decomposed using surface contact against all three contacting

glyphs at once. .. 89

Figure 37: A zoomed-in view of the connection between block A and the cord............ 90

Figure 38: The algorithm for characterizing edge contacts. ... 92

Figure 39: A basic overview of Design Coach ... 93

Figure 40: A photograph of the Under Armrest cup holder design 94

16

Figure 41: A student’s subsketch depicting the side view of the cup holder. The student

chose the “fixed object” and “rigid object” labels for the selected part. 95

Figure 42: The metalayer after cloning the subsketch, editing it, and adding a causes

relation. ... 96

Figure 43: The student expands the second feedback item to reveal its explanation.

Selecting feedback highlights referenced parts of the sketch in green. 97

Figure 44: The student revises the sketch ... 98

Figure 45: The student constructs sentences. Green check marks indicate that no fields

are left blank. .. 99

Figure 46: Design Coach gives feedback on the new version with sentences. 100

Figure 47: Design Coach gives feedback on the third version. 101

Figure 48: An overview of the architecture of Design Coach. Each arrow means one

subsystem is providing data to the other. .. 102

Figure 49: The Structured Language Input ... 105

Figure 50: A visual description of the state transition verification algorithm 109

Figure 51: State transition verification algorithm, top level ... 110

Figure 52: Sequential Explanation Analysis, Top Level: The facts representing the

sentences are sequentially passed to the appropriate verification routine. 113

Figure 53: Sequential Explanation Analysis, verifySimpleFact: Simple facts are

proven according to the relation they represent. ... 114

17

Figure 54: Sequential Explanation Analysis, verifyCausesFact: A causes B if

both are proven and A justifies B. .. 118

Figure 55: Sequential Explanation Analysis, verifyPreventsFact: A prevents B

if A is proven, B is contradicted by C, and C is justified by A............................. 120

Figure 56: A close-up view of the Design Coach feedback pane from Figure 43 127

Figure 57: Design Coach feedback for a teleological sentence 128

Figure 58: The Dynamic Dropper Design, an Orthopedic Device 132

Figure 59: Overall feedback error rates for STV and SEA published in Wetzel & Forbus

(2012) (STV = 23.5%, SEA=14.3%) vs running on the explanation corpus in 2014

(STV = 12.4%, SEA = 5.85%) .. 137

Figure 60: A surface contact causes the system to conclude that the rotation is blocked.

... 140

Figure 61: A surface contact causes the system to conclude that the motion is blocked.

... 141

Figure 62: An example of a messy figure. .. 142

Figure 63: An example of our scribble fill detection .. 143

Figure 64: A cup holder drawn in perspective .. 144

Figure 65: A cup holder which clamps the cup using a spring. 145

Figure 66: A feedback error in STV (highlighted in the suggestion list) 146

Figure 67: A feedback error caused by an incorrect topological relationship. 148

Figure 68: Sketching Anxiety Survey Results, Fall 2012 ... 152

18

Figure 69: Sketching Anxiety Survey Results, Winter 2013 .. 153

Figure 70: Sketching Anxiety Survey Results, Fall 2013 ... 154

Figure 71: Plots of scores .. 157

Figure 72: Erroneous surface contact resulting from when tolerances are too high. 177

Figure 73: Book Holder (The page is modeled as a RigidObject.) 191

Figure 74: Releasing the Detachable Paint Roller .. 192

Figure 75: Mini Baja ... 193

Figure 76: Double-Sided Switch ... 193

Figure 77: Picture of the One-Handed Nail Clipper Prototype..................................... 194

Figure 78: One-Handed Nail Clipper sketch .. 195

Figure 79: Tobeggan (One-Handed Egg Cracker) .. 197

Figure 80: Abigator (Abdominal Exerciser) ... 198

Figure 81: Wheelchair Stabilizer (for playing baseball) ... 199

Figure 82: Recliner ... 199

Figure 83: Under-Armrest Rotatable Cup Holder .. 200

Figure 84: Gamma Handle .. 201

Figure 85: Dynamic Dropper .. 201

Figure 86: A Runner ... 203

Figure 87: Gun Tackle .. 204

Figure 88: Luff Tackle .. 205

Figure 89: Luff Upon Luff .. 206

19

Figure 90: Spring Button .. 207

Figure 91: Gear Train.. 207

20

Table of Tables

Table 1: Lists of Available Concepts in Design Coach Sketches 104

Table 2: List of verbs, and their available objects in the Tell window; Italicized verbs

are teleological. ... 107

Table 3: Ways of Achieving Teleological Functions .. 125

Table 4: Mechanism Corpus Sources and Features .. 131

Table 5: Explanation Corpus Sources ... 135

Table 6: Error Rates for Feedback Algorithms ... 137

Table 7: Precision and Recall of Feedback Algorithms.. 138

Table 8: Breakdown of Explanation Corpus by Design ... 138

Table 9: Sources of Error for Explanation Corpus Sketches .. 139

Table 10: Number of Sketches with Surface Contact Errors by Type (Note: some

sketches contained more than one type of error) .. 140

Table 11: Number of students who responded to survey in Design Coach/Control group

by quarter .. 151

Table 12: Correlation between students’ scores on the Design Coach assignments and

grades in the Design .. 156

Table 13: Correlation between scores on the Design Coach assignment and number of

times feedback was requested.. ... 158

 21

Chapter 1

Introduction

1.1 Motivation

The motivation for this work comes from the Design Thinking and Communication

course1 (DTC) at Northwestern University. DTC is the introductory course for

freshman in engineering majors. DTC students work in teams to solve a design

problem for a real world client over the course of each quarter. The course is two

quarters long, and in the first quarter students are taught to use sketching as part of the

design process. However, instructors in DTC report that students have trouble learning

to communicate with sketches. Sketching is both an important form of representation in

mechanical design, and the preferred method of external representation for engineers

(Ullman et al., 1990). Given the complexity and wide scope of engineering design

sketches, creating a software coach that could let students practice explaining their

designs and give feedback on said explanations is a challenging AI problem.

1 http://segal.northwestern.edu/programs/undergraduate/design-thinking-communication/index.html

 22

 When communicating with sketches, humans act multi-modally (see Figure 1),

using language to clarify what would often be ambiguous or crude drawings. Because

these drawings can be ambiguous even to human viewers, and because engineering

design is a very large space of possible drawings, traditional sketch recognition

techniques such as trained classifiers (de Silva et al., 2007; Plamondon & Srihari, 2000;

Wobbrock et al., 2007) will not work. The goal of this thesis is to show that using

qualitative reasoning and engineering design teleology, an AI system can understand

and critique multimodal explanations of early stage engineering designs involving

mechanisms.

1.2 Claims and Contributions

In this thesis, we claim that:

Figure 1: A simple overview of Design Coach

 23

1. Descriptions of mechanisms, specified multi-modally, using sketches and

restricted natural language, must be understood via qualitative reasoning.

2. The validity and clarity of an explanation of a mechanical design can be

evaluated using a combination of design teleology and qualitative reasoning.

 Next we clarify the terms of in these claims. In the first claim, the descriptions

of mechanisms we are interested in are explained at the conceptual stage of design,

lacking precise numerical dimensions and quantities. Understanding descriptions of

mechanisms entails the system predicting the behavior of the mechanism given the

description and maintaining knowledge of the causation of the behavior suitable for

explaining the behavior to the user. A numerical physics simulator or engine would not

satisfy this claim, both because the description may be missing necessary numerical

information and because such simulators do not maintain a knowledge representation

which explains the outcome. The restricted natural language is human-readable

structured language input of the kind introduced by Thompson et al. (1983). The user

may use the structured language to add qualitative statements to the descriptions, such

as statements about the mechanism’s behavior (e.g. The ball can move; The ball moves

to the left; etc.) or about its properties (e.g. An object is compressed; An object touches

another object; etc.). Understanding and critiquing descriptions with these statements

further necessitates the use of qualitative reasoning.

 In the second claim, design teleology entails understanding the function of a

design. Qualitative reasoning allows us to see if the behavior of the mechanism helps it

 24

accomplish its function. We say can here instead of must (as in the first claim)

because the design teleology extends the range of statements and explanations we can

critique, rather than enabling critiques entirely.

 To support these claims, we present CogSketch Design Coach, a system which

uses qualitative reasoning to critique explanations of mechanisms consisting of freehand

sketch and structured language input. We will evaluate the performance of Design

Coach on two corpora of sketched mechanisms, one demonstrating the range of designs

it can understand, and another collected from a series of classroom interventions where

students from DTC used Design Coach in a homework assignment. Thus the

contributions of this thesis are:

1. New extensions to qualitative mechanics for use with sketched input, including a

force-centered model of rigid body mechanics and representations for springs,

gears, cords, and pulleys

Figure 2: An overview of the architecture of Design Coach.

 25

2. Two new algorithms for extracting mechanical spatial relationships from

sketched input: surface contact detection and cord connection analysis

3. Two new algorithms for generating items for critique of engineering design

explanations: State Transition Verification and Sequential Explanation Analysis

4. A teleological ontology for representing higher level functions of designs

involving mechanisms in the context of a first-year undergraduate engineering

design course

Additionally, our classroom intervention resulted in the following contributions:

5. A corpus of 240 multi-modal explanations from engineering design students.

6. Data from the results of a sketching anxiety survey, including the detection of a

significant decrease in anxiety in two out of three quarters in sections where the

Design Coach assignment was introduced and one out of three quarters in

control sections.

1.3 Overview

 This thesis begins with background information on the AI systems and theory

used by Design Coach: CogSketch, our sketch understanding system, and qualitative

mechanics, a qualitative model of physics (Chapter 2). Chapters 3 introduces Design

Coach QM, a new, force-centered version of QM for use with sketched input and multi-

modal explanations. Chapter 4 introduces further extensions to that QM, including

algorithms for deriving important relationships from freehand sketched input and

 26

representations for springs, gears, and cords. Chapter 5 describes the implementation

of Design Coach, including its multimodal input, teleological ontology, and algorithms

for critiquing explanations and giving feedback. Design Coach was then evaluated over

two corpuses: one was a variety of mechanisms, and the other a set of explanations

produced by students during the classroom intervention. This evaluation is described in

Chapter 6, along with a description of the intervention and its impacts on students.

Chapter 7 discusses related work, and Chapter 8 concludes with a summary of how the

claims were met and a discussion of the limitations and future work.

 27

Chapter 2

Background

This chapter describes prior work that the Design Coach builds upon. The first section

describes CogSketch, the sketch understanding system that takes in the user’s drawing

and computes spatial relationships useful for reasoning. The second section introduces

Qualitative Mechanics, the model of physics used by the system to predict motions in

mechanisms.

2.1 CogSketch

CogSketch is a publicly available, open-domain, sketch understanding system (Forbus

et al., 2011). This section describes the core features of CogSketch that existed before

Design Coach and are relevant to its workings. The user interface additions for Design

Coach are described in Chapter 5.

2.1.1 Knowledge Base and Reasoning

CogSketch uses a customized version of the OpenCyc knowledge base which includes

extensions for qualitative reasoning and analogy added by the Qualitative Reasoning

Group. Facts and axioms in the knowledge base are represented as predicate calculus

statements, e.g.

(isa Gear1 Gear)

 28

states that the entity named Gear1 is an instance of the concept Gear. These

statements are used to define collections, relations, and rules. Collections are

classifications of entities (e.g. Gear, Spring-Device, Cord, RigidObject) and

they are arranged in an inheritance hierarchy (e.g. all members of the collection Gear

are members of the collection RigidObject). Relations convey relationships

between or properties of entities. For example, the touchesDirectly relationship

is used when two entities are in physical contact. Rules allow the inference of a

consequent fact from a list of antecedent facts and are represented using Horn clauses.

For example, when reasoning about a sketch we might assume that if two objects are

gears and touch directly, then they are enmeshed. This would be written as:

(<== (enmeshed ?obj1 ?obj2)

 (touchesDirectly ?obj1 ?obj2)

 (isa ?obj1 Gear)

 (isa ?obj2 Gear))

The collections, relations, and rules in the knowledge base are partitioned into logically

consistent sets called microtheories. These microtheories are also arranged in an

inheritance hierarchy such that all the facts believed in a microtheory are believed by all

of its children.

 29

 CogSketch includes a reasoning engine which can perform queries. When

working with a sketch, the reasoning engine primarily performs queries in a context

called working memory which includes the microtheory of the active sketch (see Figure

3). The sketch’s microtheory inherits a set of desired microtheories, usually those

relevant to spatial reasoning and any topics at hand, such as the qualitative mechanics

knowledge. In addition to looking up facts in the selected microtheory, the engine can

use backchaining to use rules to infer answers to the query, or use alternative reasoning

sources. One example of an alternative reasoning source would be the use of geometric

calculations to derive the topological relationship between to objects, or the use of a

Voronoi diagram to derive adjacency. Design Coach uses a combination of knowledge

and reasoning sources to understand the user’s sketch and generate feedback.

Figure 3: The reasoning architecture of CogSketch

 30

2.1.2 Sketching

In CogSketch the user draws sketches using digital ink. This ink is segmented by the

user into glyphs. Glyphs consist of their ink and one or more conceptual labels drawn

from its knowledge base. As the user (or the system) adds and removes labels, an

underlying representation of the sketch is updated by adding and removing

corresponding facts to the working memory of the sketch. There are three types of

glyphs that the user can choose from:

1. Entity glyphs are the standard type of glyph, and represent instances of one or

more concepts. Some examples of conceptual labels relevant to this work

include the collections RigidObject and Gear.

Figure 4: A sketch drawn in CogSketch.

 31

2. Relation glyphs represent a relationship between two glyphs. They are

assumed to be drawn as an arrow. An example is the rightmost arrow in Figure

4, which represents the direct connection between gear3 and the wheel.

3. Annotation glyphs specify additional information about glyphs such as the value

of quantity like height or weight. An example is the leftmost arrow in Figure 4,

which represents the rotational force applied to gear1. For annotations involving

a quantity, the user may supply a precise value (e.g. 10 Newtons) if they wish.

Design Coach does not use these values at present, relying only on the direction

of the arrow instead. A single annotation may be applied to multiple glyphs;

doing so applies the same information to all of them.

Design Coach sketches use all three types of glyphs. The user may also give each glyph

a name—a string which will be used to refer to it in explanations.

Each sketch can contain one or more separate drawing areas, called subsketches.

By selecting the metalayer view (see Figure 5), the user can see all of their subsketches

Figure 5: A screenshot of the metalayer in CogSketch. Relation arrows can be

used between the subsketch glyphs to create a comic graph.

 32

and even add glyphs to provide information about how subsketches relate. The

metalayer is important for describing mechanisms operating in multiple states in Design

Coach (see Chapter 5).

2.1.3 Spatial relationships and representations

As glyphs are added and edited, spatial relationships are computed and asserted into the

working memory of the sketch. CogSketch computes some spatial relationships

automatically as glyphs are changed, including topological relationships based on the

RCC8 relational vocabulary (Cohn, 1996). Other relationships, such as positional

relationships (e.g. above, rightOf), may also be computed as needed. Design

Coach uses both topological and positional relationships to detect surface contacts and

perform other spatial reasoning tasks.

Figure 6: An example of edge segmentation. Edges are colored lines, junctions are

circles.

 33

CogSketch also includes routines for segmenting a glyph into edges and

junctions (Lovett et al., 2006). Chapter 4 describes how Design Coach uses this

segmentation to find the surface contacts between objects.

2.2 Qualitative Mechanics

Qualitative Mechanics (QM) is a qualitative model of physics used to represent and

predict the behavior of physical mechanisms (Kim, 1993; Nielsen, 1988; Pearce, 2001).

Given a description of objects, their surface contacts, and the forces active in a

mechanism, Nielsen’s QM allows a system to predict where objects in a mechanism

will move qualitatively in the next instant of time and to envision the future states of

interaction between said objects. The QM of Design Coach builds upon the former

capability. Nielsen used scanned images of actual machined parts for input, whereas

Design Coach takes in hand drawn sketches. This, combined with the additional goal of

critiquing the users’ explanation, leads to some differences in the approach to Design

Coach QM, as explained in Chapter 3 and Chapter 7.

 34

Chapter 3

Force-Centered Qualitative Mechanics

Qualitative Mechanics (QM) is a qualitative model of physics used to represent and

predict the behavior of physical mechanisms (Kim, 1993; Nielsen, 1988; Pearce, 2001;

Stahovich et al., 1997). The Design Coach QM builds upon and adapts the work of

Nielsen (1988) for use with engineering design sketches. Force-Centered Qualitative

Mechanics is the core of Design Coach QM, and its name reflects a major difference

from Nielsen’s QM. The end goal has changed from predicting motion to explaining

(and critiquing explanations of) mechanical behavior, therefore the underlying

representations require more detail at the level of forces.

 This chapter describes the representations at the core of Design Coach QM. We

begin with qualitative vectors, then define objects, constraint, motion, force and torque.

3.1 Qualitative Vector Representation

We represent direction and orientation using qualitative vectors. In Nielsen’s QM a

one-dimensional vector has three possible values: + (greater than zero), - (less than

zero), and 0 (zero). Design Coach QM adds a fourth value, Ambig (ambiguous), to the

 35

original three to represent the case where it is not clear which direction the vector

points.

Definition 1 (Senses of One-Dimensional Vectors): A Sense is a symbol denoting a

qualitative value. The set of senses for a one-dimensional vector is {+,0,-,Ambig}.

The senses + and - have an inverse relationship, defined as follows.

Definition 2 (Inverse Senses): inverseSense(s1,s2) is true if s1=+ and s2=-

or s1=- and s2=+.

The inverse and ambiguous senses allow us to define the sum of senses.

Definition 3 (Sums of Senses): senseSum(s1,s2,sR) is true if the sum of s1 and

s2 is sR. The following rules define the sums of senses:

1. The sum of any sense s and 0 is s.

2. The sum of any sense s and Ambig is Ambig.

3. The sum of any sense s and itself (e.g. + and +, Ambig and Ambig, etc.) is s.

4. The sum of a sense s and its inverse (Definition 2) is Ambig.

With one-dimensional directions defined, we now move to the two-dimensional case.

For two-dimensional space there are nine translational directions (zero, up, down, left,

right, and quadrants 1 through 4 for diagonals) and three rotational directions (zero,

clockwise, and counterclockwise). We begin with the translational vectors. To the first

nine, we again add an ambiguous vector:

Definition 4 (Two-Dimensional Translational Vectors): A 2DQVector denotes a

translational direction. The set of two-dimensional qualitative vectors is {Up,

 36

Down, Left, Right, Quad1, Quad2, Quad3, Quad4,

ZeroQVector, AmbigQVector}.

The translational directions are two-dimensional qualitative vectors with components in

both the x and y axis of a Cartesian coordinate plane. See Definition 5 and Figure 7.

Definition 5 (Senses of Two-Dimensional Translational Vectors): xSense(v,s)

is true when Sense s is the direction of the component of v along the x axis. Similarly,

ySense(v,s) is true when s is the direction of the component of v along the y axis.

We add qualitative vectors by summing their component senses. For example, Right

(+,0) and Up (0,+) sum to Quad1 (+,+). When we add opposite directions (+ and -),

the resulting component is Ambig. AmbigQVector represents any two-dimensional

vector with an ambiguous component. 2

2 Alternatively, we could define a set of four ambiguous vectors (e.g. leftwards is (+,Ambig), upwards is
(Ambig,+), etc.). This would allow for more specific feedback on the direction of ambiguous vectors
and allow the user to the more limited ambiguous vectors in their explanations. However, there was
never a need for this feature so it remains unimplemented in Design Coach.

Figure 7: The Two-Dimensional Qualitative Translational Directions

 37

The two dimensional vectors also have inverse relationships with each other, derived

from their senses:

Definition 6 (Inverse Vectors): inverseVector(v1,v2) is true when all of the

senses of v1 are the inverse of their respective counterparts in v2.

In QM it is often important to know which vectors have overlapping direction,

(e.g. to know if two forces push together). As in Nielsen’s QM, the concepts of half

plane and open half plane are used to solve these problems. Thus, Definition 7 and

Definition 8 correspond to Definitions 12 and 13 in Nielsen’s QM. Figure 8 also

displays the difference between the open half plane and the half plane graphically.

Definition 7 (Half Plane): halfPlane(v1,v2) is true when the sign vector dot

product of the first argument and the second argument is + or 0.

Definition 8 (Open Half Plane): openHalfPlane(v1,v2) is true when the sign

vector dot product of the first argument and the second argument is +.

Figure 8: Open Half Plane vs Half Plane for the direction, Left

 38

Having introduced translational vectors, we now turn to rotational vectors. We

define these similarly to the way they are defined in Definitions 4-6 of Nielsen’s QM,

with the addition of an ambiguous vector.

Definition 9 (Rotational Vectors): A RotVector denotes a rotational direction.

The set of rotational vectors is {CW, CCW, ZeroRot, AmbigRot}.

Definition 10 (Senses of Rotational Vectors): rotSense(v,s) is true when Sense s

corresponds with the direction of the rotational vector v.

Rotating a translational vector produces a new translational vector. The following

relationships determine which rotational direction must be used to perform specific

rotations (or will be produced as a result of rotation in that direction):

Definition 11 (Rotating Translational Vectors): rotate90(tv1,tv2,rv) is true

when tv1 when rotated 90 degrees in direction rv produces tv2. Similarly,

rotate45(tv1,tv2,rv) is analogously true for 45 degree rotations.

We use Rotate90 in rules to infer rotational consequences of translational

facts, such as determining the direction of a torque produced by a translational force.

We use Rotate45 to quickly recall a translation vector’s neighboring members in the

open half plane without getting the vector itself as a result; we also use it to find the

direction between a cord and a pulley it runs through.

At any instant of time, an object may only rotate around one point. We call this

point the object’s rotational origin.

 39

Definition 12 (Rotational Origin Relationship): rotationalOrigin(o,p) is

true when p is the point that object o rotates around in the given reference pane.

To find the rotational origin, we first look to see if one is given (e.g. sketched by the

user). If it is not, we use the object’s center of mass. Cords and gears creates special

cases that are addressed in Chapter 4.

 The last definition we need concerning vectors is the use of a vector in a spatial

relationship: the direction between two points:

Definition 13 (Qualitative Vector Between):

qualitativeVectorBetween(p1,p2,tv) is true when tv is the direction from

point p1 to point p2.

With vectors defined, we now turn to the problem of representing the objects involved

in the engineering design explanations.

Figure 9: The saloon door rotates about the center of x, which marks its rotational

origin.

 40

3.2 Object Representations

Nielsen’s QM worked on systems of rigid objects. Design Coach QM extends it with

additional types (presented in Chapter 4) in order to accommodate a wider variety of

mechanisms, including those involving non-rigid objects such a springs and cords. The

most general category of object is the set of all physical objects, which includes all rigid

objects:

Definition 14 (Physical Objects): A PhysicalObject is a member of the set of

physical objects.

Definition 15 (Rigid Objects): A RigidObject is a member of the set of rigid

objects. Every RigidObject is a PhysicalObject.

In Design Coach QM, forces may be applied to any physical object, which may cause

them to move in response. Rigid objects differ in that they may have their motion

blocked or redirected by making contact with other rigid objects. Since all motion is

relative to some frame of reference, two additional object types are useful:

Definition 16 (Fixed Objects): A FixedObject is a member of the set of physical

objects which neither rotate nor translate in the current frame of reference.

Definition 17 (Fixed-Axis Objects): A FixedAxisObject is a member of the set of

physical objects which do not translate but may rotate around its rotational origin

(Definition 12) in the current frame of reference.

 41

Figure 10 presents two examples of mechanical situations we discuss in this chapter.

One is a block sitting on a wedge on a ramp, viewed from the side. (A similar example

appears in Nielsen (1988). The other is a human arm pushing open the door of a saloon.

All of the physical objects in these diagrams are rigid. The “x” labeled “rotational

origin” is a RotationalOrigin and is not a physical object. In addition, the ramp

is a fixed object, and the saloon door is a fixed-axis object.

Surfaces of objects are represented similarly to Definitions 15-19 of Nielsen’s

QM:

Definition 18 (Surfaces): A Surface is a member of the set of the surfaces of a rigid

object.

Definition 19 (Normal of a Surface): surfaceNormal(s,tv) is true when the

surface normal vector of surface, s, is pointed in the direction of translational vector,

tv.

Definition 20 (Surface Contact): surfaceContact(s1,s2) is true when

surfaces s1 and s2 are in physical contact with each other.

Figure 10: Examples of object types in action

 42

Definition 21 (Has a Contact Surface): hasContactSurface(o1,o2,s) is

true when s is a surface of o1 and s has surface contact with a surface of o2.

The hasContactSurface relationship (Definition 21) replaces Nielsen’s surface

relationship (Nielsen’s Definition 15), and takes its role in linking the surface to its

parent object. In Nielsen’s QM, all of the surfaces of each object were reified, but in

this work only the contact surfaces are reified. The non-contact surfaces of the objects

do not need to be reified for an analysis of a single instant of time, as is the case in

Design Coach. In contrast, Nielsen’s CLOCK program used envisionment to find all

possible future states. Such an envisionment requires the system to have knowledge of

all the non-contact surfaces, to see if they may come in contact in the future. Choosing

to reify only the contact surfaces can increase efficiency by reducing the search space of

surfaces. In our ramp example, four surfaces must be reified: the bottom surface of the

block, a top right surface of the ramp, a top surface of wedge, and the bottom left

surface of the wedge. The former two surfaces are shown in Figure 6. We discuss the

method for detecting surface contacts in sketched input in Chapter 4.

 43

3.3 Constraint and Motion

The most common goal in analyzing the behavior of a mechanism is to determine where

its parts will move (or not move). In this section we describe the process of

determining the next motion of an object. To start, at any particular instant of time,

each object possesses one translational motion vector and one rotational motion vector:

Definition 22 (Motion): translationalMotion(o,tv) is true when object o

moves in the direction of vector tv in the current frame of reference. tv may be any of

the vectors in Definition 4, including ZeroQVector.

rotationalMotion(o,rv) is true when object o rotates in the direction of vector

rv in the current frame of reference. rv may be any of the vectors in Definition 9,

including ZeroRot.

Figure 11: The surfaces which touch the wedge are highlighted.

 44

In QM constraint is the property of being unable to move in one or more

directions. Like motion, it has translational and rotational components:

Definition 23 (Constraint): translationalConstraint(o,tv) is true when

object o cannot move in the direction of vector tv in the current frame of reference.

(tv cannot be ZeroQVector or AmbigQVector.) Similarly,

rotationalConstraint(o,tv) is true when object o cannot rotate in the

direction of vector rv in the current frame of reference. (rv cannot be ZeroRot or

AmbigRot.)

While an object can only have one translational motion and one rotational motion at a

time, it may have multiple constraints at once.

 There are five cases in which an object O may become constrained:

1. O is a FixedObject or a FixedAxisObject (see Definition 16 and

Definition 17).

2. O is a RigidObject in contact with blocking obstacle, B, such that B

prevents motion of O in one or more directions.

3. O is directly connected to (e.g. glued to) another object, P, such that it shares the

constraints on P.

4. O is tied to another object by a taut cord.

5. O is a gear, enmeshed with another gear G such that it shares in the some of the

constraints on G.

 45

The first case is self-explanatory; cases 2 and 3 will be discussed next; and cases 4

and 5 will be addressed in the sections on cords and gears in Chapter 4.

 Finally, it is also sometimes useful for explanatory or teleological purposes to be

able to state that an object is able to be moved or rotated at all.

Definition 24 (Movable and Rotatable): movable(o) is true when object o is not

constrained from translating in at least one direction in the current frame of reference.

Similarly, rotatable(o) is true when object o is not constrained from rotating in at

least one direction in the current frame of reference.

3.3.1 Transmission of Constraint via Surface Contact

Constraint transfer occurs through surface contact, as it does in Nielsen’s QM

Nielsen’s law of contact constraint (Nielsen 1988, pg 23) says that an obstacle prevents

a contacting object from moving if the obstacle is sufficiently constrained as follows:

1. Translational motion into the open half plane centered on the contacting object

surface normal at the point of contact.

2. Rotational motion clockwise about any point which lies in the open half plane

centered ninety degrees clockwise from the contacting object's surface normal at

the point of contact.

3. Rotational motion counter-clockwise about any point which lies in the open half

plane centered ninety degrees counter-clockwise from the object's surface

normal at the point of contact.

 46

If an obstacle is sufficiently constrained as above, then the above three constraints are

transmitted to the object blocked by said obstacle. Figure 12 shows this graphically.

The ball cannot translate Left, Quad1, or Quad4. Also note that while the ball may

not rotate around points in the halfplanes above and below it, it may rotate around its

center.

 In our block-and-wedge-on-ramp example (Figure 13), the ramp is constrained

in all directions. At the surface contact between the ramp and wedge, the ramp is

sufficiently constrained, so the wedge inherits those constraints. At the contact between

the block and wedge however, the wedge is not sufficiently constrained in the

downward direction (it may slide down and to the right), so there are effectively no

constraints on the block. Similarly, while the saloon door cannot translate anywhere to

the right, it can rotate counter-clockwise out of the arm’s way. Therefore it is not

sufficiently constrained, and the arm can move freely in any direction.

Figure 12: The set of motions constrained for an object (the ball) via contact a

sufficiently constrained obstacle (the wall).

 47

3.3.2 Transmission of Constraint via Direct Connection

 Another new addition of Design Coach QM is the concept of directly connected

objects:

Definition 25 (Direct Connection): directlyConnected(o1,o2) is true when

o1 is rigidly connected to o2 (for example, glued together) such that o1 and o2 share

their constraints and rotational origin.

Figure 14 illustrates how the constraints in our examples change if we directly connect

some of the parts in Figure 13 together. In the case of the block and wedge on the

ramp, if we directly connect the wedge and ramp then the wedge inherits the ramp’

constraints and can no longer move. Consequentially, the wedge becomes sufficiently

constrained at the surface contact with the block and transmits its constraints to the

block accordingly. If we directly connect the arm to the fixed-axis saloon door (ouch!),

Figure 13: Constraints (solid arrows) transfer from the ramp to the wedge, but not

from the saloon door to the arm.

 48

the arm is constrained from translating, but now will instead rotate around the door’s

rotational origin.

 The concept of direct connection can be contrasted with the concept of linkage

in Nielsen’s QM (Nielsen’s Definition 21). A linkage asserts that two different

representations of one object are indeed the same object. Direct connection is for two

different entities that effectively become one physical entity, from the perspective of

mechanical constraint.

3.3.3 Predicting the Next Motion

Now that constraint has been defined, we return to the problem of predicting the

next motion of an object. In Design Coach QM, the next motion of an object can be

determined if the net force applied to it is known, as follows:

Figure 14: Directly connecting objects (double arrow) causes constraints to be

shared. The arm also shares the saloon door’s rotational origin.

 49

Definition 26 (Predicting Translation): Given an object o, and the direction of the

net force applied to it, d:

1. If d is AmbigQVector:

 The result is TranslationalMotion(o,d)

2. Otherwise, if not TranslationalConstraint(o,d):

 The result is TranslationalMotion(o,d)

3. Otherwise, if not TranslationalConstraint(o,d’) s.t.

 openHalfPlane(d,d’):

 The result is TranslationalMotion(o,d’)

4. Otherwise the result is:

TranslationalMotion(o,ZeroQVector)

At first glance the clause in line 3 might seem like it could produce either of two results

because d’ could be either neighboring vector in the open half plane of d. However,

whenever a translational constraint is introduced, (either through fixed property or

surface contact) it is applied to at least an open half plane, guaranteeing that there will

be at most one free direction within an open half plane of any constraint. This

procedure is therefore correct.

 The procedure for determining rotation is simpler:

Definition 27 (Predicting Rotation): Given an object o, and the direction of the net

torque applied to it, d:

1. If d is AmbigRot:

 50

 The result is RotationalMotion(o,d)

2. Otherwise, if not RotationalConstraint(o,d):

 The result is RotationalMotion(o,d)

3. Otherwise the result is: RotationalMotion(o,ZeroRot)

 In Design Coach QM, all motions are the result of a net force and torque on the

object. This is a major departure from Nielsen’s QM, in which motion is found through

transmission between objects. In Design Coach QM, forces/torques are transmitted

between objects instead. The next section describes the force/torque transfer process

and how the direction of the applied net force and torque are found.

3.4 Force and Torque Representation

In Design Coach QM, the core of the force representation is the following relationship:

Definition 28 (Force Applied to Object):

forceAppliedToObject(o,tv,src) is true when PhysicalObject o

receives a force in direction tv from source src.

Torques3 are represented similarly:

Definition 29 (Torque Applied to Object):

torqueAppliedToObject(o,rv,src) is true when object o receives a torque

in direction rv from source src.

3 In this document we use the more colloquial definition of torque, a turning or twisting force. However,
“rotational force” is a more accurate term for a mechanical engineering context, so the Design Coach user
interface uses that term instead.

 51

The source is used to distinguish between multiple forces acting in the same

direction. The force/torque applied to an object is the second important connection

point for QM extensions (the first being constraints). Springs, cords, and gears can

apply forces and torques to objects using this relationship. Those applied forces/torques

then feed into the net force/torque which make each object move. The net force and

torque applied are defined as follows:

Definition 30 (Net Force): netForceApplied(o,tv) is true when the direction of

the net force applied to o is the translational vector tv.

Definition 31 (Net Torque): netTorqueApplied(o,rv) is true when the

direction of the net force applied to o is the rotational vector rv.

These are computed by summing up the qualitative vectors using their component

senses (Definition 3). As noted previously, there are several ways a force/torque may

be applied to an object. Some forces may just be given, such as gravity. Next, we

describe transmission through surface contact and direct connections.

3.4.1 Transmission of Force through Surface Contact

When a force is applied to an object, it produces a force at all of its contact surfaces

which have their normals in the open half plane of that force:

Definition 32 (Force at a Surface): forceAtSurface(s,tv,o) is true when:

hasContactSurface(o,o’,s) AND

forceAppliedToObj(o,tv’,src) AND

 52

surfaceNormal(s,tv) AND

openHalfPlane(s,tv’)

The force is transmitted between surfaces like so:

Definition 33 (Force Applied to a Surface):

forceAppliedToSurface(s,tv,src) is true when:

 hasContactSurface(o,src,s) AND ;; s belongs to o

 surfaceContact(s,s’) AND

 forceAt(s’,tv,src) ;; s’ belongs to object src

Note that in this definition the direction, tv, is guaranteed to be directed at s because it

is in the open half plane of the surface normal of s’ due to the definition of forceAt.

 Finally, the force applied to the surface will become a force on the object if the

object is not sufficiently constrained along that direction. If it is constrained, we can

assume that a reaction force from the obstacle cancels the force out and thus not bother

applying it to the whole object. We assume that rigid objects are not deformable.

Definition 34 (Force from Surface to Object):

forceAppliedToObject(o,tv,src) is true when:

 hasContactSurface(o,src,s) AND

 forceAppliedToSurface(s,tv’,src) AND

 ;; case 1: o is free to move directly that way

 ((NOT transConstraint(o,tv’)) AND equal(tv,tv’))

 OR

 53

 ;; case 2: o can’t move directly, but can slide

 ;; in the general direction

 (transConstraint(o,tv’) AND openHalfPlane(tv’,tv))

In the ramp example (Figure 13), the force of gravity applies to both the block and the

wedge. The block’s contact surface normal is Down, which is in the open half plane of

the direction of gravity so a force appears at that surface. The wedge is not sufficiently

constrained in the Down direction, so it receives the force applied to its upper surface,

giving it two forces in the downward direction; one from the block, and one from

gravity. The sum of Down and Down is down, so the net force applied to the wedge is

Down. The ramp is fixed and thus sufficiently constrained, so it does not receive a

force from contact with the wedge. The wedge has no forces to transmit to the block

across its upward pointing surface normal, so the net force applied on the block is just

that of gravity--Down. According to prediction of translation (Definition 26), the block

will instantaneously move down since it is not constrained in that direction, while the

wedge will instantaneously move down and right (Quad4) since it is constrained from

moving down and from moving down and left (Quad3). (Friction would normally

cause the block to move Quad4 as well, but neither friction nor gravity are assumed by

default.)

 A force at a surface may also apply a torque if the rotational origin lies on either

side of the point of contact:

 54

Definition 35 (Torque from Surface to Object):

torqueAppliedToObject(o,rv,src) is true when:

 hasContactSurface(o,src,s) AND

 hasContactSurface(src,o,s’) AND

 surfaceContact(s,s’) AND

 forceAtSurface(s,tv,src) AND

 rotationalOrigin(o,p) AND

 qualitativeVectorBetween(s,p,tv’) AND

 surfaceNormal(s’,tv’’) AND

 openHalfPlane(tv’’’,tv’) AND

 rotate90(tv’’,tv’’’,rv)

In the saloon door example (Figure 13), the force at the arm points Right, and the

direction from the contacted surface of the door to its rotational origin is up and right

(Quad1), which is in the open half plane counterclockwise from Right, therefore the

door receives a CW torque from the arm.

3.4.2 Transmission of Force via Direct Connection

Forces are transferred through a direct connection in the same method as constraints. If

two objects are directlyConnected, a force/torque on one becomes a force/torque

on the other.

 55

3.4.3 Assumed Forces and Torques

Sometimes a force or torque should just be assumed to be working on an object, as in

our ramp example where we assume gravity is acting on the block and wedge. In

Design Coach, this happens when a user draws a force arrow annotation. In this case,

the system creates an assumed force relationship.

Definition 36 (Assumed Force or Torque): forceAssumed(o,tv,src) means

the system may apply a force on object o in the direction of tv. Similarly,

torqueAssumed(o,rv) means the system may apply a force on object o in the

rotational direction, rv. src is the source of the assumed force/torque, e.g. gravity or

a force/torque annotation.

Note the word “may” in Definition 36. This is because it is still unclear if a

force/torqueAppliedToObject relationship should be present. If the object is

constrained, then we can assume that a reaction force will cancel out a component or

even the entire the assumed force. As with motion, if an assumed force encounters a

constraint, it will be redirected elsewhere in the open half plane, or be entirely zeroed

out.

Definition 37 (Application of Assumed Force):

forceAppliedToObject(o,tv,src) is true when:

 forceAssumed(o,tva,src) AND

 ((NOT transConstraint(o,tva) AND equals(tva,tv))

 OR (NOT transConstraint(o,tv) AND

 56

 openHalfPlane(tv,tva))))

The torque case is simpler, since there is no optional extra directions for the torque to

redirect into.

Definition 38 (Application of Assumed Torque):

torqueAppliedToObject(o,rv,src) is true when:

 torqueAssumed(o,rv,src) AND

 NOT rotConstraint(o,rv)

 57

Chapter 4

Extensions to Qualitative Mechanics

This chapter introduces more significant extensions to QM for Design Coach. These

extensions fall into two categories. The first are algorithms which allow QM to use

sketched input. The surface contact detection algorithm is one of two algorithms we

shall present. The second are representations for new types of objects. Early in the

development of the Design Coach QM, we performed a survey of past mechanical

projects from the engineering design course. The survey revealed that QM could

predict the behavior of a significant proportion of the mechanical designs using rigid

objects alone, and with the inclusion of springs and gears, we could cover nearly 40%

more of the designs surveyed (Wetzel & Forbus, 2008).

 The chapter begins with a description of the process used to identify surface

contact information from a hand-drawn sketch. It then describes three new types of

objects: springs, gears, and cords, including the process used to identify different types

of cord connections in a hand-drawn sketch.

4.1 Surface Contact Detection

For QM, we need to identify each contact surface and the direction of its normal.

Recall that glyphs can be decomposed into edges and junctions, which gives us three

possible types of contact between them: edge-to-edge, edge-to-junction, and junction-

 58

to-junction. The detectSurfaceContact algorithm in Figure 15 takes two

glyphs as input and returns these three types of contacts and their normal.

Here edgeDecomp is the edge decomposition algorithm described in Lovett et al.

(2006). We also employ a limited scribble fill detection to eliminate excess edges from

the initial decompositions. This is discussed further in Section 6.3.1. Figure 16 shows

the resulting edges and junctions when edgeDecomp is used on the ramp example.

1. detectSurfaceContact(Glyph1,Glyph2):
2. Decomp1 <- edgeDecomp(Glyph1)
3. Decomp2 <- edgeDecomp(Glyph2)
4. Contact1 <- contactDecomp(Decomp1,Decomp2)
5. Contact2 <- contactDecomp(Decomp2,Decomp1)
6. JunctionPairs <- contactJunctionPairs(Contact1,Contact2)
7. E-EContacts <- edgeEdgeContacts(Contact1,Contact2,
8. JunctionPairs)
9. E-ENormals <- []
10. For EdgePair in E-EContacts:
11. E-ENormals.add(edgePairSurfaceNormal(EdgePair,
12. JunctionPairs))
13. J-Contacts <- filterJContacts(JunctionPairs)
14. J-EContacts <- junctionEdgeContacts(J-Contacts)
15. J-ENormals <- []
16. For EdgePair in J-EContacts:
17. J-ENormals.add(edgePairSurfaceNormal(EdgePair))
18. J-JContacts <- setDifference(J-Contacts,J-EContacts)
19. Return [E-EContacts,E-ENormals,J-EContacts,J-ENormals,
20. J-JContacts]

Figure 15: Surface contact detection algorithm, top level

 59

The routine shown in Figure 17 computes the surface contact decomposition between a

pair of glyphs by adding new junctions at the points of intersection between the

perimeters edge cycles of their original decompositions. intersection uses

geometry to find the point of overlap between the edge of the first object and the

intersecting edge or junction from the second object. A graphical example is given in

Figure 18.

Figure 16: Edges and junctions found using edge decomposition (edgeDecomp)

 60

In these routines, rcc8Connnected? means the two junctions/edges are close

enough together to be considered topologically connected.

1. contactDecomp(Decomp1,Decomp2):
2. ContactDecomp1 <- Decomp1
3. IntersectingPoints <- []
4. For egde1 in perimeterEdges(Decomp1):
5. IntersectingJunctions <- []
6. For junction in perimeterJunctions(Decomp2):
7. If rcc8Connected?(edge,junction) and
8. not(rcc8Connected?(jctA(edge1),junction) and
9. not(rcc8Connected?(jctB(edge1),junction):
10. IntersectingJunctions.add(junction)
11. IntersectingEdges <- []
12. For edge2 in perimeterEdges(Decomp2):
13. If rcc8Connected?(edge1,edge2) and
14. not setIntersection(endJunctions(edge2),
15. intersectingJunctions)
16. and
17. not(rcc8Connected?(jctA(edge1),edge2) and
18. not(rcc8Connected?(jctB(edge1),edge2):
19. IntersectingJunctions.add(edge2)
20. For object in IntersectingJunctions + IntersectingEdges:
21. IntersectingPoints.add(intersection(edge1,object))
22. For Intersection in IntersectingPoints:
23. ContactDecomp1.addNewJunction(Intersection)
24. Return ContactDecomp1

Figure 17: Routine for creating the surface contact decomposition

 61

Once the surface contact decompositions have been computed for both glyphs, the

junctions which overlap are involved in points or regions of contact. First, all of the

pairs are collected (Figure 19). uniqueClosestPairs sorts the pairs by the

distance between their junctions and then guarantees that each junction is only party to

one pair by removing any more distant pairs involving that junction.

The next step is to find the edge-edge contacts, as done by the routine in Figure 20. For

example, an edge-edge contact is detected between ramp and wedge on the right-hand

Figure 18: The original edge decomposition of the Ramp (left) gets new

junctions at the points where junctions of wedge intersect it (right).
(contactDecomp)

1. contactJunctionPairs(Decomp1,Decomp2):
2. JunctionPairs <- []
3. For Junction1 in junctions(Decomp1):
4. For Junction2 in junctions(Decomp2):
5. If rcc8Connected?(Junction1,Junction2):
6. JunctionPairs.add([Junction1,Junction2])
7. Return uniqueClosestPairs(JunctionPairs)

Figure 19: Routine for finding the pairs of junctions in contact between two
surface contact decompositions.

 62

side of Figure 18 because the endpoint junctions of the ramp’s new edge contact the

endpoints of the ramp’s bottom-left edge.

The angle of the contacting edge will determine the direction of its normal. Since the

edges are exterior edges, the simplest method for finding the normal would be to rotate

the edges angle 90 degrees towards the outside of the shape. However in some cases

that will produce the wrong result. Figure 21 shows an example of an inward contact

with an exterior edge. If the normal was taken to be the exterior of the armrest’s edge it

would face away from the contact rather than towards it.

1. edgeEdgeContacts(Decomp1,Decomp2, ContactJunctionPairs):
2. E-EContacts <- []
3. For edge1 in exteriorEdges(Decomp1):
4. For edge2 in exeteriorEdges(Decomp2):
5. If ([edge1.J1,edge2.J2] in ContactJunctionPairs and
6. [edge1.J2,edge2.J1] in ContactJunctionPairs) or
7. ([edge1.J1,edge2.J1] in ContactJunctionPairs and
8. [edge1.J2,edge2.J2] in ContactJunctionPairs):
9. E-EContacts.add([edge1,edge2])
10. Return E-EContacts

Figure 20: An edge-edge contact is present when the junctions at the endpoints of
the edges are in contact.

 63

 To compensate for this, our surface normal calculations take into account if the

contact surface is inward or not as done in the routine in Figure 22.

Figure 21: The highlighted contact edge of the arm rest is an example of an inward

facing contact.

 64

The angle of edges is always measured clockwise, and the exterior edges are directed,

such that they go clockwise around the shape. So to rotate the angle 90 degrees towards

the outside of the shape, 90 is added. If the contact faces inwards, then the angle must

be rotated counterclockwise to the normal, thus 90 is subtracted.

 To determine if the contact faces inwards, the routine in Figure 23 is used.

1. edgePairSurfaceNormal(edgePair,JPairs):
2. # if this is a pair of edges, base normal off the
3. # straighter one
4. If type(edgePair[0]) == Edge and type(edgePair[1]) == Edge:
5. straighterEdge <- straightest(edgePair[0],edgePair[1])
6. otherEdge <- edgePair.remove(straighterEdge)[0]
7. If inwardContact?(straighterEdge,otherEdge,JPairs) and
8. getInwardContact(straighterEdge,otherEdge) ==
9. straighterEdge:
10. Return (angle(straighterEdge) – 90) mod 360
11. Else:
12. Return (angle(straighterEdge) + 90) mod 360
13. Else If type(edgePair[0]) == Edge:
14. If inwardContact?(edgePair[0],edgePair[1],JPairs):
15. Return (angle(edgePair[0]) – 90) mod 360
16. Else:
17. Return (angle(edgePair[0]) + 90) mod 360
18. Else If type(edgePair[1]) == Edge:
19. If inwardContact?(edgePair[1],edgePair[0],JPairs):
20. Return (angle(edgePair[1]) – 90) mod 360
21. Else:
22. Return (angle(edgePair[1]) + 90) mod 360

Figure 22: The direction surface normal of an edge contact is the edges direction
(from end to end) rotated 90 degrees toward the direction of contact.

 65

1. inwardContact?(Edge1,Edge2,ContactJunctionPairs):
2. Return [edge1.J1,edge2.J1] in ContactJunctionPairs and
3. [edge1.J2,edge2.J2] in ContactJunctionPairs
4.
5. getInwardContactEdge(Edge1,Edge2):
6. J1A <- Edge1.J1
7. J1B <- Edge1.J2
8. J2A <- Edge2.J1
9. J2B <- Edge2.J2
10. incomingEdge1 <- perimeterEdgeEnters(J1A)
11. incomingEdge2 <- perimeterEdgeEnters(J2A)
12. departingEdge1 <- perimeterEdgeLeaves(J1A)
13. departingEdge2 <- perimeterEdgeLeaves(J2A)
14. EvidenceA <- 0
15. If incomingEdge1 != nil and incomingEdge2 != nil:
16. EvidenceA <- (angle(incomingEdge1 – incomingEdge2))
17. EvidenceB <- 0
18. If departingEdge1 != nil and departingEdge2 != nil:
19. EvidenceB <- (angle(departingEdge2 – departingEdge1))
20. If (EvidenceA + EvidenceB) > 0:
21. Return Edge1
22. Else:
23. Return Edge2
24.
25. inwardContact?(SuperEdge,Junction):
26. closestJunction <- closestJunctionTo(SuperEdge,Junction)
27. subEdgeA <- subedgeEnters(SuperEdge,closestJunction)
28. subEdgeB <- subedgeLeaves(SuperEdge,closestJunction)
29. angleA <- angleFrom(closestJunction,subEdgeA)
30. angleB <- angleFrom(closestJunction,subEdgeB)
31. otherEdges <- [perimeterEdgeEnters(Junction),
32. perimeterEdgeLeaves(Junction)]
33. otherAngles <- []
34. For edge in otherEdges:
35. otherAngles <- angleFrom(closestJunction,edge)
36. angleEnclosureDir <- angleEnclosure(angleA,angleB,
37. otherAngles)
38. If angleEnclosureDir == CW:
39. Return False
40. Else:
41. Return True

Figure 23: Routines for determining if a contact is inward or not. Two different
inwardContact? methods are needed for edge-edge and edge-junction contact.

 66

Determining the inwardness of an edge-to-edge contact is straightforward; because

the exterior edges move clockwise around the shape if the contact junctions at the end

of the edges are paired first-to-first and second-to-second, we know one of the edges

must contact on its inward side. To figure out which edge is the inward one

(getInwardContactEdge), an estimate is made by comparing the angles of the

neighboring pairs of edges on either side of that edge. The edge whose neighboring

edges form a larger concave around the opposing edge’s neighbors is assumed to be the

inward facing edge.

 Determining inwardness in the edge-to-junction contact case is a bit more

complex. Recall the original surface contact decomposition added a junction at the

point of contact, segmenting the surface of the ramp into two edges. When it was

determined that this junction was a junction-edge contact, the edges were merged into a

single super-edge. Once again we take advantage of the invariant that exterior edges

are directed clockwise around the outside of the shape. Assuming these are solid

objects, the two exterior edges of the block leaving the junction should both extend

away from the super edge (rather than crossing it). Let us call the angle of the inbound

sub-edge as measured away from the junction “angle A”; the angle of the outbound sub-

edge as measured away from the junction “angle B”; and the edges of the block “1” and

“2”. (See Figure 24.)

 67

Since 1 and 2 are both on the same side of the super edge, there exists an angle from

angle A to angle B, “angle AB”, which encloses 1 and 2. Since going from edge A to

edge B travels clockwise about the shape, if the angle AB travels clockwise, then 1 and

2 will be outside the shape. If angle AB travels counterclockwise, then 1 and 2 will be

on the inside of the shape. Therefore, if angleEnclosureDir returns the direction

of enclosing angle AB, then whenever it returns a counterclockwise result, the edge

contact faces inward.

 The inward contact detection adds a limitation; the edges in question must be

part of a closed loop to guarantee that the perceptual edge decomposition system

assigns the edges in clockwise order around the outside of the shape. If the shape is

open, then this is not guaranteed. Instructors preferred that their students sketch without

using stick figures, so making inward contact detection work with stick figures was not

Figure 24: Angle enclosure can be used to determine if an edge-to-junction contact
is inward or not. If the perimeter moves clockwise from A to B, then the contact is

inward whenever enclosing angle AB travels counterclockwise.

 68

necessary for our intervention. Not all students followed those instructions, however;

examples can be found in Section 6.3. Ways to address these cases in the future can be

found in Section 8.2.3.

4.2 Springs

Springs are one of the new non-rigid objects added in Design Coach QM. Springs can

be connected to up to two other objects, one at each end. Springs may be in one of

three states: compressed, stretched, or relaxed. The state is specified by the user via

assigning collections from the KB. Depending on the state, a spring may apply a force

to an object:

Definition 39 (Force Applied by Compressed Spring):

forceAppliedToObj(o,tv,spg) is true when:

 connectedToDirectly(o,spg) AND

Figure 25: An example of a mechanism involving a spring.

 69

 qualiativevBetween(o,spg,tv) AND

 isa(spg,Compressed)

Definition 40 (Force Applied by Stretched Spring):

forceAppliedToObj(o,tv,spg) is true when:

 connectedToDirectly(o,spg) AND

 inverseVector(tv,tvi) AND

 qualiativevBetween(o,spg,tvi) AND

 isa(spg,Stretched)

Relaxed springs do not apply any force to their connected objects. Unlike rigid objects,

the springs in this model do not create any constraints on motion for their connected

objects. In the example pictured in Figure 25, the button will have a force applied

upwards from the spring because the spring been labeled Compressed.

4.3 Gears

In the simplest sense, gears are merely rigid objects of a certain shape, and could be

modeled as such. They were modeled this way in the Clock program using Nielsen’s

QM (Forbus et al., 1991). However in sketching it is difficult to draw a gear such that

the surfaces would interact as desired. A more abstract representation for gears avoids

the need for the gear to be drawn accurately.

Definition 41 (Gear): A Gear is a member of the set of objects which are gears.

 70

Additionally, for convenience the system assumes the origin of rotation for a gear is

its center, unless another origin is given.

When two gears interlock to rotate against one another, they are enmeshed. For

sketched input, we infer enmeshment based on contact alone, rather than based on the

geometry of the shapes.

Definition 42 (Enmeshed): enmeshed(g1,g2) is true when the teeth of gear 1 are

interlocked with the teeth of gear 2.

 Gears transfer rotational constraints to their enmeshed neighbors.

Definition 43 (Constraint Transfer through Enmeshment):

rotConstraint(g1,rv) is true when:

 enmeshed(g1,g2) AND

 fixedAxisObject(g1) AND

 inverseVector(rv,rvi) AND

 rotConstraint(g2,rvi)

Similarly, enmeshed gears transfer torque to each other.

Definition 44 (Torque Transfer through Enmeshment):

torqueAppliedToObject(g1,rv) is true when:

 enmeshed(g1,g2) AND

 fixedAxisObject(g1) AND

 inverseVector(rv,rvi) AND

 torqueAppliedToObject(g2,rvi)

 71

An example is shown in Figure 26. A counterclockwise torque is applied to gear 1,

which causes an opposite torque on gear 2. Gear 2 is enmeshed with gear 3, so gear 3

receives a counterclockwise torque. The wheel is connected to gear 3, and thus receives

the same counterclockwise torque.

4.4 Cords

Cords represent rope, strings, or wires that can create taut connections between objects.

These connections can transfer force and constraint; unlike surface contact, cords pull

rather than push. Because the goal of Design Coach QM is to predict instantaneous

motion and a slack cord has no immediate effect on constraints or forces, we will focus

on the case where cords are taut. Detecting if a cord is slack or not is important to

understanding designs involving cords. Because the interesting case for QM is the taut

Figure 26: An example of a mechanism involving gears.

 72

case, that will be the focus of this work. Distinguishing slack cords from taut ones is

discussed in Chapter 8. Given they are always taut, it would simplify things if the

system could assume all cord connections produce the same constraint/force transfer;

however, tautness alone is not sufficient. For instance, if the cord is arranged tautly

around an object which is free to move in response to the force on the cord, the force

would move the intermediate object instead, leaving the fate of the object at the far end

ambiguous. To simplify things, the cord representation in Design Coach QM is

organized around handling two cases:

1. A taut cord connects two objects, and does not travel through or around any

objects such that the cord can pushed them away from itself. Since this

arrangement is similar to a kinematic pair, it will be referred to as a kinematic

cord connection.

2. A taut cord connects two objects, and there are one or more movable pulleys

between them.

 73

Figure 27 shows an illustration of both cases. The second case is limited to pulleys

because this includes all the cases in the mechanism corpus for this thesis. Generalizing

to objects other than pulleys will be discussed in future work (Section 8.2.2, pg. 175).

With these restrictions, the problem of finding the forces and constraints resulting from

cords becomes:

1. Identify the topology of the cord system.

2. Find any kinematic cord connections, and their forces/constraints

3. Find any movable pulleys, and their forces/constraints

The next sections describe the new object representations, cord system topology, and

force and constraint transfers for the two cases handled.

Figure 27: A sketch with a kinematic cord connection (left) and one with a

movable pulley (right).

 74

4.4.1 Cords and Pulleys

The following definitions form the representation for a cord system in Design Coach

QM. The first new category of object required is cords.

Definition 45 (Cords): A Cord4 is a thin, unstretchable length of substance similar in

behavior to a string, rope, or wire.

When a cord goes around a corner or a pulley, it forms two cord segments with different

directions. Determining the direction of the last length of cord is crucial to determining

how that cord affects the connected object. To enable this, the cord is divided into cord

segments.

Definition 46 (Cord Segments): A CordSegment is a portion of a Cord whose ends

are each either: where the cord terminates in an object, where the cord bends around a

corner, or where the cord enters a pulley.

4 For generality, the actual Cyc collection used is CordLikeArtifact. We use Cord in this
document for brevity.

Figure 28: The cord glyph is divided into two segments.

 75

We derive cord segments from the edges in the edge decomposition of glyphs labeled

Cord. An illustration is given in Figure 28. The algorithm for finding edges and their

connections will be described in Section 4.5.

 The final category of object required is the pulley.

Definition 47 (Pulleys): A Pulley is a RigidObject with one or more grooves for

Cords to travel around it.

At the level of the QM theory, the number of blocks is not limited. However, all the

pulleys presented in the mechanism corpus of this thesis take either one cord (i.e. the

pulley is a single block) or two cords (i.e. a double block). UI restrictions make it

challenging but not impossible to rig up larger blocks as explained in the next section.

4.4.2 Cord System Topology

 The following relationships describe the topology of cord systems. The first

relationship keeps track of which cord is the parent of a given segment. This is

determines which cord segments are part of a kinematic cord connection.

Definition 48 (Cord Segment of Cord): cordSegmentOf(cs,c) is true when cs

is a CordSegment that is part of Cord c.

 The end of a cord segment could connect to an object, or be the point where the

cord enters a sheave (one of the grooved slots) of a pulley.

 76

Definition 49 (Connected at End of Cord): connectedAtEnd(cs,o) is true

when one end of CordSegment c is connected to object o.

Definition 50 (Cord Segments Enter Pulley): cordSegEntersPulley(cs,p) is

true when one end of CordSegment cs enters Pulley p.

For both of the above relations, it is useful to know what direction the cord segment

enters or arrives at the object, giving us the following relationships.

Definition 51 (Direction to and from a Cord Connection):

qvFromCord(cs,o,tv) is true when: cs is connected to or enters object o from

the direction of translational vector tv. qvToCord(o,cs,tv) is true when cs is

connected to o and leaves it in the direction of translational vector tv.

 For pulleys, there are two other necessary topological facts. First, since a pulley

might have more than one sheave (and thus more than one cord), the following

relationship is used to keep track of which cord segments connect to each other inside a

sheave.

 77

Definition 52 (Cord Segments Connecting through a Pulley):

cordSegsConnectThroughPulley(cs1,cs2,p) is true when cs1 and cs2

are CordSegments of a single cord passing through Pulley p.

 Second, as the cord segments connect through a pulley, the cord wraps around

the sheave. If both ends of the cord were pulled and/or fixed, the cord would exert a

force (and/or confer a constraint) on the pulley. Therefore, the system needs to know

the direction from the cord to the pulley.

Definition 53 (Normal of Cord inside a Pulley):

normalOfInnerCord(p,cs1,cs2,tv) means cs1 and cs2 connect through

pulley p, and the direction from the cord inside p to the center of the p is tv. It is true

when:

 (qvToCord(p,cs1,tv) AND qvToCord(p,CS2,tv))

 OR (qvToCord(p,cs1,tv) AND qvToCord(p,cs2,tv2) AND

Figure 29: The segments of the left cord and right cord glyphs connect through
the pulley, despite the part of the cord inside the pulley not being drawn, and

the two cords being separate glyphs. (The system also concludes that the
bottom segment does not enter the pulley.)

 78

 rotate45(tv,tv2,rv) AND diagonal(tv))

 OR (qvToCord(p,cs1,tv1) AND qvToCord(p,cs2,tv2) AND

 rotate45(tv1,tv,rv1) AND rotate45(tv2,tv,rv2)

The above formula for determining the normal can be explained as: if the directions to

both cord segments is 0 or 90, the normal is the vector between them. Otherwise, it is

the diagonal vector between them. This way, normal can be determined even if the

interior cord is not drawn (Figure 29). Graphical examples are given in Figure 30. Note

that the normal is not defined for the case where the difference between the vectors is

greater than or equal to 180 degree, because in that case pulling the cord won’t affect

the pulley.

Figure 30: Examples of normal vectors of cords inside pulleys

 79

 With the aforementioned relationships available, the system can use the

following three relationships to find the kinematic cord connections and movable

pulleys. The first identifies when two cord segments are part of a larger cord.

Definition 54 (Same Cord): sameCord(cs1,cs2) means cord segments cs1 and

cs2 are both part of the same cord. This is true when:

 cordSegsConnectThroughPulley(cs1,cs2)

 OR (sameCord(cs1,cs3) AND sameCord(cs2,cs3))

For example, the two upper cord segments in Figure 29 are sameCord, but the bottom

cord is not. The second relationship identifies a cord connection.

Definition 55 (Cord Connection): cordConnection(o1,o2,cs1,cs2) means

objects o1 and o2 are connected at opposite ends of a cord and the connecting cord

segments are cs1 and cs2. It is true when:

 sameCord(cs1,cs2) AND

 connectedAtEnd(cs1,o1) AND

 connectedAtEnd(cs2,o2)

Note this cord connection relationship does not depend on what happens to the cord

between the two objects. If a movable pulley is present, then the connection is not a

kinematic cord connection. Thus, the third relationship the system needs to know is

when a movable pulley is on the cord.

Definition 56 (Movable Pulley on Cord): movablePulleyOnCord(cs,p) means

cs belongs to a cord which goes through p. It is true when:

 80

 sameCord(cs,csp) AND

 cordSegEntersPulley(csp,p) AND

 normalOfInnerCord(p,csp,csp2,dir) AND

 NOT sufficientlyConstrained(p,dir)

With these two relationships available, detecting a kinematic cord connection becomes

trivial.

Definition 57 (Kinematic Cord Connection):

kinematicCordConnection(o1,o2,cs1,cs2) means that o1 and o2 form a

kinematic pair through cord segments cs1 and cs2. It is true when:

 cordConnection(o1,o2,cs1,cs2) AND

 NOT movablePulleyOnCord(cs1,p)

The algorithm for deriving connectedAtEnd and cordSegmentEntersPulley

relationships from sketched input is discussed in Section 4.5.

 81

4.4.3 Effects of Kinematic Cord Connections

A kinematic cord connection between objects A and B creates the following effects:

1. If A is sufficiently constrained such that it cannot move in response to the cord

being pulled, then B is constrained from moving in directions that would pull the

cord.

2. If a force is applied to A such that the cord is pulled, then that force is applied to

B if B is not sufficiently constrained.

Figure 31: If the three sets of constraints hold for the wall (above) then the

three constraints hold for the ball (below).

 82

A kinematic cord connection may also create the following effects:

3. If a force is applied to A such that the cord is pulled, then that force may apply a

torque to B.

4. If A is sufficiently constrained such that it cannot move in response to the cord

being pulled, then it may create a new rotational origin for B.

5. A force applied to A may create a torque on A about the new rotational origin

(case 4) if B is sufficiently constrained.

The constrained directions for sufficient constraint at a cord connection are analogous to

those of surface contact:

1. Translational motion into the open half plane centered on the vector out along

the cord segment from the point of connection (i.e. the direction of the

qvToCord relation).

2. Rotational motion clockwise about any point which lies in the open half plane

centered ninety degrees clockwise from the vector out along the cord segment

from the point of connection.

3. Rotational motion counter-clockwise about any point which lies in the open half

plane centered ninety degrees counter-clockwise from the vector out along the

cord segment from the point of connection.

 As before, the first set of motions (the translational motions) are referred to as being

sufficiently constrained from translating. The second and third sets (rotational motions)

are sufficiently constrained from rotating. A kinematic cord connection to an object

 83

with the above three properties will prevent the motion of the connected object as

pictured in Figure 31.

 The next class of effects are the force transfers. Assuming object A is not

sufficiently constrained in the direction of the force, a force applied to A should have

the following consequences as pictured in Figure 32:

1. Create a force on B if B is not sufficiently constrained from translating

2. Create a torque on B, if B is not sufficiently constrained from rotating

3. Create a torque on A, if B is sufficiently constrained and A is free to rotate

 The remaining effect of a kinematic cord connection is a new rotational origin.

If the object does not already have a rotational origin given by the user, the center of the

junction at the far end of the object’s cord segment in the cord connection relationship

becomes its rotational origin (see the rightmost example in Figure 32).

Figure 32: The three possible force transfers for a kinematic cord connection.

 84

4.4.4 Force Transfer to Movable Pulleys

Movable pulleys may receive force from the cord that moves through them if one end of

that cord is pulled and another end is constrained or connected to the pulley itself. This

requires two new relationships not defined thus far. The first is the pulling of the cord.

The cord may be pulled by an assumed force or another segment of the cord through a

pulley.

Definition 58 (Force Assumed on a Cord Segment Directly):

forceAppliedToObject(cs,tv,src) means that CordSegment cs receives

a force in direction tv from source src. This is true when:

 forceAssumed(cs,tv,src) AND

 qvFromCord(cs,o,tv2) AND

 axisAligned(tv,tv2)

Definition 59 (Force Applied to a Cord Segment through Pulley):

forceAppliedToObject(cs,tv,src) is also true when:

 cordSegsConnectThroughPulley(cs,cs2,p) AND

 forceAppliedToObj(cs2,tv2,src) AND

 qvToCord(p,cs2,tv2) AND

 qvFromCord(cs,p,tv)

 85

Now that forces can be applied to the cord segments traveling through our movable

pulley, the last thing needed is a relationship to find out if the cord going through the

pulley terminates at a constrained point. For a non-ambiguous result, the terminus must

either be the pulley itself (as in a luff tackle configuration, see Figure 33) or another

object which is sufficiently constrained so that the pulley can be forced against it (see

the movable pulley in Figure 27 on pg. 73).

Definition 60 (Movable Pulley Cord Terminus):

movablePulleyCordTerminus(p,c,tms) means Cord c terminates travels

through pulley p and terminates at terminus. It is true when:

 cordSegsConnectThroughPulley(cs1,cs2,p) AND

 cordSegmentOf(cs1,c) AND

 cordSegmentOf(cs,c) AND ## find any cord segment of c

Figure 33: A luff tackle. The bottom pulley is movable.

 86

 connectedAtEnd(cs,o) AND

 (equal(o,p) OR

 (qvToCord(cs,o,tv) AND

 sufficientlyConstrained(o,tv)))

With one last definition, the pulley can be forced.

Definition 61 (Force Applied by Cord to Movable Pulley):

forceAppliedToObject(p,tv,src) means pulley p is being forced in

direction tv. This true when:

 normalOfInnerCord(p,cs1,cs2,tv) AND

 cordSegmentOf(cs2,c) AND

 movablePulleyCordTerminus(p,c,tms) AND

 forceAppliedToObj(cs1,tv1,src) AND

 qvToCord(p,cs1,tv1) AND

 NOT sufficientlyConstrained(p,tv)

Examples of Design Coach understanding pulley systems can be found in the evaluation

in Chapter 6. A contrast of this method for modeling rope and pulley systems with an

earlier method (Pearce, 2001) can be found in Chapter 7.

4.5 Cord Connection Analysis

As was the case for surface contact, cord topology knowledge must be derived from the

sketch. This is done by dividing the cord glyph into edges, which then become cord

 87

segments. For each cord segment which touches another object the system needs to

know if that segment should assert a connectedAtEnd or

cordSegEntersPulley relationship (or neither). This is done using a new pair of

relationships:

Definition 62 (Edge Contacts Tangentially):

edgeContactsTangentially(e,o) means edge e touches object o tangentially.

Definition 63 (Edge Contacts Non-Tangentially):

edgeContactsNonTangentially(e,o) means edge e touches object o non-

tangentially.

Figure 34 shows the edge contact relationships graphically. Once these have been

established, the topological facts can be derived simply: if a cord makes a non-

tangential contact, it creates a connectedAtEnd relationship. If a cord makes a

tangential contact with a pulley, then it creates a cordSegEntersPulley

Figure 34: The two types of edge contact relationships.

 88

relationship. Thus in Figure 34, the cords to the sides of the upper pulley will enter

it, while the cords above and below it will be connectedAtEnd to it.

 Figure 38 contains the algorithm for characterizing cord contacts. It takes as

input the cord glyph and a set of glyphs which contact it. The set of contacting glyphs

is the set of all glyphs representing physical objects that directly touch the cord glyph,

minus any glyphs that have a doesNotTouchDirectly relationship with the cord

glyph (this relation must be added by the user using a relation arrow). Figure 35 shows

a graphical example of which glyphs get picked.

 Next the surface contact decompositions are computed. Recall that surface

decompositions are created by inserting new junctions at points of contact with other

Figure 35: Choosing the set of contact glyphs. In this case, Block and Ball are

chosen because they directly touch cord. Wall is ignored because of the
“Does not directly touch” relationship, and the contact with the relationship

arrow itself is ignored because it does not represent a physical object.

 89

objects. This is demonstrated on the diagram to the right of Figure 36, where blocks

A and B have a new junction added where the cord touches them. For the surface

contact decompositions from the cord to the contacted glyphs, each contacted glyph

gets its own decomposition. For the reverse (from the objects to the cord)

decompositions, the new junctions are accumulated into a single joint decomposition for

the cord. This guarantees that the cord is partitioned into one set of edges by the

junctions. (If multiple separate decompositions of the cord were used, the same

portions of ink would get split different ways depending on the junction placement and

there would be no single common set of edges.)

 Once the glyphs are decomposed, the algorithm iterates through the pairs of

contact junctions. In the example in Figure 36, there are three such pairs: one between

the cord and A, one between the cord and B, and one between the cord and the Big

Block. For each cord edge entering the junction pair, the difference in angle is

calculated between the cord edge and the contacted exterior edges leaving the junction.

Figure 36: The cord is decomposed using surface contact against all three

contacting glyphs at once.

 90

For example, Figure 37 shows the junction pair between A and the cord. The cord

has one edge entering this junction, Edge-5. The exterior edges of Block A leaving that

junction are Edge-1 and Edge-2. To determine if Edge-5 meets Block A tangentially,

the difference in angles between Edge-5 and Edges 1 and 2 are computed in the

algorithm used in tangentialContact? (Figure 38) which checks if the difference in

angle between the cord’s edge and each of the axes of the contact edges is less than a

threshold. For this work 18 degrees was used based on previous perceptual models

created within CogSketch for salient angle differences (Lovett, 2012). By this criterion,

the contact of Edge-5 in Figure 38 with Block A is non-tangential, while the contact

with the corner of the big block is tangential.

 Once the tangentialness of each connection is established, connectedAtEnd

and cordSegmentEntersPulley relationships can be determined as discussed

earlier in this section, and the system can use that knowledge to reason out the topology

of the cord system.

Figure 37: A zoomed-in view of the connection between block A and the cord.

 91

 Three rules are used to determine which pair(s) of cord segment(s) connect

through a given pulley.

1. If there are only two cord segments which enter the pulley, they connect through

the pulley.

2. If two cord segments belong to the same cord, and they are the only two

belonging to that cord entering the pulley, they connect through the pulley.

3. If four cord segments enter a pulley, and one is from cord A, one is from cord B,

and two are from cord C, then the segment from cord A and the segment from

cord B connect through the pulley.

In Design Coach, if segments are part of the same glyph, then they belong to the same

cord. So with the above rules the user may connect any number of cord segments

through a pulley provided each pair belongs to a different glyph. Rule #3 only scales up

to four cords, so while QM can handle any number

cordSegmentsConnectThroughPulley expressions per pulley, with Design

Coach there is a soft two-cord maximum. This was sufficient because the examples

chosen for the mechanism corpus had at most two cords running through each pulley

(i.e. all were single or double blocks). We also do not detect impossible cord

arrangements, such as one cord segment having multiple

cordSegmentsConnectThroughPulley relationships in a single pulley.

 The next chapter will explain how these QM representations are used to give

feedback on engineering design sketches.

 92

1. characterizeEdgeContacts(CordGlyph,ContactingGlyphs):
2. EdgeRelations <- [] ##results
3. CordDecomp <- edgeDecomp(CordGlyph)
4. ContactingDecomps <- []
5. For Glyph in ContactingGlyphs:
6. ContactingDecomps.add(contactDecomp(
7. CordDecomp,edgeDecomp(Glyph)))
8. CordSurfDecomp <- contactDecomp(ContactingDecomps,Cord)
9. For Contactor in ContactingDecomps:
10. JunctionPairs <- contactJunctionPairs(Contactor, Cord)
11. For JPair in JunctionPairs:
12. ContactorEdgePair <-
13. edgesEnteringJunction(Contactor,JPair[0])
14. CordEdges <- edgesEnteringJunction(Contactor,JPair[1])
15. For CordEdge in CordEdges:
16. If tangentialContact?(CordEdge,ContactorEdgePair)
17. EdgeRelations.add(tangentialRel(CordEdge,
18. Contactor))
19. Else:
20. EdgeRelations.add(nonTangentialRel(CordEdge,
21. Contactor))
22. Return EdgeRelations
23.
24. tangentialContact?(CordEdge,ContactorEdgePair):
25. contactAngle1 <- angle(ContactorEdgePair[0])
26. contactAngle2 <- angle(ContactorEdgePair[1])
27. cordAngle <- angle(CordEdge)
28. CCWDiff <- mod(cordAngle-contactAngle1,360)
29. CWDiff <- mod(cordAngle-contactAngle2,360)
30. Return (or (and CCWDiff > 180-Thresh)
31. CWDiff > 180-Thresh))
32. (and CCWDiff < 180+Thresh)
33. CWDiff < 180+Thresh))

Figure 38: The algorithm for characterizing edge contacts.

 93

Chapter 5

CogSketch Design Coach

CogSketch Design Coach is a sketch-based educational software system which allows a

student to explain their engineering design using a combination of hand-drawn sketches

and structured language input, to get on-demand feedback on their explanation. This

chapter begins with an example of the system’s use and an overview of its architecture.

Next, we describe the user input and interface. Then we introduce the two algorithms

used to critique the sketch: state transition verification and sequential explanation

analysis. These are followed by a description of a teleological ontology which allows

the system to understand input concerning higher-level purposes of engineering designs.

The final section describes how the feedback is arranged and displayed to the user.

Figure 39: A basic overview of Design Coach

 94

5.1 Overview

As explained in Chapter 1, we created Design Coach to help first year engineering

design students improve their comfort and skill with sketching as a communication tool,

as well as a source of feedback on their designs. The following example demonstrates

the workflow of Design Coach.

5.1.1 Example

In a homework exercise, a student was asked to explain the design of a detachable cup

holder (depicted in the photograph in Figure 40) to Design Coach. (The exercise is

described further in Chapter 6.)

Figure 40: A photograph of the Under Armrest cup holder design

 95

After taking the Design Coach tutorials (which are built into CogSketch), the student

begins by drawing the parts of her design as glyphs (Figure 41)5. She starts by

sketching an orthographic projection of the side view, to keep the motion in a 2D plane.

She then adds conceptual labels and names to her glyphs, using the properties pane on

the right. She also adds a force arrow to indicate how the cup holder is removed.

5 This example is based on a sketch drawn by an anonymous first-year engineering student, but the steps
taken have been modified for this example. The original sketch can be found in the explanation corpus.

Figure 41: A student’s subsketch depicting the side view of the cup holder. The
student chose the “fixed object” and “rigid object” labels for the selected part.

 96

 She then shows Design Coach what should happen next by creating a comic

graph. She moves to the metalayer and clones her subsketch to create another state for

her design. Once inside her new subsketch, she moves the cup holder glyph to the right

to show that it detaches, then returns to the metalayer and adds a causes relation

arrow between the states, showing that the situation in the first subsketch causes the

situation in the second (Figure 42).

Figure 42: The metalayer after cloning the subsketch, editing it, and adding a

causes relation.

 97

 She then requests feedback using the button in the lower left (Figure 41).

Design Coach sees that the cup holder has been displaced to the right, but by using QM

it reasons that, in the first state, the cup holder is sufficiently constrained to its right

because of its contact with the attachment panel. Therefore, the Design Coach gives her

the following piece of feedback (shown in Figure 43): “To go from State 1 to State 2,

cupholder has to move to the right in the sketch, but it will not move!” By clicking the

small boxes next to the feedback, she can expand it to display the reasons behind it.

Design Coach would also like to know more about the sketch, so it prompts her to use

the Tell window to do so. She decides to address this feedback about motion first.

Figure 43: The student expands the second feedback item to reveal its

explanation. Selecting feedback highlights referenced parts of the sketch in
green.

 98

 Entering the subsketches again, she changes her sketch so that the cup holder is

removed vertically instead by repositioning it in the second state and rotating the force

arrow to point upwards in the first state. She then decides to address the other piece of

feedback, and tell the Design Coach about how the cup holder detaches from the base

and how it rotates.

Figure 44: The student revises the sketch

 99

 She opens the Tell window using the button on the lower right of the interface.

She adds two sentences, shown in Figure 45. She builds the sentences by selecting

words from the drop down boxes, which are populated with terms from her sketch and

the knowledge base. (The box at the top is for students to describe their design in

natural language for their instructors to read. We also read these boxes while

determining what new vocabulary might be added to the system.)

Figure 45: The student constructs sentences. Green check marks indicate that

no fields are left blank.

 100

 She presses the button to request feedback again. Design Coach processes the

sentences. The first sentence is about the detachment; Design Coach knows that for

detachment, the objects should start out attached and become separated. Design Coach

confirms this is happening by checking at the sketch, so it agrees (Figure 46). Also, this

time Design Coach sees that the cup holder has been displaced upward and uses QM to

confirm that it will move up.

 The second sentence says the cup holder is rotatable. Design Coach checks to

see if the cup holder is free to rotate. Since no origin of rotation was given, it chooses

the center of mass. The contact with the panel sufficiently constrains the cup holder

from rotating, so Design Coach responds with feedback saying that it cannot rotate.

Figure 46: Design Coach gives feedback on the new version with sentences.

 101

 The student decides to use another view where the cup holder will not be

constrained from rotating. She creates a new subsketch called Top View using the

button on the left panel and draws the top view. She then returns to the Tell window

and changes the context of her sentence from “In state 1” to “In top view” and finishes

the sentence. She hits the feedback button, and Design Coach checks the sketch again.

This time, every sentence proved to be true and the motion between state 1 and state 2

was also valid, so the system responds that the explanation made sense. (Figure 47)

Figure 47: Design Coach gives feedback on the third version.

 102

5.1.2 Architecture

 Design Coach is organized as shown in Figure 48. This diagram is organized

into four columns. The first column (on the far left of the diagram) is user input, which

includes the sketch and structured language input. The sketch informs the structured

language input because the sketch contains the objects the student will tell the system

about.

 The second column is the knowledge base, which includes Design Coach QM

and the teleological ontology. Design Coach QM was explained in Chapter 3 and

Chapter 4. The teleological ontology provides additional vocabulary for use in the

structured language input, with the goal of allowing Design Coach to understand and

give feedback on the function of the designs as well as their physical behavior. It will

be described in Section 5.5.

Figure 48: An overview of the architecture of Design Coach. Each arrow means

one subsystem is providing data to the other.

 103

 The third column from the left shows the feedback generators. The one at

the top, sketch tips, checks the sketch for user input errors such as disconnected

annotation or relation glyphs, forgetting to segment their ink into multiple glyphs, or

forgetting to include a fixed object to create a frame of reference. The middle box is

state transition verification, the first feedback algorithm created for Design Coach

(Wetzel & Forbus, 2009a, 2009b). State transition verification looks at the comic graph

on the metalayer and uses QM to see if the transitions in the graph make sense. The

third box is sequential explanation analysis, the newer feedback algorithm which uses

multimodal input (Wetzel & Forbus, 2010, 2012). It processes the structured language

input sentence by sentence and verifies if each sentence is proven, unproven, or

contradictory using QM and the sketched input. The two feedback algorithms will be

discussed in Sections 5.3 and 5.4, respectively.

 The final column is the feedback generation system, which organizes the

feedback and displays it to the user. A key feature is the structured explanation system

which allows the user to drill down into the feedback and see why the system provided

it. The knowledge representations for QM and the teleological ontology stored in the

KB include natural language strings which are used to convert the predicate calculus

statements into English (connection not shown in diagram). More detail is given in

Section 5.6.

 104

5.2 User Input

This section provides details on the input sources Design Coach uses: the CogSketch

interface and the structured language input.

5.2.1 Sketches

Design Coach sketches use a custom skin of the CogSketch interface making specific

conceptual labels available for the user. The types of available concepts are listed in

Table 1. All three types of glyphs (entity, relation, and annotation) are used in Design

Coach, as is the metalayer. Each subsketch is expected to have a single layer, therefore

the new layer control is hidden in the Design Coach skin. All other user interface

features remain available.

Concepts represented by all of the above labels have been discussed in previous

chapters except for one: Velcro. Velcro was added to accommodate more designs from

DTC. In the Design Coach ontology, it is a specialization of the collection

Table 1: Lists of Available Concepts in Design Coach Sketches

Glyph Type Available Labels
Entity Glyph Rigid Object, Fixed Object, Fixed Axis Object,

Spring, Compressed Thing, Stretched Thing,
Gear, Cord, Pulley, Velcro

Annotation
Glyph

Force Arrow, Rotational Force Arrow, Origin of Rotation

Relation
Glyph

Causes (metalayer), Directly Connected To,
Does Not Directly Touch

 105

AdhesiveMaterial. This concept is relevant in the teleological ontology,

which specifies that attachment can be attained using adhesive materials (see Section

5.5).

5.2.2 Structured Language Input

Language is a natural complement to sketching, in the context of communication. The

structured language input allows Design Coach to take advantage of multi-modal input

without waiting for advances in natural language understanding. In Design Coach,

students use the Tell window (Figure 45, pg. 99) to construct restricted sentences using

templates that can be rendered into understandable natural language. This structured

language and its input interface are based on a similar one used in an earlier system

Figure 49: The Structured Language Input

 106

from the Qualitative Reasoning Group, nuSketch Battlespace (Forbus et al., 2003).

The core structure of these constructed sentences is:

 In <context> <subject> <verb> <object>.

 An example simple sentence that would be true in our previous example (5.1.1)

would be “In State1 cup holder moves up.” Here <context> is the state (i.e. the

subsketch) being described. Once a subsketch is selected, the <subject> field is

populated with the names of entities represented by glyphs in the sketch. This includes

all entity glyphs and none of the annotations/relations. The <verb> field is populated

with concepts from QM and the teleological ontology (Table 1). The contents of the

<object> field vary depending on the selected verb. If none are available, the

<object> field will disappear completely. For instance, in the cup holder example

one sentence the student made was “In top view cup holder can rotate.” “Can rotate” is

one of the verb options that has no object field. For a list of which verbs allow which

object choices, see Table 2. The teleological verb phrases generate an additional

<way> field; this will be explained in Section 5.5. Because sentences may introduce

new forces or additional information about the types of objects, their order matters. The

student can use the green arrow buttons to the left of the sentence to quickly change the

order of their statements.

 107

 Sentences may either be simple or compound. To create a compound sentence,

the user clicks the blue arrow button and additional fields are revealed. Structurally, the

compound sentence is like joining two simple sentences together.

 In <context> <subject1> <verb1> <object1> <conjunct>

 <subject2> <verb2> <object2>.

The <context> is shared between the two conjuncts, but they are otherwise separate.

The <conjunct> can be either “which causes” or “which prevents”, allowing the user

to make causal statements such as “In state 1 cup holder is being forced up which

causes cup holder moves up”. Given the user’s choice for <verb1>, there may be

Table 2: List of verbs, and their available objects in the Tell window;
Italicized verbs are teleological.

Verb Available Objects
Moves Up, Down, Left, Right, Up and Left, Up and Right, Down and

Right, Down and Left
Rotates Clockwise, Counter Clockwise
Is being forced Up, Down, Left, Right, Up and Left, Up and Right, Down and

Right, Down and Left, Clockwise, Counter Clockwise
Is Rigid, fixed, compressed, stretched, springy, Velcro
Touches

List of entities in the subsketch

Attaches to
Detaches from
Adapts to
change in size of
Contains
Is made more
comfortable

None Does not move
Does not rotate
Can Move
Can Rotate

 108

some limitations on which verbs may be used for <verb2>, as well; these are

explained in Limitations and Future Work, Section 8.2.5.

 As sentences are completed, they are added as facts to the working memory of

the sketch. However, Design Coach does not immediately believe the facts in the

sentences. What it actually stores is a fact that says the student stated the fact. So in the

cup holder example the sentence, “In top view cup holder can rotate.” became a fact

like6:

 (studentSays (in-context State1 (rotatable CupHolder)))

It is then up to the Design Coach to decide if the fact should be assumed true or not. It

uses the feedback algorithm in Section 5.4 to do so, and then runs the following

algorithm to check the causal relationships implied by the relation arrows in the comic

graph (i.e. on the metalayer).

6 In this chapter facts will be formatted in Cyc-style predicate calculus for the benefit of any who want to
try the examples out in CogSketch and compare results in the knowledge browser. Note that some terms
are abbreviated for conciseness, e.g. ist-information.

 109

5.3 State Transition Verification

 The first feedback algorithm, state transition verification (STV), is depicted

graphically in Figure 50 and in pseudocode in Figure 51. The algorithm begins with a

pre-processing step, to ensure all of the surface contact knowledge and cord connection

knowledge needed for QM is updated. Then, the subsketch pairs are found by checking

working memory for the causes relationship created by the relation arrows on the

metalayer. In the example pictured in Figure 50, there are two transition pairs (our

student became even more ambitious), which are represented by the facts (causes

State1 State2) and (causes TopView TopView2).

Figure 50: A visual description of the state transition verification algorithm

 110

 Once the list of transition pairs has been made, state transition requirements

must be determined for each pair. The requirements are motion facts that would have to

hold for the objects to end up in their final positions, e.g. (transMotion

CupHolder1 Right). To determine if objects translated, deduceRequirements

first selects a glyph labeled FixedObject that is present in both subsketches. Then,

the relative position of each non-fixed object to that fixed object is computed between

the two subsketches. In the example in Figure 50 it is determined that the cup holder is

displaced to the right between the two subsketches, and the aforementioned fact

becomes stored as a state transition requirement for the pair.

 deduceRequirements uses a cognitive model of mental rotation (Lovett et al.,

2007) to determine if an object rotated. This model uses edge segmentation to find the

edges of the glyphs and then finds a mapping between the edges in two decompositions,

matching up their corresponding edges. This mapping is then used to calculate the

1. stateTransitionVerification(Sketch):
2. For Subsketch in Sketch.subsketches:
3. updateSurfaceContactKnowledge(Subsketch)
4. updateCordConnectionKnowledge(Subsketch)
5. Feedback <- []
6. For SubsketchPair in getTransitionPairs(Sketch):
7. For Requirement in deduceRequirements(SubsketchPair):
8. For Verification in verifyRequirements(Requirement):
9. If Verification == Requirement:
10. Feedback.add(recordSuccess(Requirement,
11. Verification))
12. Else:
13. Feedback.add(recordFailure(Requirement,
14. Verification))
15. Return Feedback

Figure 51: State transition verification algorithm, top level

 111

shortest angle of rotation between them. While this effectively creates an

assumption that objects always rotate through the shortest distance, in practice this has

not yet caused problems with any of the design explanations encountered.

 Returning to the example at the start of this subsection, the two requirements are

stored as facts in working memory:

(stateTransitionRequires State1 State2

 (translationalMotion CupHolder Right))

(stateTransitionRequires TopView TopView2

 (rotationalMotion CupHolder CW))

The next step, verifyRequirements, verifies that each requirement is met by using

QM to see if the predicted motion occurs. In this example, the system performs the

following queries to check the directions:

(translationalMotion CupHolder ?dir)

(rotationalMotion CupHolder ?rdir)

These are performed in the context of the first member of the pair, State1 and

TopView, respectively. The translational motion query will return ZeroQVector,

because again, the surface contact with the fixed base of the device prevents it from

moving. The rotational motion query will return ZeroRot, because there is no

rotational force acting on cup holder. (If you check, you’ll see there’s no force arrow.)

 When the result of the verification step does not match the requirement, it is

added to a new feedback item, which will be turned into the English statement like the

 112

one seen previously in Figure 43 (page 97): “To go from State 1 to State 2,

cupholder has to move to the right in the sketch, but it will not move!” Additionally it

would give feedback about the top view pair (pictured in Figure 50) too: “To go from

Top View to Top View 2, cupholder has to rotate clockwise in the sketch, but it will

not!” To address this feedback, the student could change the cup holder to be removed

vertically in both of the side view subsketches as done before, and add a rotational force

to the cup holder. After these changes, the results match the requirements, and no

feedback is generated by STV.

5.4 Sequential Explanation Analysis

Sequential explanation analysis (SEA) takes in a list of studentSays facts derived

from the structured language input (5.2.2) and proceeds through them sequentially,

checking to see if they can be proven true, can be proven contradictory, or are currently

unprovable. This checking is done by a set of verification routines, introduced in Figure

52.

 113

 Non-compound sentences are checked by the routine VerifySimpleFact.

Compound sentences are sent to VerifyCausesFact or

VerifiesPreventsFact depending on their conjunct. Given a fact, F, any of the

verification routines in this chapter will return one of three values:

1. (proven F)

2. (contradiction F C), where C is a fact representing the reason that F is

contradicted

3. (unproven F)

Figure 52: Sequential Explanation Analysis, Top Level: The facts representing the

sentences are sequentially passed to the appropriate verification routine.

 114

 verifySimpleFact passes F to one of four subroutines depending on the

relation F represents (Figure 53). For example, when our student in the cup holder

example told Design Coach that the cup holder can rotate in the side view, the

structured language input produced a fact like:

 (studentSays (in-context State1 (rotatable CupHolder)))

Since this fact is not one of the three special cases, it is handled by the default routine,

verifyAbsentNegativeFact, which assumes that a fact is negated if it cannot be

Figure 53: Sequential Explanation Analysis, verifySimpleFact:

Simple facts are proven according to the relation they represent.

 115

proven. Since QM cannot prove the Cup Holder is Rotatable, the routine returns

(contradiction rotatable(CupHolder) nil). A more ideal result would

be to fill this nil in with the missing facts, but the reasoning engine in CogSketch does

not store the justifications for why previous queries failed. Systems which do keep

track of this information could have the default verification routine fill in the reason

field of the contradiction fact at this point for later processing. In Design Coach, we use

the structured explanation system to provide the student with the appropriate details (see

Section 5.6, Feedback Generation).

 The third time the student requested feedback in our example, the context of the

sentence was changed to the top view, where the cup holder was no longer blocked

from rotating. In that case, QM concludes that the cup holder can rotate, and the routine

simply returns (proven rotatable(CupHolder)).

 Aside from the default, there are three fact-specific routines for Design Coach:

1. verifyIsAFact

2. verifyMotionFact

3. verifyForceFact

The first, verifyIsAFact, looks at facts of the form (isa <entity>

<label>). These facts mean that an entity belongs to the Cyc collection (a category

of things) specified by label. Entities may have multiple labels but the KB also includes

facts about which collections are disjoint, so this routine checks to see if the label in the

sentence fact is disjoint with any other labels believed about the object in working

 116

memory. If a disjoint label is found, a contradiction fact is produced and that

disjoint label included as the reason. If the labels are not disjoint, the result becomes a

proven fact regardless of whether or not it was believed before.

 The second routine, verifyMotionFact, uses QM to check and see if the

translation/rotation in the sentence is indeed the direction the object will travel.

Because motion queries are designed to always return one answer (including zero or

ambiguous), the result will either match the direction given in the sentence or not. If it

does, it is returned proven, and if it does not, a contradiction is returned with the

contrary motion fact QM. For example, if the student opened her sketch with the cup

holder moving up in state one and added a sentence that said “In state 1, the cup holder

moves down.” SEA would return a fact like:

 (contradiction

 (inContext State1 (translationalMotion CupHolder Down))

 (inContext State1 (translationalMotion CupHolder Up)))

 The third routine, verifyForceFact, also uses QM to check the fact.

However, since there may be any number of forces applied to an object, Design Coach

can accept the student’s statement as an unproven assumption rather than a

contradiction, so here the options are proven or unproven. The unproven fact will

prompt feedback asking for more detail, but the system will also assume the fact is true

until the student changes or removes the sentence. For example, if the student adds a

 117

sentence “In Top View, the cup holder is being forced clockwise.” the system

comes to believe a fact like:

 (inContext TopView (rotationalMotion CupHolder CW))

But it also stores a fact like:

 (unproven

 (inContext TopView (rotationalMotion CupHolder CW)))

The presence of this unproven fact produces a new feedback item: “Why is it the case

that cupholder is being forced clockwise in Top View?”

 Now that we have covered all of the cases in verifying simple sentences we turn

to compound ones. As noted before, compound sentences can be thought of as two

simple sentences with a conjunct in between them. They are represented as facts like:

 (studentSays (<conjunct> factA factB))

There are two verification routines for compound sentences, one for when the conjunct

is causes (Figure 54) and the other for when the conjunct is prevents (Figure 55). Both

procedures make use of verifySimpleFact to verify their individual clauses. Both

also verify their A (antecedent) clause first, since if this clause is false then the

statement is moot—an instant contradiction. If A is unproven, both assume A to be true

and proceed with their verification of their B (consequent) clause. From that point on,

the behavior of the two diverge.

 118

 For verifyCausesFact to prove that A causes B, it must show that B is true

and that B is true because A is true. If B is unproven or contradicted, then “A causes

B” is contradicted right away by that fact. In this case the contradiction/unproven fact

itself becomes the reason for the contradiction. Returning to the cup holder example

(Figure 47, pg. 101), consider the case where the student adds the sentence “In Top

View, cup holder is being forced clockwise which causes cup holder rotates

counterclockwise.” Because the antecedent is a force statement, and there are no force

Figure 54: Sequential Explanation Analysis, verifyCausesFact:

A causes B if both are proven and A justifies B.

 119

arrows in that subsketch, the antecedent is found unproven, and thus assumed true.

When SEA verifies the consequent, the clockwise torque applies to the cup holder.

However, since the student said that causes the cup holder to rotate counterclockwise,

the result is a contradiction. Therefore verifyCausesFact returns a fact like:

 (contradiction (causes

 (torqueAppliedToObject CupHolder CW

 ?source)

 (rotationalMotion CupHolder CCW))

 (contradiction (rotationalMotion CupHolder CCW)

 (rotationalMotion CupHolder CW)))7

However, if the antecedent had been another unproven fact, such as saying the

rotational force should cause an upward force, then the contradiction returned would

have the unproven fact as its reason instead.

 (contradiction (causes

 (torqueAppliedToObject CupHolder CW

 ?source)

 (forceAppliedToObject CupHolder Up

 ?source))

 (unproven (forceAppliedToObject CupHolder Up)))7

7 Context wrappers removed for clarity.

 120

Finally, if the consequent is true then there are still two more cases; either A caused

B or A didn’t cause B. SEA uses the reasoning engine’s facilities to check if A is a

logical antecedent of B. If it is, then it is proven that A causes B. If not, then the result

is a contradiction. There could be any number of reasons why B was true without A, so

B itself is added to the reason slot for the contradiction, leaving the calling system to

perform its own analysis of B’s antecedents to further explain the contradiction.

Figure 55: Sequential Explanation Analysis, verifyPreventsFact:

A prevents B if A is proven, B is contradicted by C, and C is justified by A.

 121

 verifyPreventsFact is somewhat analogous to

verifyCausesFact: A will be shown to prevent B if 1) A is proven, 2) B is

contradicted, and 3) the contradiction of B is justified by A. It proceeds identically to

the causes version of the routine up until the point after B has been verified; then there

are two main differences. First, the consequences for B being a contradiction and B

being proven are switched. If B is proven, that contradicts A preventing B. On the

other hand, if B is contradicted, then to prove A prevents B, A should play a role in

causing C, the immediate reason given for B’s prevention. (Naturally, if A = C, A

prevented B as well.) If A is not equal to or an antecedent of C, then (prevents A

B) is contradicted by the fact that C contradicts B instead of A or some consequent of

A. Again, (contradiction A C) is placed in the reason slot of the contradiction

so the calling system may sort it out.

 The second change from the causes version is that if B is unproven, then the

sentence is unproven rather than contradicted. This is because if A is true but it is

unclear why B is not proven, that signals a lack of knowledge, whereas in the causes

case it is clear that A didn’t cause B, or B would be proven. Thus the result is unproven

instead of a contradiction.

5.5 Teleological Ontology

Design explanations involve more than statements about mechanical behavior, so QM

knowledge alone could only take Design Coach so far. With a knowledge of function,

 122

i.e. teleology, the system can link the mechanical properties and behaviors it

understands to their purposes. The teleological ontology is an organized representation

of design function. The ideal is a teleology that will be domain-independent, useable

with future systems and any future Design Coach projects (e.g. electronic systems,

physical systems outside the current scope of Design Coach QM, etc.). This section

begins with a brief description of the ontology on which the teleology for Design Coach

is based, then describes the representations used in Design Coach and finally concludes

with details of the resulting options available to the user through structured language

input from this teleology, and how those options were selected.

5.5.1 Way-of-Function Ontology

After considering several alternatives (see Related Work, Section 7.2), the model of

ontology of device function developed by Kitamura et al. (2006) was selected as the

basis for the teleological representations in Design Coach. Kitamura’s work describes

artifacts using function decomposition trees, in which the goal function of a system is

recursively decomposed into a tree of method functions which, when performed,

achieve their parent goal. In these trees, parents are related to their child functions via a

type of relationship called a way-of-function-achievement, or a way for short. In their

ontology, each way has a list of generic functions which accomplish its goal. For

example, the Heat Water function can be achieved by a Heat Transfer way which

specifies two generic child functions: Transform Electricity to Heat and Give heat to

Water. The core concepts of function and way can be easily expressed and understood

 123

as English statements, and recursive nature of this ontology lends it to future

expansion, making it a good fit for Design Coach.

5.5.2 Teleological Representations of Design Coach

The core of this adaptation of way-of-function ontology are the following three

representations. The first is the concept of teleological function itself.

Definition 64 (Teleological Function): A TeleologicalFunction is a symbol

denoting a purpose a design may (seek to) accomplish.

 One example of a teleological function was in the example at the start of

chapter: the cup holder being detachable. The next concept is ways to achieve said

functions.

Definition 65 (Way of Achieving Function): A WayOfAchievingFunction is a

symbol denoting a way to achieve some TeleologicalFunction.

 An example of the ways of achieving the aforementioned detachment are

through de-interlocking the parts or disconnecting one or both of them from some

temporary adhesive.

Definition 66 (Function Achieved Via):

functionAchievedVia(tf,w,parts,contexts) is true when the members

of the list of entities, parts, achieve TeleologicalFunction tf through

WayOfAchieveingFunction w over the course of progression through the list of

states, contexts.

 124

 The student’s sentence was “In state 1 cup holder detaches from attachment

panel via interlocking/de-interlocking.” This translates into a fact like:

(studentsays

 (functionAchievedVia Detatchment-TF InterlockingPartsWay

 (TheList CupHolder Panel) (TheList state1)))

The full vocabulary of teleological functions and ways follows.

5.5.3 Functions and Ways

 As part of our classroom interventions (Section 6.2), students were asked to

submit feedback on Design Coach, including vocabulary they would like to be able to

use in the Tell window. Additionally, the students’ work submitted as part of the

interventions included adding novel refinements to the design, which introduced new

functions, or alternative means of achieving the original design goal. After collecting

feedback from students and instructors, we assembled the following collection of

functions and ways (Table 3) into the teleological ontology and added it to Design

Coach.

 125

 The teleological functions were added to the structured language input as verbs

(Table 2, pg. 107). For four of the five teleological functions, the language like input

looks like the kind of sentence discussed at the end of the previous section:

In <context> <subject> <Teleological-Function-Verb> <object>

via <Way-of-Achieving-Function>.

The one exception is the function for increasing comfort, where the object is simply

assumed to be the user of the device and is thereby omitted. When a teleological

sentence is constructed, facts are added of the form seen in the previous example.

(studentsays

 (functionAchievedVia <TeleologicalFunction>

 <WayOfAchievingFunction>

 <list of parts> <list of states>)))

We added rules to allow the system to prove these facts, so the verification routines of

SEA can simply query the reasoning engine to prove if they are true. These rules are

Table 3: Ways of Achieving Teleological Functions

Teleological Function Ways of Achieving Function

Attachment
Interlocking Parts
Adhesive Material
Temporary Adhesive Material

Detachment Interlocking Parts
Temporary Adhesive Material

Adapting in Size Adjustable Parts

Containment Enclosure
Prohibiting Downward Motion

Increased Comfort Change in Shape
Moving within Reach

 126

listed in Appendix A. functionAchievedVia is assumed to be negated if

absent, and thus falls under the default verification routine.

5.6 Feedback Generation

When the student presses the feedback button, the three feedback systems are engaged

in turn. SEA is run first, then STV, and then finally the sketch tips system.8 SEA is run

before STV so that STV can benefit from any new QM knowledge that was proven or

assumed from the structured language input. At the end, the sketch tips system searches

the sketch for user input mistakes such as disconnected annotations and relations (user

forgot to choose (a) target(s) for the glyph), subsketches with only one glyph (user

forgot to segment their ink), and subsketches connected by a causes arrow which lack

a common fixed object (necessary for STV). Each piece of feedback is added to a lisp

object which includes the English text string for display, the list of glyphs/edges to

highlight, and if relevant, the fact that prompted this feedback (e.g. an STV verification

or an SEA contradicts/unproven fact). If the source of the feedback was a fact, the

English text is rendered by a language generation system using templates stored in the

knowledge base and the namestrings given to entities by the user. Lastly, if no

feedback items are found, then the message “Ah that explanation makes sense. Thank

you.” is added to the feedback list instead.

8 Though the sketch tips system is run last, it is actually independent of the other two algorithms. We
also move the sketch tips to the top of the list of feedback displayed to the student, so they may fix their
input errors first.

 127

 The feedback items are then displayed in the feedback pane below the sketch as

shown in Figure 56 (see also Figure 43, Figure 46, and Figure 47 in Section 5.1.1). The

expanding tree structure is a structured explanation system similar to one used in

CyclePad (Forbus et al., 1999). We developed this to help Design Coach explain its

feedback to students, who sometimes could not figure out why Design Coach did not

understand their explanations. The structured explanation system is based on two sets

of knowledge: a set of axioms that define which facts warrant further explanation, and a

set of rules which determine which facts should be used to explain a given fact. The

former is used to determine if an item in the outline is expandable or not. The latter is

used when a student clicks on the icon to expand the feedback (lazy evaluation).

 The default rule for explaining a fact is to state any antecedents of that fact for

which the system has an English string template. (In other words, if you can’t say it,

don’t bother.) This works well when facts have justification involving QM facts; for

example in Figure 56 when the system is explaining why the fact that the net force on

Figure 56: A close-up view of the Design Coach feedback pane from Figure 43

 128

the cup holder is to the right, some forceAppliedToObject fact(s) will be its

antecedents, so the student can drill down into the net force fact to see where system

thinks the forces are coming from.

 However, in the case of a contradiction for a functionAchievedVia fact,

the fact was simply failed to be proved, and it is hard to deduce why. In the case of

teleological knowledge, facts have been added to the KB which give explicit

instructions on the requirements for the function to be achieved by the selected way.

Rules then specify that the teleological facts should expand to show those instructions.

For example, if the student removed the causes arrow from between State 1 and State

2 in the cup holder example, her sentence explaining the detachment would result in the

feedback shown in Figure 57. In other cases, rules are used to filter out redundant

information or skip unnecessary levels of detail.

Figure 57: Design Coach feedback for a teleological sentence

 129

Chapter 6

Evaluation

In this chapter, Design Coach is evaluated on three criterion.

1. The accuracy of Design Coach QM at predicting motion in a range of sketched

mechanisms (the mechanism corpus)

2. The accuracy of Design Coach at giving feedback on student's engineering

design explanations (the explanation corpus)

3. Impacts of a Design Coach classroom intervention on the education of

engineering students, including:

a. Effects on their self-reported anxiety and skill with sketching and

b. Correlation between success on design coach homework and overall

performance in the course.

c. Correlation between use of the feedback mechanism and performance of

explanatory tasks using Design Coach

The chapter begins with a description of the mechanism corpus evaluation, which

shows the breadth of mechanisms that Design Coach QM can understand. It continues

with a description of the interventions which created the sources of data for the second

and third criteria. The explanation corpus is evaluated next, showing how well the

Design Coach did at critiquing engineering design explanations from the intervention

 130

and describing the sources of its limitations. We conclude our evaluation with an

analysis of the three measures of impact on students.

 131

6.1 Mechanism Corpus

Table 4: Mechanism Corpus Sources and Features
(sketches and their descriptions can be found Appendix B)

Name Source Features Fig.

Book Holder DTC Preventing/Allowing
Translation Figure 73

Detachable Paint
Roller DTC Preventing/Allowing

Translation Figure 74

Mini Baja Go-
Cart DTC Rotation and Translation Figure 75

Double-Sided
Switch DTC Translation Figure 76

One-Handed Nail
Clipper DTC Multiple Springs Figure 78

One-Handed Egg
Cracker DTC Rotation and Translation Figure 79

Abdominal
Exerciser DTC Springs, Rotation Figure 80

Wheelchair
Stabilizer DTC Preventing/Allowing

Rotation Figure 81

Recliner DTC Springs, Rotation Figure 82
Under-Armrest
Rotatable Cup-
Holder

DTC Rotation and Translation Figure 83

Steering Wheel
Handle DTC Rotation Figure 84

Orthopedic
Trainer DTC Springs Figure 85

Runner (Block
and Tackle) Basic Machines Cords & Pulley Figure 86

Gun Tackle Basic Machines Cords & Pulleys Figure 87
Luff Tackle Basic Machines Cords & Pulleys Figure 88
Luff upon Luff Basic Machines Cords & Pulleys Figure 89
Spring Button Other Springs Figure 90
Gear Train Other Gears Figure 91

 132

 Table 4 lists the designs in the mechanism corpus. Figures for each design

in the corpus can be found in Appendix B. This first twelve designs come from the

Design Thinking and Communication Course at Northwestern. Nine of these come

from the original group of mechanisms surveyed as we started the project (Wetzel &

Forbus, 2009b), and three come from projects selected by instructors for use in our

classroom interventions (see the next section). The final pair were created for

demonstration purposes, and as of this writing, are included with the CogSketch

executable. Together, the designs in this corpus cover a variety of mechanisms,

including all aspects of QM: transference of constraint and of force, translational and

rotational motion, springs, gears, cords, and pulleys. For each design a sketch was

created and the translation and rotation of each rigid object in the sketch was queried

with Design Coach QM.

Figure 58: The Dynamic Dropper Design, an Orthopedic Device

 133

 For example, Figure 58 shows the Dynamic Dropper Design from DTC,

which helps patients with spinal cord injuries avert rapid decline in bone mineral

density by allowing them to experience muscle activity. In response to gravity acting

on the foot, the mechanism descends. When it can no longer fall straight down, the

hinged platform rotates clockwise, and with it the shoe. Finally the springs exert a force

upward to send the platform back up.

 In summary, Design Coach is able to predict the motion of a variety of

mechanisms within a 2D plane. Mechanisms which move in three dimensions will be

discussed in future work.

6.2 Design Coach In-Class Interventions

Over the course of a five-quarter series of pilot pull-out studies, the first version of

Design Coach, Design Buddy, was developed (Wetzel & Forbus, 2008, 2009a, 2009b,

2010) for Northwestern University’s Design Thinking and Communication course

(formerly known as Engineering Design and Communication). The first in-class

interventions took place in the fall 2011 and winter 2012. A small pullout study was

performed in the spring of 2012, followed by three more interventions in fall 2012,

winter 2012, and fall 2013. All interventions took the form of a mandatory homework

assignment, which was developed in collaboration with instructors of the course.

 Before each quarter, instructors were recruited to try the intervention in their

section. In DTC, instructors are paired up and assigned to one or more sections of about

 134

16 students, so the pool of students which received the homework assignment was

determined by which instructors volunteered. The average number was about two

sections per quarter, or 32 students. Each quarter the homework assignment was given

at a time of the instructors’ choosing, and students were given one week to complete the

assignment (extensions were allowed upon request). For the final three quarters,

students were also given an opportunity to take an online survey on their anxiety and

skill with sketching before and after the assignment. The details and results from the

survey are given in Section 6.4.1.

 The homework assignment consisted of three parts:

1. Complete the in-program Design Coach Tutorials.

2. Explain a given design from a previous quarter to Design Coach using a sketch

and sentences entered through the Tell window.

3. Think of one refinement for the design in part 2, and explain the refined version

to Design Coach.

The homework assignment also asked the students to write an explanation in English

for their instructor in the box at the top of the Tell window, and to share their own

feedback about Design Buddy/Coach in the notes window. The first design chosen was

a rotating cup holder (Figure 83), primarily because it involved motions in two separate

planes without requiring 3D. Additional designs were tried, including the Gamma

Handle (Figure 84) and Dynamic Dropper (Figure 85) in the Spring 2012 pilot, and the

Gamma Handle in section 5 of the Fall 2012 intervention, but in the end it was decided

 135

to stick to one design (the cup holder) to lower the number of variables. For more

details, copies of a homework assignment handouts have been included in Appendix C.

 In the first quarter (Fall 2011) there was an additional part between steps two

and three, where students were told to give Design Coach an explanation of how the

design was used in a new context of the students choosing. It was removed after the

first quarter to shorten the overall length of the assignment after feedback from students

convinced us it was too long. As a result of the shortening of the assignment, in fall

2011, students were asked to create three files (one for each sketched explanation),

while the remaining quarters they were asked for two. These submitted files form the

explanation corpus.

6.3 Explanation Corpus

 The explanation corpus contains 240 sketched explanations (sketch files),

Table 5: Explanation Corpus Sources

Quarter Section # of Sketched Explanations # of Students
Submitting

Fall 2011 6 60 22
Winter 2012 10 26 14
Winter 2012 16 24 12
Spring 2012 N/A 4 2
Fall 2012 4 27 14
Fall 2012 5 31 16
Winter 2013 8 21 11
Fall 2013 3 27 13
Fall 2013 12 20 11
Totals N/A 240 115

 136

submitted by 115 students. A breakdown of the source by quarter and section

number is given in Table 5. To evaluate the explanation corpus, each sketched

explanation was opened and feedback was requested from Design Coach. When older

sketches had their sentences removed due to changes in the vocabulary of our structured

language input, these we re-entered where applicable using the newest vocabulary

(presented in 5.2.2) before testing. The ink of the sketches was not modified. Each

feedback item was then manually inspected and valid feedback was added to the gold

standard. If a piece of valid feedback should have been present but was missing or

replaced with an invalid feedback item, the missing valid item was also added to the

gold standard. Each sketched explanation was then checked again against the gold

standard to create a list of missing and invalid feedback. Instances of errant feedback

were then tallied by inspecting the lists and removing duplicates generated by errors

with double-entries. For example, if the correct feedback was “Cup holder moves right

in the sketch, but it will actually move up!” and the system returned “Cup holder moves

right in the sketch, but it will actually move down!”, the former is added to the missing

list while the latter is added to the invalid list—two entries for one error. If the system

generated no feedback at all for this fact, then the former would be added to the missing

list and no addition would be made to the invalid list. Thus when tallying the feedback

we ignored errors that are duplicates from the other column. This was done separately

for the STV and for the SEA feedback. All errant feedback from the sketch tips system

was fixed during debugging, leaving no errors to present here.

 137

 35 out of the 240 sketches in the corpus have at least one instance of missing

or invalid feedback. Table 6 shows the error rates for both feedback generation

algorithms separately. The number of valid feedback responses includes counting cases

where the correct response was to give no feedback (i.e. SEA in response to a correct

sentence, STV when objects move as depicted between state transitions).

Table 6: Error Rates for Feedback Algorithms

Feedback
Source

Number of
Valid Feedback

Responses
Number of

Invalid Feedback Responses
Error

%
STV 197 28 12%
SEA 627 39 5.9%
Total 824 67 8.1%

Figure 59: Overall feedback error rates for STV and SEA published in Wetzel
& Forbus (2012) (STV = 23.5%, SEA=14.3%) vs running on the explanation

corpus in 2014 (STV = 12.4%, SEA = 5.85%)

0%

5%

10%

15%

20%

25%

STV SEA

Er
ro

r R
at

e

Feedback Source Algorithm and Year

2012 2014

 138

The error rate for both algorithms has decreased from when the teleological

ontology and structured explanation systems were first added (Wetzel & Forbus, 2012).

The corpus for the original experiment was the fall 2011 and winter 2012 data.

 The invalid feedback consists of extra feedback (false negatives) and missing

feedback (false positives). These are shown in Table 7. As explained in the previous

section, the sketches in this corpus are from three designs used with a classroom

intervention with Design Coach. The breakdown of sketch types and error rates is listed

in Table 8.

Table 7: Precision and Recall of Feedback Algorithms

Feedback
Source

Number of Missing
Feedback Items

Number of
Extra Feedback Items Precision Recall

STV 26 2 99.0% 88.3%
SEA 3 36 94.6% 99.5%
Total 29 38 95.6% 96.6%

Table 8: Breakdown of Explanation Corpus by Design

Design

Number of
Sections Which

Used Design

Number of
Sketch Files

Received

Number of Files
with Incorrect

Feedback

% with
Incorrect
Feedback

Cup Holder 5 205 38 18.5%
Gamma
Handle 1 (+ pullouts) 33 2 6%

Dynamic
Dropper

0 (pullouts
only) 2 1 50%

Total N/A 240 41 17.1%

 139

The sources of the feedback errors are shown in Table 9. The following subsections

will describe the errors found and their causes.

6.3.1 Surface Contact

Surface contact errors have the highest incidence rate, affecting 22 of the 35 sketch files

collected with incorrect feedback, see Table 9. We find that these errors are caused by

one of three circumstances:

1. Objects drawn overlapping in 3D or drawn in perspective

2. A low threshold for the minimum distance needed for contact

3. False positives due to students drawing messy ink strokes or stick figures

The number of sketches with each type of error is given in Table 10.

Table 9: Sources of Error for Explanation Corpus Sketches

Feedback Error Source Number of Sketches

Surface Contact 28

Sentence Critiquing 6

touchesDirectly Detection 5

Translation Detection 3

Arrow Recognition 3

Rotation Detection 2

Other 1

 140

The most frequent complication involved in surface contact errors were from objects

overlapping in three dimensions. For example, in Figure 60, the algorithm detects a

contact between the cup holder and the arm (see also Figure 64). This problem is

discussed in Section 8.2.1.

Table 10: Number of Sketches with Surface Contact Errors by Type
(Note: some sketches contained more than one type of error)

Surface Contact Error Type Number of Sketches

False Positive from 3D 17

Messy Drawing/Stick Figure 9

Bad Threshold Values 7

Figure 60: A surface contact causes the system to conclude that the rotation is

blocked.

 141

Also visible in Figure 60 is the second source of errors, low thresholds. The gap

between the two edges is so large that even if the surfaces were in the same plane they

should not be blocked. Another example of this is given in Figure 61.

In this case, the system finds that the junctions at the end points of the highlighted edges

intersect each other, so the cup holder cannot move into the open half plane of left.

However, the normal of the right most edge of the cup holder is over the threshold for

pointing Quad1, preventing the cup holder from moving straight up as well. Therefore

Figure 61: A surface contact causes the system to conclude that the motion is

blocked.

 142

Design Coach perceives it to be stuck. Solutions to the issues involving thresholds

are discussed in Section 8.2.3.

 The third type of problem was feedback resulting from surface contacts found

(or not found) as a result of messy ink, such as in Figure 62 and Figure 63. While these

errors raise important questions about sketch understanding, including how to find the

abstract representation of an object with a messy texture, they are considered outside the

scope of this work. We do employ a limited scribble fill detection to eliminate excess

edges from the initial decompositions created at the start of the surface contact detection

algorithm, but its effectiveness is limited (see Figure 63).

Figure 62: An example of a messy drawing.

 143

6.3.2 Sentence Critiquing

While the structured input language is designed to only allow the student to input valid

statements, in some cases the student’s statements carried more meaning than the

system gave them. Examples of this included moves-causes-moves sentences,

discussed in 8.2.5. Other examples included:

Figure 63: An example of our scribble fill detection

 144

• “In State 2 Velcro strips 1 touches Velcro Strips 2 which causes Cup holder

arm is being forced up”

This statement was interesting because in the real world, force could get transferred

through such a connection. However, we do not assume Velcro implies a

connectedTo-Directly relationship, because sometimes the students may want to

apply a force to separate the Velcro, and connectedTo-Directly our definition

implies that the objects will remain together in the specified state.

• “You assert that rotating cupholder is being forced downwards which causes

rotating cupholder rotates clockwise in State 1 but it’s false that rotating

cupholder rotates clockwise.”

Figure 64: A cup holder drawn in perspective

 145

This statement accompanied the drawing in Figure 64 sketched from an oblique

perspective; the student probably wanted to say “forced clockwise” instead, but that was

not available vocabulary at the time—this example was from the very first quarter. A

surface contact found with the adjacent edge of the under armrest extension prevents

Design Coach from thinking it will rotate regardless. An alternative approach to giving

feedback on perspective is described in Section 8.2.1.

• “You assert that spring is stretched thing which causes large not round cup

moves nowhere in State 2 but it’s false that large not round cup moves

nowhere.”

This last statement came from the design pictured in Figure 65. The sentence is logical,

because the spring will hold the clamps shut around the cup, preventing it from moving.

However there are two reasons Design Coach could not understand this; first, in Design

Figure 65: A cup holder which clamps the cup using a spring.

 146

Coach QM motion is inferred from forces, and to infer zero motion, there must be

zero force. The idea of a non-zero force causing a zero motion is outside of QM’s

model, because that entails the force acting over time, either statically as in this case or

against momentum. The second and related reason this could not be understood is that

Design Coach does not model quantities, including quantities of force. Drilling down

using the structured language interface reveals the explanation “large not round cup

moves in an ambiguous direction”. The opposing forces of the clamps have summed to

an ambiguous force. To address this limitation, adding quantities to Design Coach is

discussed in Section 8.2.2.

6.3.3 Detection of Other Spatial Relationships

The systems of detecting translation and rotation between subsketches (STV) both

caused a few incorrect pieces of feedback. In STV we assume that students copy and

paste their glyphs as instructed. For rotation detection, the weakness of our mental

Figure 66: A feedback error in STV (highlighted in the suggestion list)

 147

model of rotation is when the user edits the ink of one of the glyphs, getting a

perfect mapping between the edges becomes impossible, and the ability to calculate the

rotation of the shape deteriorates. For translation detection, examples like that in Figure

66 raise the question of what is the appropriate threshold; in this case the cup holder

moved just enough to the right for the system to decide that it moved Quad1, but to the

human eye it could easily be accepted as upwards motion. (The fact that actually it will

not move at all comes from the fact that there is no force arrow in state 1.) Similarly, a

few errors came from false positives in deriving the touchesDirectly relationship.

In the example pictured in Figure 67, CogSketch finds the cup holder and beam glyphs

to be RCC8 edge connected, and our rules use that to infer that they touch.

Thresholding is discussed further in Section 8.2.3.

 148

6.3.4 Other Error Sources

The final sources of errors involved arrows; in three sketches the head and/or tail of the

arrow were misinterpreted resulting in forces being applied in the wrong direction.

CogSketch helpfully overlays the arrow with another arrow indicating its interpretation

to prevent such mistakes, but the students did not always correct their arrows. In the

final undiscussed case (listed as Other in Table 9), the student somehow managed to

create a connectedTo-Directly relation arrow that also asserted a force. Because

these could not be corrected without modifying the students’ ink (or doing some

Figure 67: A feedback error caused by an incorrect topological relationship.

 149

hacking of the underlying representations) these sketches remain in the corpus as

they were found.

6.4 Impact on Students

One educational goal of the Design Coach project was to reduce students’ anxiety with

sketching. This section details the results of the anxiety measure of the intervention on

students.

6.4.1 Sketching Anxiety

When we met with DTC instructors at the start of this work, they convinced us that a

major problem for their students was anxiety about sketching. We hypothesized that it

might be analogous to math anxiety, a well-known phenomenon which Beilock et al.

(2010) have shown has harmful impact on math skills in different situations. To

attempt to measure sketching anxiety, I collaborated with a graduate student from

Beilock’s lab at the University of Chicago to design a measure for sketching anxiety,

based on their lab’s previous work.

 The measure design produced was a survey of questions about anxiety using a 5-

point Likert scale. DTC instructors gave us feedback on the questions and final

approval before giving the survey to their students. Our original survey included some

generic questions about sketching (which were eventually cut for length) and a second

set of questions about student’s self-perceived skill with sketching. Here we present an

 150

analysis of the questions which were relevant to sketching in the context of the

engineering design course.

In the past two weeks, how nervous would the following situation make you feel?

• Joining a group which put you in charge of sketching the design of their

engineering concept

• Getting an assignment asking you to draw an engineering design to scale

• Being asked to sketch an idea you have just suggested in brainstorming

• Being asked to draw an oblique view of a model

• Being asked to draw an orthographic projection of a model

Students ranked their anxiety for each item on a five point Likert scale using the

following values: Not at all, A little, A fair amount, Much, or Very Much. These were

then converted to scores of 0 to 4 and averaged to arrive at the student’s anxiety score.

The survey also contained other questions which were not part of this analysis. A full

copy of the survey questions can be found in Appendix D.

 Each quarter, the survey was made available online twice, as a pre-test and a

post-test to the Design Coach assignment. The survey was identical in both phases,

however timing varied because each quarter the instructors set a different schedule for

the assignment, and the survey must close and re-open around it. A link and invitation

to the survey were posted on course management system and sent in emails to the entire

course. Along with the questions, students were asked for their section number, which

was used to determine if they were in a section with the Design Coach group or not. If

 151

they were not, they were assigned to the control group. The number of students

surveyed are given in Table 11. The results for each quarter are shown in Figure 68,

Figure 69, and Figure 70.

 In the following figures the data was unpaired due to the low paired N. Alas,

students who filled out both the pre- and post-test surveys were rare. Because the data

is unpaired, a Wilcoxon rank sum test is used to calculate the P value. When

considering the timing information, it is helpful to know that the pre-test surveys were

posted in week 1 each quarter, and remained opened until the Design Coach assignment

was due. After that, the survey was closed and the post-test opened one week later.

Students were not required fill out the survey at any particular time within these

periods; it was completely optional, at the instructors’ request.

Table 11: Number of students who responded to survey in Design
Coach/Control group by quarter

Quarter Design Coach N= Control N=
Pre Post Pre Post

Fall 2012 16 21 30 16
Winter 2012 15 7 24 12
Fall 2013 17 14 91 27

 152

 In the fall quarter of 2012, the Design Coach group’s self-reported anxiety

dropped significantly, while the control group’s did not. During this quarter students

responded to the pre-test between the 3rd and 6th week, and the post-test after the 7th

week. The Design Coach assignment was due at the end of the 6th week. This quarter

was also the first quarter the Sketch Tips system of Design Coach had its complete set

of feedback. After this, no additional Sketch Tips were added.

Figure 68: Sketching Anxiety Survey Results, Fall 2012

DC: Npre=16, Npost=21, p= 0.043 Control: Npre=30, Npost=16, p=0.644

 153

 Unfortunately in the winter 2013 quarter there was only one section in the

Design Coach group, so the Ns were smaller. Students also filled out the pre-test

earlier, between the 1st and 4th weeks. The Design Coach assignment was due week 8.

They also filled out the survey later, starting in the 9th week. This quarter had the

lowest starting scores of the three. Additionally, this quarter was the first quarter where

Design Coach could highlight the contact surfaces for students as part of the feedback.

Figure 69: Sketching Anxiety Survey Results, Winter 2013

Design Coach: Npre=15, Npost=7, p=0.478 Control: Npre=24, Npost=12, p=0.211

 154

 In the fall 2013 quarter, there were two Design Coach sections again, and the

control group had a much higher participation rate than previously. Significant

decreases in anxiety were found in both groups, but the difference in change between

Design Coach and the control group was not significant. Students filled out the pre-test

between weeks 1 and 6. The Design Coach assignment was due Week 6. As in winter,

students began to fill out the post-test in week 9. This quarter had the highest mean

initial scores of the three for both conditions.

 Overall the Design Coach group achieved a significant decrease in two out of

the three quarters, while the control group only achieved a significant decrease in the

third quarter. In fact, the mean of the control group increased in the two previous

quarters, though the change was not significant in either case. There are many variables

to consider, including timing and the wide range of instruction styles and emphasis on

sketching throughout the different sections.

Figure 70: Sketching Anxiety Survey Results, Fall 2013

Design Coach: Npre=17, Npost=14, p= 0.026 Control: Npre=91, Npost=27, p= 0.004

 155

6.4.2 Course Performance

Another measure for the Design Coach intervention is to see if performance on the

homework assignment correlates with students’ performance in the course. When they

were first administered, each instructor was allowed to grade the assignment on their

own. To unify the scoring, a new rubric was created for the most often used version of

the Design Coach assignment, the rotating cup holder. The rubric for grading the

design worked as follows.

1. Explain rotation feature (up to 4 points)

o If student drew the cup holder rotating but not rotation/rotatable fact was

believed in the sketch’s working memory: 1 point

o If student drew rotated cup holder and the rotation/rotatable fact was

believed in the sketch’s working memory: 2 points

o If the student also gave any functional reason for the rotation (using the

structured language input), but not all facts involved in that sentence

were believed by Design Coach (i.e. proven in working memory): 3

points

o If the functional explanation was believed: 4 points

2. Explain how the base of the mechanism attaches to the armrest (up to 4 points)

o If student stated the parts were attached in the structured language input

but not all facts involved were believed, 2 points.

 156

o If student stated the parts were attached and Design Coach believed

it, 4 points

3. Explain how the cup holder part detaches from the base (up to 4 points)

o If student stated the cup holder detached from the base, but not all facts

involved were believed, 2 points.

o If student stated the cup holder detached from the base and Design

Coach believed it, 4 points

Credit was awarded to the student if they completed the task but Design Coach failed to

believe their explanation due to reasons other than student errors/omissions. Scores for

each quarter are included in Table 13 in the next subsection.

 Student’s graphics grades, their cumulative score for sketching and drafting

exercises, was available for the following Design Coach sections: two sections in

Winter 2012, one section in Fall 2012, one section in Winter 2013, and one section in

Fall 2013 (five sections total). Their cumulative score for the entire course (final

grades) were available for: two sections in winter 2012, one section in fall 2012, and

one section in winter 2013 (four sections total). The correlation between Design Coach

assignment scores and grades in the course were not significant for either type of grade

Table 12: Correlation between students’ scores on the Design Coach
assignments and grades in the Design

Grade Type N Correlation
Coefficient

Significant given
N?

Graphics Grade 61 0.036 n.s.
Final Grade 49 0.225 n.s.

 157

(Table 12). Looking at the grading data reveals that this is probably due to the fact

the grade data was letter grades, and the students mostly fell into a narrow range of

grades (B+ to A for final grades, B- to A for graphics grades). Plots of the grades vs the

scores are shown in Figure 71.

Figure 71: Plots of scores

 158

6.4.3 Effect of Feedback

Another interesting measure is the correlation between the number of times the students

requested feedback and their performance on the assignment is in Table 13.

 The correlation was consistently non-negative, and the overall positive

correlation after fall 2011 is significant. (Fall 2011 was not included in that sum

because the assignment was different that quarter; it had three parts and there was no

teleological ontology, so it automatically fails half of the rubric.) One possible

explanation for the drop and then increase in correlation starting in winter 2012 is that

the teleological ontology had just been introduced, but the structured explanation

system had yet not been created. Therefore, students may have been unable to figure

why their teleological sentences weren’t working regardless of the number of times they

requested feedback. (Some might also have given up on feedback more quickly,

resulting in the lower mean.) The consistent increase in score over the next three

Table 13: Correlation between scores on the Design Coach assignment and
number of times feedback was requested. Scores are out of 2 for fall 2011 and

12 for all subsequent quarters.

Quarter N

Mean # of
Feedback
Requests

Mean
Score Correlation

Coefficient
Significant
given N?

Fall 2011 23 8.5 1.26 / 2 0.38 P < 0.05
Winter 2012 26 6.6 3.60 / 12 0.04 n.s.
Fall 2012 14 10.6 4.61 / 12 0.38 n.s.
Winter 2013 11 15.9 5.63 / 12 0.31 n.s.
Fall 2013 24 12.8 6.56 / 12 0.40 P < 0.05

Totals
(Winter 2012-
Fall 2013 only)

75 10.7 5.03 / 12 0.38 P < 0.05

 159

quarters is also consistent with the presence of UI improvements, including an

expanding pool of structured explanations and sketch tips for common errors like

unattached relations/annotations.

 160

Chapter 7

Related Work

This chapter compares and contrasts this research with research on qualitative

mechanics, teleological ontology, sketch understanding, and intelligent tutoring

systems.

7.1 Qualitative Mechanics

Design Coach QM is based on the QM of Nielsen (1988), and introduced several

differences between the two. To summarize, in Design Coach QM:

• Force & torque transfers are explicitly represented at the level of each individual

object, as forces applied to said objects.

• Force & torques cause motion, but motion does not cause motion.

• Ambiguous vectors are represented.

• New algorithms provide means to extract the necessary qualitative

representations from freehand sketched input.

• Only contact surfaces are reified. The rest of the detail about the object is

preserved in the sketched input.

• In addition to rigid bodies, object representations have been added for springs,

gears, ropes, and pulleys.

 161

The shift of focus from the level of motion to the level of force produces a tradeoff

for the Design Coach; the advantage is that Design Coach can use the force

representations in explanations. The disadvantage is that statements like “A moves

because B moves” become non-trivial to prove because motion is never the antecedent

of another motion. This tradeoff is appropriate for the engineering design context

where a more detailed account based on forces is preferred. Stahovich et al.’s (1997)

Qualitative Rigid Body Mechanics also rooted the motions of objects in their respective

net forces, but it required contact surfaces to be identified manually.

 Pearce’s ARCHIMEDES system introduced a qualitative model of ropes,

pulleys, axels, levers, and gears (2001). ARCHIMEDES took in a list of the system’s

components and their interconnections in symbolic form as input. It then used rules to

determine how the system will move, either in a resting state (gravity is assumed) or

with external forces applied. These rules model parts with specific, constrained

connection points: gears, axles, levers, ropes, and pulleys. While both systems model

cords at the level of cord segments, ARCHIMEDES transfers forces along every

individual segment. Design Coach QM introduces the idea of a kinematic cord

connection, allowing forces to be propagated without reifying the force on each

individual cord segment. The model for pulleys is also significantly different between

the two systems. In ARCHIMEDES a simplified pulley model is used where the pulley

may only have four connection points with ropes (top, left, bottom, and right). While

the pulley may be rotated to any orientation desired, the model is restricted to at most

 162

one rope going through the pulley, and two ropes directly attaching the pulley to

other objects. In contrast, Design Coach QM can model any number of ropes going

through the pulley, and comfortably (from a user-input standpoint) accommodates

sketches with two ropes traveling through a pulley at once. With proper glyph

segmentation, any number of ropes may be used (see Section 4.5, Cord Connection

Analysis, on pg. 86). Finally, Design Coach QM works with sketched input whereas

ARCHIMEDES used symbolic input.

7.2 Teleological Ontologies for Engineering Design

 A number of ontologies have been proposed for teleology and design rationale.

As explained in Section 5.5.1 (pg. 122), Design Coach utilizes a way-of-function

ontology based off of the work of Kitamura et al. (2006). Kitamura et al. showed that

engineers at a semiconductor manufacturing plant could use their way-of-function

ontology to build their own catalogue of functional knowledge covering several kinds of

manufacturing tasks. However, in Design Coach the students are never directly

exposed to the ontology itself because the goal is for the students to explain their

design, not rather than organize a pool of designs.

 Two other teleologies we explored included diagrams as part of their

representation explicitly. Yaner and Goel (2007) proposed a five level Drawing-Shape-

Structure-Behavior-Function model for linking drawings in a diagram to teleological

function. In Design Coach, the representations generated by CogSketch are like their

 163

drawing, shape, and structure levels; the metalayer and qualitative mechanics are

similar to their behavior level; and the structured language input is similar to their

function level. Their work was designed for use in case-based reasoning, and so the

focus was on transferring models from previous cases into the current case rather than

critiquing an explanation. However, with QM, our system already was able to derive

behavior from the drawing without a case library, so all we needed was to add a

functional layer of description. Thus we opted for the way-of-function based ontology

instead.

 Wang and Kim (2007) created an ontology for supporting form-function

reasoning. Their representation combined the shape of an object with its proposed

generic functions. For example, all containers are assigned the function of limiting

downward motion of their contained substance. Such representations bake in

assumptions, such as gravity in this example. Given that CogSketch produces spatial

representations, we do opt to focus primarily on the functions of mechanisms which

involve spatial information, including containment. However, using the way-of-

function hierarchy allows us to also tackle non-spatial functions, like improving

comfort, by finding ways of achieving that function for which we have representations

(i.e. “moving it” and “changing its shape”).

 164

7.3 Structured Language Input

For collecting language-like input, Design Coach uses a structured language input

system directly derived from the intent dialogs of nuSketch Battlespace. The progenitor

of our interfaces was NLMENU, a menu-based natural language interface developed by

Thompson et al. (1983) as an easier way for users to construct queries for databases. A

semantic grammar, generated from a subset of the system’s data the user would be

interested in, is used to automatically generate a menu-based interface for the user to

input their query. The result is an interface that was both easy to use (the choices were

clear to the user via the menus) and robust (the generation process guaranteed that the

user’s selections would translate into valid queries). For Design Coach, we created a

core grammar from predicates and relations in the KB relevant to QM and our

teleological ontology. Most of the predicates were binary, so we arrived at a subject-

verb-object structure for our grammar. Like NLMENU, Design Coach ensures that the

student’s input produces well-formed input for critiquing.

 A knowledge acquisition interface developed by Blythe et al. (2001) combines

several techniques to allow a user to input data into an AI system using natural

language. The user may define new terms and quantities for the system to take into

account. While the structured language input to Design Coach does not yet facilitate

the addition of new concepts, the student may add new entities and information about

their properties (e.g. forces acting on them, connections between them) using the

 165

sketching interface. We have selected the grammar to complement the sketched

input, and its vocabulary is dynamically expanded as the user adds information to the

sketch.

.

7.4 Critiquing Explanations and Designs

Intelligent tutoring system creators may seek to use a student’s explanation for input to

help detect and/or diagnose misconceptions they have, or to help them improve their

communication ability. In the Belvedere system (Suthers et al., 2001) students

constructed arguments using a visual language and Belvedere critiqued those arguments

based on their structure. The feedback focused on the structure, ignoring the specific

content. In contrast, Design Coach brings QM (and categorical knowledge in the KB)

to bear on the content of the individual sentences and their meaning in the context of the

sketched input. While there is not a higher order structure to critique with our

structured language input, sentences may introduce new forces or additional

information about the types of objects, and thus their order matters. If the information

is given late in the explanation, the unproven or contradiction fact produce will cause

Design Coach to give feedback, and in response the student can change the order of

their sentences to improve their explanation.

 The Why2-Atlas system (Jordan et al., 2006) critiqued students’ natural language

solutions to qualitative physics problems. It used a combination of three competing

 166

analysis methods to create a first-order predicate logic representation of each

sentence. It then used an assumption-based truth maintenance system tailored

individually to the specific problems to diagnose errors. In contrast, Design Coach uses

a single larger model to address a range of designs students may try to explain.

 A variety of computer critiquing systems have been developed for other

domains including software engineering (Ali, Admodisastro, et al., 2013; Qiu &

Riesbeck, 2003), architecture (Oh et al., 2004), and furniture design (Oh et al., 2010).

One such system, Design Evaluator, utilized qualitative reasoning in the form of spatial

relationships and rules over sketched input to critique the design of floor plans and web

page layouts (2004). Unlike Design Coach, Design Evaluator did not take in any form

of language-like input. Oh et al.’s (2010) Furniture Design Critic used a set of pre-

defined constraints to critique sketched furniture designs. Its critique system also

maintained short-term and long-term models of the user which it used to adjust its

critiques over time.

 Ali et al. (2013) defined a taxonomy of computer-based critiquing tools. In their

taxonomy, Design Coach would belong to analytical critiquing family of approaches,

because it uses rules to detect problems in the user’s solution and guides the user away

from recognized problems. In contrast the other family of approaches they define,

comparative critiquing, uses a differential analyzer against its own solution, and then

guides the user to that known solution. Sketch Worksheets (Yin et al., 2010), an open-

 167

domain sketch-based educational software system (also built on CogSketch) would

belong to that family.

7.5 Sketch Recognition and Understanding

Sketch-based input systems have been created for tutoring systems in a variety of

domains, including chemistry (Cooper et al., 2009), circuits (de Silva et al., 2007;

Johnston & Alvarado, 2013), and physics. PhysicsBook (Cheema & LaViola, 2012)

uses a 2D physics engine to create animations from sketched input. Design Coach uses

QM instead of a numerical approach primarily because it needs to be able to understand

and critique the student’s explanation of the design and to be able to explain its own

reasoning to the student. Another reason we use QM is at the conceptual design stage,

the precise physical parameters are usually not available.

 Sketch-based systems have provided tutoring in the mechanical engineering

domain as well. Mechanix, a sketch-based tutoring system for statics courses

(Valentine et al., 2012), was used to create statics problems involving trusses, and then

guide students through them. Newton’s Pen II and Newton’s Tablet (Garcia, 2014; Lee

et al., 2011) guided undergraduate students through the construction of free body

diagrams and equilibrium equations. Students draw outlines over a background to

identify the bodies, then add force arrows to those bodies individually, and finally write

equations describing the situation they sketched. The system gives them feedback by

 168

checking their work against a predefined solution. These systems are limited to

specific lists of problems. These limitations exist in part because the sketch recognition

techniques used limit the range of understandable input. Trained recognizers limit the

user to a pre-defined set of symbols, while comparative systems require known

solutions. Newton’s Tablet uses the former for understanding handwritten equations

and arrows, and the latter to check if the student’s free body diagrams fit the boundaries

given in the problem description. Mechanix and Sketch Worksheets similarly check

input against that of an authored solution. A comparative system is inherently limited

to its bank of given solutions, and the breadth of that bank is limited by the flexibility of

the techniques used for comparison. Design Coach avoids the need for given solutions

by using a general physics model and algorithms (surface contact detection and cord

connection analysis) which will produce the input needed by that model.

 FEASY (Murugappan & Ramani, 2009) is a sketch-based computer aided

design tool for performing finite element analysis. The system was also trained to

recognize a set of finite element symbols which the user may draw in their sketch to

create regions of constraint, apply forces and more. Design Coach currently uses

labeling at the level of whole glyphs to create the initial sources of constraint (i.e.

FixedObject). However, adding the ability to label parts of glyphs (through a

combination of edge decomposition and the concept picker or recognition) could

provide the input needed for a future QM of deformable objects. FEASY is also limited

to the set of symbols it has been trained to identify, whereas CogSketch gives access to

 169

rich variety of concepts found in the knowledge base. Rather than using trained

classifiers over all the strokes in the sketch, Design Coach uses top down information

(i.e. glyph labels and user segmentation) to select the right targets, then uses human-like

visual processing to identify the relevant qualitative relationships (surface contact, cord

connection). While there are limitations to our techniques (see Section 8.2), they tend

to be at the level of spatial relations rather than recognizing symbols.

 170

Chapter 8

Conclusion

We have described a system for critiquing multimodal engineering design explanations

of mechanisms, Design Coach, which was deployed in an intervention in a first-year

undergraduate engineering design course at Northwestern University. Chapter 1

presented an overview of the claims and contributions. Chapter 2 provided background

information on the AI systems and theory used by Design Coach: CogSketch, our

sketch understanding system, and qualitative mechanics, a qualitative model of physics.

Chapters 3 introduced Design Coach QM, a new, force-centered version of QM for use

with sketched input and multi-modal explanations. Chapter 4 introduced extensions to

that QM, including algorithms for deriving important relationships from freehand

sketched input and representations for springs, gears, and cords. Chapter 5 detailed the

implementation of Design Coach, including its multimodal input, teleological ontology,

and algorithms for critiquing explanations and giving feedback. Design Coach was then

evaluated over two corpuses: one was a variety of mechanisms, and the other a set of

explanations produced by students during the classroom intervention. This evaluation

was described in chapter 6, along with a description of the intervention and its impacts

on students. Finally, chapter 7 discussed related work.

 171

 This chapter discusses our claims presented in Chapter 1 in light of

evaluation of this work. We close with a summary of the limitations of Design Coach

and future work.

8.1 Discussion of Claims and Contributions

The first claim of this thesis is:

1. Descriptions of mechanisms, specified multi-modally, using sketches and

restricted natural language, must be understood via qualitative reasoning.

To support this claim, we showed that by extending QM with new representations and

algorithms for interpreting sketched input, the system could achieve coverage of a

meaningful range of mechanisms, including mechanisms from an engineering design

course (Wetzel & Forbus, 2009b) and from a chapter on block and tackle mechanisms

in a textbook (6 examples out of 10 figures) (Basic Machines, 1994).

 Qualitative reasoning supports the ability of our system to understand in two

ways. First, our new algorithms for detecting surface contact and cord connections use

qualitative representations of the sketched input (e.g. perceptually salient edges and

junctions) to extract the necessary qualitative spatial relationships for QM. Second,

Design Coach uses QM to predict the mechanical behaviors of sketched mechanisms.

These qualitative representations are also instrumental in providing the critiques of

student’s design explanations, leading to the second claim of this thesis:

 172

2. The validity and clarity of an explanation of a mechanical design can be

evaluated using a combination of design teleology and qualitative reasoning.

To support this claim, we demonstrated the ability of Design Coach to critique multi-

modal explanations over a corpus of 240 sketched explanations created by engineering

design students with an accuracy rate of 92.9%. These critiques were done using two

new feedback algorithms which used QM, qualitative spatial reasoning, and a

teleological ontology to determine 1) if statements made about the mechanism were

true, contradictory, or unprovable, and 2) if the state transitions present in a comic

graph reflected the behavior of the mechanism over time.

 To summarize, the contributions of this thesis are:

1. New extensions to qualitative mechanics for use with sketched input, including a

force-centered model of rigid body mechanics and representations for springs,

gears, cords, and pulleys

2. Two new algorithms for extracting mechanical spatial relationships from

sketched input: surface contact detection and cord connection analysis

3. Two new algorithms for generating items for critique of engineering design

explanations: State Transition Verification and Sequential Explanation Analysis

4. A teleological ontology for representing higher level functions of designs

involving mechanisms in the context of a first-year undergraduate engineering

design course

Additionally, our classroom intervention resulted in the following contributions:

 173

5. A corpus of 240 multi-modal explanations from engineering design students.

6. Data from the results of a sketching anxiety survey, including the detection of a

significant decrease in anxiety in two out of three quarters in sections where the

Design Coach assignment was introduced and one out of three quarters in

control sections.

7. A finding of significant correlation between the amount of feedback requested

and performance on the Design Coach assignment.

8.2 Limitations and Future Work

 Our work with Design Coach reveals several areas that could be improved

through future research. Our initial survey of 39 past projects from the engineering

design course, revealed that about half of them (19) involved mechanisms. Adding

springs and gears enabled QM to be able to perform STV over descriptions covering 16

of these designs (Wetzel & Forbus, 2009b). Non-mechanical designs in the DTC

course include projects such as teddy bears that tell stories, a rooftop garden plaza for

the university’s student center, and an artificial whale stomach for training aquarium

veterinarians. Mechanical projects which involve motion and contact in three

dimensions are also difficult for Design Coach to understand, as are certain

combinations of structured language input. The following sections address these areas

of future research.

 174

8.2.1 Three-Dimensional Spatial Reasoning and Representations

 A number of designs encountered in the DTC class projects involved three-

dimensional spatial relationships beyond the current representations of our CogSketch

platform and QM implementation. Scaling up QM to three dimensions may be

relatively straightforward; the vector representation could easily accommodate

additional senses. However, determining 3D surface contacts from sketched input

appears to require additional information. Even with top and side views provided,

ambiguities about depth persisted, preventing us from being able to accurately derive

surface contacts based on the sketch alone. One approach would be to ask the user for

additional input about the 3D topology (e.g. using additional types of relation glyphs,

using the visual-conceptual relationship chooser interface in CogSketch, or by adding a

sentence like “The Cup Holder goes through the base.”) Our explanation corpus

includes 77 examples where matching labeled glyphs are drawn from at least two

different perspectives for future use.

 While students were instructed to use orthographic views, sometimes they drew

sketches from an isometric or perspective view. When orthographic views are required

by instructors, it would be helpful if Design Coach could identify when the student has

mistakenly used a non-orthographic view. Fortunately, it is possible to determine when

a sketch depicts a three-dimensional view by the presence of certain types of junctions

(Lovett et al., 2008). The next step would be to use this information to correctly judge

when a glyph is drawn in a three-dimensional view and give feedback to the student

 175

accurately. This will be complicated by students leaving in hidden lines (i.e. edges

which are present in the object but obscured in the current view).

8.2.2 Richer Qualitative Reasoning

 There are several areas where richer qualitative reasoning would improve

feedback and/or expand the range of designs. For one, by predicting only the

immediate motion of objects in the sketch, Design Coach encourages students to draw a

new state for every qualitative change in behavior. This is reasonable for simple

designs, but for complex ones we would prefer to let students leave out intermediate

states which might seem obvious to a human. Design Coach will need more qualitative

reasoning to fill in those missing states and evaluate when they make assumptions that

are inconsistent with a student’s explanation. A good starting point might be previous

work on configuration space, including Nielsen’s (1988) QM and Stahovich et al.’s

(1997) work with sketched input.

 Student design projects often incorporate quantities which change over time and

additional types of non-rigid materials, some of which also have quantity as a property

(e.g. fluids). Qualitative Process Theory (QPT) can be used to provide reasoning about

quantities (Forbus, 1984). Incorporating Qualitative Process Theory would also allow

for the understanding of concepts such as energy, momentum, and work. A QPT model

of mechanical advantage could also be introduced to allow critique of additional

teleological statements common to machines, such as “In State 1, a luff tackle system

makes it easier to lift barrel.” Models for the other machines such as levers, gear trains,

 176

axles, and differential hoists could also be added and analyzed using spatial

information in the sketch (e.g. relative length from fulcrum, relative difference in radii).

Kim’s bounded stuff ontology (Kim, 1993) would allow us to handle fluids. Kim’s

work also includes a model for linkages which would further extend the applicable

range of designs.

 The model of force in Design Coach QM could itself be enriched to allow for

gravity and friction to be applied by default. Currently gravity and friction often work

against other forces on an object, resulting in ambiguous force directions. By

considering the type of the source of the force (e.g. is it from the actuator of the

motion?) a system can disambiguate cases where a mechanism moves against gravity

and friction, while still taking into account their effects (Stahovich et al., 1997).

 Our model of cords currently does not include the transfer of forces from a cord

to an object that contacts its side, except for pulleys that cord runs through. The model

of ropes introduced by (Pearce, 2001) also lacks this feature. We hypothesize that,

given the normal of the cord to the object, force may be imparted in a way similar to

movable pulleys. Similarly, we lack a model for what happens to an object attached to

a cord at a location somewhere between the ends of a cord segment. Such a model

would allow the system to predict the motion of flags on a flag hoist and the yard and

stay tackle (Basic Machines, 1994).

 177

8.2.3 Improving Surface Contact Detection

 These threshold problems came from the fact that the choice to use the same

threshold that had been set based on the results of using CogSketch to develop cognitive

models of spatial reasoning, to arrive at a threshold for what a human would consider

connected. In the context of engineering design sketches, this first choice turned out to

be a bit too loose. The two thresholds that are important for determining surface contact

are the RCC8 tolerance, which determines how far apart edges and junctions must be to

be considered disconnected, and junction radius which determines how large junctions

are. In the example on the left of Figure 72, the RCC8 tolerance and junction radii are

such that three junction-junction contacts are made between the bag-of-chips glyph and

the holder. We would prefer for this to result in an edge-junction contact between the

right side edge of the bag-of-chips and the top right junction found in the holder.

Similarly, even though there is a gap between both pairs of edges of the two glyphs in

the example on the right of Figure 72, surface contacts are found. Cases like these are

the primary source of error in surface contact. We hypothesize that such errors might

Figure 72: Erroneous surface contact resulting from when tolerances are too

high.

 178

be avoided by altering the thresholds dynamically. Lovett (2012) uses various

techniques to vary thresholds, including using different thresholds between objects and

within objects, and degrading thresholds over space as they get further away along the

shape from a set reference point. Another, possibly complimentary, approach would be

to use dual thresholds, i.e. to have a separate threshold for contact and non-contact, and

let the more confident measure win out.

 Detection of inward contacts requires the shapes be closed. In order to handle

stick figures, the system could first be augmented to detect if a given edge is part of a

stick figure or not. To distinguish between a closed shape with an accidental gap and a

stick figure, we could a gap-detection algorithm to close the gaps in the initial edge

decompositions before proceeding with surface contact detection.

8.2.4 Classifying Taut and Slack Cords in Sketched Input

 In Chapter 4 we described a QM model for cord systems, such as ropes and

pulleys. Since slack cords do not affect the immediate motion of attached objects, we

ignored them in QM. However, designs involving cords may have states where the cord

is slack, therefore it will be useful to be able to detect if a sketched cord is taut or not.

One way to do this would be to use the edge decomposition routines used previously in

this work. Junctions are placed at perceptually salient points in a contour; if a junction

occurs in a contour and it does not contact another object on its concave side, then we

can assume there is a bend in the cord and classify it as slack. Similarly, if the edge is

curved and there is no object against its concave, then it is slack as well. If setting the

 179

thresholds for inserting junctions and detecting curves proves unworkable,

annotations glyphs modified to annotated edges could be used instead.

8.2.5 Improving the Range of Language Understanding

A more ideal way to use the system would entail speech recognition coupled with a full

natural language understanding system, but this is beyond the state of the art in those

areas currently. Further extensions would be useful to capture a broader range of

semantics. In the structured language of Design Coach, compound sentences take the

form “In <context>, <subject1> <verb1> <object1>, <conjunct>

<subject2> <verb2> <object2>.” In compound sentences, the choices for

<verb2> are also affected by the choice of <verb1>. This is because some

causes/prevents statements which might make sense to a human do not make

sense to the system. The two restrictions in Design Coach are:

1. Moves, rotates, and the teleological functions may only cause or prevent a

function. (e.g. “Hand moves up which causes Cup Holder moves up.”)

2. Touches may not be caused or prevented by any verb (e.g. “Cup Holder moves

down which causes Cup Holder touches base.”). It is simply omitted from

<verb2>.

These restrictions are due to the underlying representations and the way contradictions

are proven in compound statements (see Section 5.4, Sequential Explanation Analysis).

Because the contradiction facts come from an analysis of the system’s own justification

 180

trail, and because the system does not use moves, rotates, or teleological functions

in rules to prove the predicates behind the other verbs, some other logic must be added

to understand them. For other contradictions, we can use built-in responses in our

structured explanation system, like we do for explaining nil contradictions for

teleological statements. The above cases, however, are more complex.

 For the first case, we might want to reinterpret the statement such that the

ultimate cause of the statement is shared with the second. So, if the students says “In

State 1 Hand moves up which causes Cup Holder moves up.” the system could look up

the reason for Hand moving (i.e. a force) and then see if that force and the existence of

Hand play are in the justification for the Cup Holder. Similarly, the way-of-function

model is arranged such that functions are deduced from behaviors, not the other way

around. But if the system could re-represent the function as its behavioral causes, or if

more rules were added so that behaviors can be produced by some functions, e.g.

connectedTo-Directly could be deduced from teleological Attachment if the

way of achievement is PermamentAdhesiveMaterials.

 The second case is more subtle. touchesDirectly facts are derived from

visual analysis of the sketch, so for the sentence “In State 1 Cup Holder moves down

which causes Cup Holder touches base.” the moves fact cannot be used to justify the

cup holder touching the base. But this is technically correct because the context given

is a single state. What the student really needs to be able to say is “In State 1 Cup

Holder moves down which causes Cup Holder touches base in State 2.” Then,

 181

something like the logic in STV’s transition requirements (see Section 5.3) could be

added to determine if motion occurs between states that supports this statement being

true.

 Additionally, some statements we allow have multiple meanings in plain

English; for example if the student says “The cup holder does not move.” she may mean

the cup holder is not actively moving or that it cannot move at all. Future work is

needed to determine when such distinctions are important to the rest of the explanation

and to decide which interpretation should be critiqued and how.

182

Bibliography

Ali, N. M., Admodisastro, N., & Abdulkareem, S. M. (2013). An Educational Software
Design Critiquing Tool to Support Software Design Course. 2013 International
Conference on Advanced Computer Science Applications and Technologies, 31–
36. doi:10.1109/ACSAT.2013.14

Ali, N. M., Hosking, J., & Grundy, J. (2013). A Taxonomy and Mapping of Computer-
Based Critiquing Tools, 39(11), 1494–1520.

Basic Machines. (1994). Naval Education and Training Professional Development and
Technology Center.

Beilock, S. L., Gunderson, E. A., Ramirez, G., & Levine, S. C. (2010). Female teachers’
math anxiety affects girls' math achievement. Proceedings of the National
Academy of Sciences of the United States of America, 107(5), 1860–1863.

Blythe, J., Kim, J., Ramachandran, S., & Gil, Y. (2001). An integrated environment for
knowledge acquisition. In Proceedings of the 6th International Conference on
Intelligent User Interfaces. Santa Fe, NM.

Cheema, S., & LaViola, J. (2012). PhysicsBook: A Sketch-Based Interface for
Animating Physics Diagrams. In Proceedings of the 2012 ACM International
Conference on Intelligent User Interfaces (pp. 51–60). Libson, Portugal.

Cohn, A. (1996). Calculi for Qualitative Spatial Reasoning. Artificial Intelligence and
Symbolic Mathematical Computation, LNCS 1138, 124–143.

Cooper, M. M., Grove, N. P., Pargas, R., Bryfczynski, S. P., & Gatlin, T. (2009).
OrganicPad: an interactive freehand drawing application for drawing Lewis
structures and the development of skills in organic chemistry. Chemistry Education
Research and Practice, 10(4), 296. doi:10.1039/b920835f

De Silva, R., Bischel, D. T., Lee, W., Peterson, E. J., Calfee, R. C., & Stahovich, T. F.
(2007). Kirchhoff’s Pen: a pen-based circuit analysis tutor. In Proceedings of the
4th Eurographics workshop on Sketch-based interfaces and modeling (pp. 75–82).
San Diego, CA.

183

Forbus, K. D. (1984). Qualitative process theory. Artificial intelligence, 24, 84–169.

Forbus, K. D., Nielsen, P., & Faltings, B. (1991). Qualitative spatial reasoning: The
CLOCK project. Artificial Intelligence, 51(1-3), 417–471. doi:10.1016/0004-
3702(91)90116-2

Forbus, K. D., Whalley, P. B., Everett, J. O., Ureel, L., Brokowski, M., Baher, J., &
Kuehne, S. E. (1999). CyclePad: An articulate virtual laboratory for engineering
thermodynamics. Artificial Intelligence, 114(1-2), 297–347. doi:10.1016/S0004-
3702(99)00080-6

Forbus, K., Usher, J., & Chapman, V. (2003). Sketching for military courses of action
diagrams. In Proceedings of IUI’03 (pp. 61–68). Miami, Florida.

Forbus, K., Usher, J., Lovett, A., Lockwood, K., & Wetzel, J. (2011). CogSketch:
Sketch Understanding for Cognitive Science Research and for Education. (C.
Hölscher, T. F. Shipley, M. O. Belardinelli, J. A. Bateman, & N. Newcombe,
Eds.)Topics in Cognitive Science, 3(4), no–no. doi:10.1111/j.1756-
8765.2011.01149.x

Garcia, R. D. L. A. (2014). Intelligent Statics Tutoring Systems as Tools for
Undergraduate Mechanical Engineering Education. UC Riverside.

Johnston, D., & Alvarado, C. (2013). Sketch Recognition of Digital Logical Circuits.
University of California, San Diego.

Jordan, P., Makatchev, M., Pappuswamy, U., Vanlehn, K., & Albacete, P. (2006). A
Natural Language Tutorial Dialogue System for Physics. In Nineteenth
International Florida Artificial Intelligence Research Society Conference.
Melbourne Beach, Florida, USA: AAAI Press.

Kim, H. (1993). Qualitative reasoning about fluids and mechanics. Northwestern
University.

Kitamura, Y., Koji, Y., & Mizoguchi, R. (2006). An ontological model of device
function: industrial deployment and lessons learned. Applied Ontology, 1, 237–
262.

Lee, C., Stahovich, T., & Calfee, R. C. (2011). AC 2011-2252 : A PEN-BASED
STATICS TUTORING SYSTEM A Pen-Based Statics Tutoring System.

184

Lovett, A. (2012). Spatial Routines for Sketches: A Framework for Modeling Spatial
Problem-Solving. Northwestern University.

Lovett, A., Dehghani, M., & Forbus, K. (2006). Efficient learning of qualitative
descriptions for sketch recognition. In Proceedings of the 20th International
Qualitative Reasoning Workshop. Hanover, New Hampshire.

Lovett, A., Dehghani, M., & Forbus, K. (2008). Building and Comparing Qualitative
Descriptions of Three-Dimensional Design Sketches Comparison via Analogy. In
Proceedings of the 22nd International Qualitative Reasoning Workshop. Boulder,
CO.

Lovett, A., Forbus, K., & Usher, J. (2007). Using Qualitative Representations and
Analogical Mapping to Solve Problems from a Spatial Intelligence Test. In
Proceedings of the 21st International Qualitative Reasoning Workshop.
Aberystwyth, U.K.

Murugappan, S., & Ramani, K. (2009). FEASY: A Sketch-Based Interface Integrating
Structural Analysis in Early Design. In Proceedings of the ASME 2009
International Design Engineering Technical Conferences & Computers and
Information in Engineering Conference (pp. 1–10). San Diego, CA.

Nielsen, P. E. (1988). A Qualitative Approach to Rigid Body Mechanics. University of
Illinois at Urbana-Champaign.

Oh, Y., Do, E. Y.-L., & Gross, M. D. (2004). Intelligent critiquing of design sketches.
American Association for Artificial Intelligence Fall Symposium - Making Pen-
based Interaction Intelligent and Natural., 127–133.

Oh, Y., Gross, M. D., Ishizaki, S., & Do, E. Y.-L. (2010). A Constraint-Based Furniture
Design Critic. Research and Practice in Technology Enhanced Learning, 05(02),
97–122. doi:10.1142/S1793206810000864

Pearce, J. P. (2001). Qualitative Behavior Prediction for Simple Mechanical Systems.
Massachusetts Institute of Technology.

Plamondon, R., & Srihari, S. N. (2000). On-Line and Off-Line Handwriting
Recognition : A Comprehensive Survey. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 22(1), 63–84. doi:10.1109/34.824821

185

Qiu, L., & Riesbeck, C. K. (2003). Facilitating critiquing in education: The design and
implementation of the Java Critiquer. In Proceedings of the International
Conference on Computers in Education.

Stahovich, T., Davis, R., & Shrobe, H. (1997). Qualitative rigid-body mechanics. In
American Association for Artificial Intelligence (pp. 138–144).

Suthers, D., Connelly, J., Lesgold, A., Paolucci, M., Toth, E. E., & Weiner, A. (2001).
Representational and Advisory Guidance for Students Learning Scientific Inquiry.
In Smart Machines in Education: The Coming Revolution in Educational
Technology (pp. 7–35).

Thompson, C. W., Ross, K. M., Tennant, H. R., & Saenz, R. M. (1983). Building
Usable Menu-Based Natural Language Interfaces to Databases. In Proceedings of
the 9th International Conference on Very Large Data Bases (pp. 43–55).

Ullman, D. G., Wood, S., & Craig, D. (1990). The importance of drawing in the
mechanical design process. Computers & Graphics, 14(2), 263–274.
doi:10.1016/0097-8493(90)90037-X

Valentine, S., Vides, F., Lucchese, G., & Turner, D. (2012). Mechanix: A Sketch-Based
Tutoring System for Statics Courses. In 24th Annual Conference on Innovative
Applications of Artificial Intelligence (pp. 2253–2260). Toronto, Canada.

Wang, E., & Kim, Y. (2007). Form-Function Reasoning for Product Shape Ontology. In
Proceedings of the First International Workshop on Semantic Web and Web 2.0 in
Architectural, Product and Engineering Design. Busan, Korea.

Wetzel, J., & Forbus, K. (2008). Integrating Open-Domain Sketch Understanding with
Qualitative Two-Dimensional Rigid-Body Mechanics. In Proceedings of the 22nd
International Workshop on Qualitative Reasoning. Boulder, CO.

Wetzel, J., & Forbus, K. (2009a). Automated Critique of Sketched Mechanisms. In
Proceedings of the 21st Innovative Applications of Artificial Intelligence
Conference. Pasadena, CA.

Wetzel, J., & Forbus, K. (2009b). Automated Critique of Sketched Designs in
Engineering. In Proceedings of the 23rd International Workshop on Qualitative
Reasoning. Ljubljana, Slovenia.

186

Wetzel, J., & Forbus, K. (2010). Design Buddy: Providing Feedback for Sketched
Multi-Modal Causal Explanations. In Proceedings of the 24th International
Workshop on Qualitative Reasoning. Portland, Oregon.

Wetzel, J., & Forbus, K. (2012). Teleological representations for multimodal design
explanations. In Proceedings of the 26th International Workshop on Qualitative
Reasoning. Los Angeles, California.

Wobbrock, J. O., Wilson, A. D., & Li, Y. (2007). Gestures without libraries, toolkits or
training: a 1 recognizer for user interface prototypes. Proceedings of the 20th
annual ACM symposium on User interface software and technology UIST 07,
85(2), 159. doi:10.1145/1294211.1294238

Yaner, P. W., & Goel, A. (2007). Understanding Drawings by Compositional Analogy.
In International Joint Conference on Artificial Intelligence, IJCAI-2007 (pp. 1131–
1137).

Yin, P., Forbus, K. D., Usher, J., Sageman, B., & Jee, B. D. (2010). Sketch
Worksheets : A Sketch-based Educational Software System Background :
CogSketch. In Proceedings of the 22nd Annual Conference on Innovative
Applications of Artificial Intelligence. Atlanta, GA.

187

Appendix A

Rules for the Teleological Ontology

In response to student feedback, these rules were made as loose as possible.

Attachment Rules

(functionAchievedVia Attachment AdhesiveMaterials
 (TheList ?obj1 ?obj2 ?adhesive) (TheList ?context))
is true when:
 (and
 (in ?context (touches ?obj1 ?adhesive))
 (in ?context (touches ?obj2 ?adhesive))
 (isa ?adhesive AdhesiveMaterial))))

(functionAchievedVia Attachment TempAdhesiveMaterials
 (TheList ?obj1 ?obj2 ?adhesive) (TheList ?context))
is true when:
 (and
 (in ?context (touches ?obj1 ?adhesive))
 (in ?context (touches ?obj2 ?adhesive))
 (isa ?adhesive TempAdhesiveMaterial))))

(functionAchievedVia Attachment InterlockingParts
 (TheList ?obj1 ?obj2 ?adhesive) (TheList ?context))
is true when:
 (in ?context (touches ?obj1 ?obj2))

188

Detachment Rules
(functionAchievedVia Detachment TempAdhesiveMaterials
 (TheList ?obj1 ?obj2 ?adhesive) (TheList ?c1 ?c2))
is true when:
 (and
 (functionAchievedVia Attachment TempAdhesiveMaterials
 (TheList ?obj1 ?obj2 ?adhesive)) (TheList ?c1)))
 (in ?c2 (doesNotTouch ?obj1 ?obj2))
 (in ?c2 (doesNotTouch?obj1 ?adhesive))
 (in ?c2 (doesNotTouch?obj2 ?adhesive)))

(functionAchievedVia Detachment InterlockingParts
 (TheList ?obj1 ?obj2 ?adhesive) (TheList ?c1 ?c2))
 is true when:
 (and
 (functionAchievedVia Attachment InterlockingParts
 (TheList ?obj1 ?obj2)) (TheList ?c1)))
 (in ?c2 (doesNotTouch ?obj1 ?obj2)))

Adapts to Change in Size Rules
(functionAchievedVia AdaptInSize AdjustableParts
 (TheList ?base ?changingPart) (TheList ?c1 ?c2))
Is true when:
 (and
 (functionAchievedVia Attachment ?way
 (TheList ?base ?changingPart)) (TheList ?c1)))
 (functionAchievedVia Attachment ?way
 (TheList ?base ?changingPart)) (TheList ?c2)))
 (in ?c2 (movable ?base))

(functionAchievedVia AdaptInSize AdjustableParts
 (TheList ?base ?changingPart) (TheList ?c1 ?c2))

Containment Rules
(functionAchievedVia Containment Enclosure
 (TheList ?containedObj ?container) (TheList ?context))
Is true when:
 (or
 (in ?context (rcc8-TPP ?container ?containedObj))

189

 (in ?context (rcc8-NTPP ?container ?containedObj)))

(functionAchievedVia Containment ProhibitDownwardMotion
 (TheList ?containedObj ?container) (TheList ?context))
Is true when:
 (and
 (in ?context (transConstraint ?containedObj Down))
 (in ?context (transConstraint ?containedObj Quad3))
 (in ?context (transConstraint ?containedObj Quad4)))

Increase Comfort Rules
(functionAchievedVia IncreaseComfort ChangingShape
 (TheList ?changedPart) (TheList ?c1 ?c2))
Is true when:
 (differentInk ?changedPart ?c1 ?changedPart ?c2)

(functionAchievedVia IncreaseComfort MoveWithinReach
 (TheList ?part) (TheList ?context))
Is true when:
 (or
 (and (in ?context (transMotion ?part ?dir))
 (different ?dir ZeroQVector))
 (and (in ?context (rotMotion ?part ?rdir))
 (different ?rdir ZeroRotDir)))

190

Appendix B Mechanism Corpus Sketches

The following figures show screen captures of a few mechanisms drawn in CogSketch,

to demonstrate the range of mechanisms Design Coach QM can handle. In each sketch

QM was used to identify the direction of motion of every rigid object in the sketch

(translation and rotation). Blue arrows indicate the direction of each object’s motion.

Bent arrows indicate rotation, and an empty circle indicates zero translational motion.

(These arrows were drawn using the “Draw Next Motion” feature found in the Design

menu of CogSketch Design Coach.)

191

DTC Designs

Book Holder

The book holder project used page holders to hold the book open. In the sketch in

Figure 73, we draw the book holder from the bottom w.r.t. the book being held open.

We assumed a clockwise force acting on the page to represent the tendency of the page

to attempt to flip upwards. The page will rotate as long as the holder is not in place.

Figure 73: Book Holder

(The page is modeled as a RigidObject.)

192

Detachable Paint Roller

The detachable paint roller project allowed a paint roller to quickly be released from its

handle. Here we drew the roller from the end. In the first state, the stoppers prevent the

tube from moving down in response to gravity. The stoppers are pulled out of the way

via forces from another mechanism in the handle (not shown) and the tube is then free

to fall.

Figure 74: Releasing the Detachable Paint Roller

193

Mini Baja

The Mini Baja is a small 4-wheeled vehicle. Here we show how reactionary friction

forces applied to the wheels will cause them to move forward as they roll.

Double-Sided Switch

Figure 75: Mini Baja

Figure 76: Double-Sided Switch

194

This switch can be pressed from two different angles, connecting different sides of the

electrical contact inside.

One-Handed Nail Clipper

The One-Handed Nail Clipper allows a user to clip their nails with one hand by using

spring forces to actuate a nail clipper.

Figure 77: Picture of the One-Handed Nail Clipper Prototype

195

 Figure 78: One-Handed Nail Clipper sketch

196

Tobeggan

197

The Tobeggan allows a user to crack an edge with one hand; the contents of the egg

then move down a slide into a bowl.

Figure 79: Tobeggan (One-Handed Egg Cracker)

198

Abigator

The Abigator is a device for exercising ones abdominal muscles while seated or in a

wheel chair. Its parts rotate in response to the user leaning forward.

Figure 80: Abigator (Abdominal Exerciser)

199

Wheelchair Stabilizer

The Wheelchair Stabilizer allows a batter to swing without rotating their chair. Without

the blocks, the batter will rotate.

Recliner

Figure 81: Wheelchair Stabilizer (for playing baseball)

Figure 82: Recliner

200

The recliner uses rotates backwards in response to the user leaning back.

Under-Armrest Rotatable Cup Holder

The Under-Armrest Rotatable Cup Holder attaches to an armrest using Velcro, and the

cup holder part can rotate or be removed for easy washing.

Figure 83: Under-Armrest Rotatable Cup Holder

201

Gamma Handle

The Gamma Handle attaches to a steering wheel, allowing the user to apply force to it

to rotate the wheel instead applying force to the wheel directly.

Dynamic Dropper

Figure 84: Gamma Handle

Figure 85: Dynamic Dropper

202

The Dynamic Dropper is designed to allow patients with paralysis exercise their leg

muscles by simulating the motion of walking. The foot is attached by Velcro to a

hinged platform which is connected to a springy platform. As the foot steps down in

response to gravity, the platform moves down until the springy platform is in contact

with the base, then the hinged platform rotates. Once down, springs will cause the foot

to rise up again.

Basic Machines

The following four examples come from Chapter 3 of Basic Machines (#CITE 1994).

203

A Runner

A runner is used to lift objects with upward force, and consists of one movable pulley.

Figure 86: A Runner

204

Gun Tackle

A gun tackle lifts objects with a downward force, using one fixed and one movable

pulley.

Figure 87: Gun Tackle

205

Luff Tackle

A luff tackle uses a downward force to lift a weight with even more mechanical

advantage, while using the same number of mechanical pulleys.

Figure 88: Luff Tackle

206

Luff Upon Luff

A luff upon luff configuration uses two luff tackles connected together to get even more

mechanical advantage.

Other Examples

The following examples were created for further demonstration purposes.

Figure 89: Luff Upon Luff

207

Spring Button

In this spring-loaded button design, the user can press down the button to bridge two

electrical contacts. When they let go, the button pops back up into place.

Gear Train

Figure 90: Spring Button

Figure 91: Gear Train

208

In this gear train, gears transferring rotational torque in series and transfer it to the front

wheel.

Appendix C Design Coach Assignment Handouts

The following handouts are included:

• Under Armrest Cup Holder (3-part version; used Fall 2011)

• Dynamic Dropper (2-part version; used Spring 2012)

• Gamma Handle (2-part version; used Spring & Fall 2012)

• Under Armrest Cup Holder (2-part version; used Winter 2011, Fall 2012,

Winter 2013, and Fall 2013)

209

210

211

212

213

214

215

216

217

Appendix D

Sketching Anxiety Measure Questionnaire

The following is a reproduction of our sketching anxiety measure as it appeared on the

web in the fall quarter of 2013. Questions to part 2 (pictured here) were identical to

those of part 1).

218

(Survey continues on next page; it has been cut here to fit.)

	Chapter 1 Introduction
	Chapter 2 Background
	Chapter 3 Force-Centered Qualitative Mechanics
	Chapter 4 Extensions to Qualitative Mechanics
	4.3 Gears
	4.4 Cords
	4.5 Cord Connection Analysis

	Chapter 5 CogSketch Design Coach
	5.4 Sequential Explanation Analysis
	5.5 Teleological Ontology
	5.6 Feedback Generation

	Chapter 6 Evaluation
	Chapter 7 Related Work
	Chapter 8 Conclusion
	Appendix ARules for the Teleological Ontology
	Attachment Rules
	Detachment Rules
	Adapts to Change in Size Rules
	Containment Rules

	Appendix B Mechanism Corpus Sketches
	DTC Designs
	Book Holder
	Detachable Paint Roller
	Mini Baja
	Double-Sided Switch
	One-Handed Nail Clipper
	Tobeggan
	Abigator
	Wheelchair Stabilizer
	Recliner
	Under-Armrest Rotatable Cup Holder
	Gamma Handle
	Dynamic Dropper

	Basic Machines
	A Runner
	Gun Tackle
	Luff Tackle
	Luff Upon Luff

	Other Examples
	Spring Button
	Gear Train

	Appendix C Design Coach Assignment Handouts
	Appendix DSketching Anxiety Measure Questionnaire

