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ABSTRACT  

How mental representations are constructed and how they evolve are central problems for cognitive 

science. Representation decisions help determine what computations are hard or easy.  Structured, 

relational representations are a hallmark of human cognition.  Developmental studies show that 

children do not perform as well as adults in tasks that require noticing relational similarity.  What drives 

this development?  Gentner and her colleagues have argued that comparison and language are two 

forces driving this change.  This thesis explores these ideas further by presenting a computational model 

of forced choice tasks to illuminate the roles of comparison and language in driving representational 

change.  

The model simulates the following roles of comparison. First, comparison can be used to make 

selections in forced-choice tasks. Second, comparisons from recent positive experiences are assimilated 

as interim generalizations which are retrieved for subsequent tasks and influence encoding by 

highlighting relevant structure.  Third, comparisons suggest opportunities for re-representation. Finally, 

verifying candidate inferences resulting from a comparison provides a way to augment encodings with 

background knowledge, thus enriching representations. The model simulates the role of language in 

facilitating the creation and enrichment of generalizations as follows. When two objects are given the 

same label, the model compares them. This leads to an interim generalization associated with that label, 

enriched with commonalities from background knowledge.   

We tested these hypotheses by extending the Companion cognitive architecture and simulating 

three developmental studies.  To reduce tailorability, the visual stimuli were provided as sketches and 

the objects were labeled using simplified English. The model was evaluated by comparing its behavior 
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and learning trajectory to that of children in the developmental studies.  The performance of the model 

in the simulations provide evidence for the claims of this thesis.  
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Chapter 1: Introduction 

1.1 Motivation 

One of the important problems in cognitive science is to understand how humans make sense of their 

surroundings. Humans are constantly bombarded with abundant information, yet they manage to make 

sense of things around them seemingly without much effort. Although a complete answer is yet to 

emerge, many agree that our extraordinary ability to pick out patterns is part of how we manage to 

weed through the information chaos. 

Analogy is central to our ability to think about relational patterns and is fundamental to human 

cognition (Holyoak, Gentner, & Kokinov, 2001). The importance of analogy is well established in the field 

of cognitive science. One widely regarded theory of analogy is Gentner’s structure-mapping theory 

(Gentner, 1983).  According to the structure mapping theory, mental representations involve relational 

structure, and comparison is the process of aligning them.  Representations are important for analogical 

matching. A good comparison, which highlights relevant similarities and differences, emerges from 

encoding the problem/scenario using uniform representations. 

The Structure mapping engine (SME) is a computational model of structure-mapping theory 

(Falkenhainer, Forbus, & Gentner, 1989). SME takes as input two descriptions, a base and a target, and 

produces mappings between them. The descriptions can be any kind of predicate representation, 

including stories, problems, and descriptions of visual scenes. SME has been used successfully in many 

cognitive simulations and also as a component of large scale artificial intelligence systems (Forbus & 

Hinrichs, 2006)(Friedman, 2012). 



15 
 
Despite successes in modeling a wide range of phenomenon, structure mapping theory and SME is not 

without its critics. One criticism of structure mapping comes from Hofstadter and his colleagues 

(Chalmers, French, & Hofstadter, 1992; Hofstadter, 2008). Chalmers et al. (1992) propose a different 

approach for analogy called High-level perception (HLP).   They argue that flexibility of human cognition 

arises out of a highly interwoven interplay between lower order perceptual processes and higher order 

cognition. They argue that these processes cannot be studied in isolation. They criticize computational 

models like SME for separating the processes and accuse SME of bypassing the process of perception, by 

starting with pre-derived representations.  

Forbus, Gentner, Markman, & Ferguson (1998) addressed the criticisms by Chalmers et al. (1992). They 

agree with CFH with the importance of studying the processes for building representations. 

Nevertheless, they argued for the advantages of decomposing analogical processing into constituent 

subprocesses.  In their view, there are three coarse-grained ways to think about how perception and 

cognition could interact (see Figure 1) 

 

 

Figure 1: Three abstract views of perception 
and cognition (Forbus et al., 1998). 
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Forbus et al. (1998) points out that the classic stage model depicted in part (a) is the strawman that 

Hofstader et al. argue against and is not the same as what they propose, which is part (c). The model 

depicted in part(c) is the primary motivation for this thesis. Both the criticism by  Chalmers et al. (1992) 

and the response by Forbus et al. (1998) centers around the importance of representations.  Analogy is 

crucial to cognition and representations are crucial to analogy. Given the centrality of representations in 

analogy, it is imperative to understand the origin, acquisition and the evolution of our representational 

capabilities. Markman & Dietrich (2000) stress the importance of studying representational change. 

They say that cognitive science cannot proceed without studying representations and the computational 

processes defined over them.  According to them, representational change provides a way to account 

for fluidity in cognition. 

The mechanisms driving representational change can be understood better within the framework of the 

Structure Mapping theory.  Gentner and her colleagues propose that structure mapping comparisons, 

language learning and progressive alignment, which states that experiencing concrete similarities 

enables appreciation of more abstract similarities, are among the main factors driving representational 

change (Gentner & Namy, 2006; Kotovsky & Gentner, 1996).  One useful set of distinctions in 

understanding the role of comparison in representation change concerns the kinds of information 

aligned.  A mapping is considered an appearance match if most of what matched are attributes of 

objects (and first-order perceptual relations, e.g. above).  It is an analogy if most of the match involve 

relational information, with few object attributes.  It is literal similarity if the match contains a high 

number of relations and object attributes in correspondence.   

These distinctions are useful in understanding human processing of comparisons.  To explore how 

children, improve their representations, Gentner and colleagues used forced choice tasks, which we 



17 
 
simulate here.  In a forced-choice task, children are presented with a standard and two or more 

alternatives. Children are required to pick the choice that is more similar to the standard(s) (Christie & 

Gentner, 2010)(Namy & Gentner, 2002)(Kotovsky & Gentner, 1996).  They controlled the type of 

similarity between the standard(s) and the choices, as well as the details of the instructions, to shed 

light on how comparison can be used to promote learning.   

They found that younger children exhibit a reliance on holistic or object-level similarities. Children 

interpret comparisons like “The prison guard’s heart was hard as a stone” to mean that the person’s 

heart was literally as hard as a stone (Rattermann & Gentner, 1998). In subsequent studies, they also 

showed how comparison and progressive alignment can be used to change the way children represent, 

enabling the children to appreciate relational similarity (Kotovsky & Gentner, 1996)(Rattermann & 

Gentner, 1998). 

 The studies clearly show evidence for developmental change in the recognition of relational similarity. 

According to the Relational Shift hypothesis (Gentner, 1988), this is because as children learn, they 

understand more relationships, and hence have more relationships that they can encode, and thus the 

relational content of their mental representations increases. The shift is considered epistemological 

rather than maturational, and hence it can (and does) happen at different times in different domains 

(Gentner, 1988).  The appreciation of relational similarity increases with experience and with the 

accretion of relational knowledge via language. Gentner and her colleagues demonstrated this via 

several developmental studies. These studies are prime candidates for studying representational change 

via computational simulations. The knowledge of how to represent a situation or a problem is learned 

over experience and is a long term process. However, as the studies show, the change can occur even 

within a single experimental session. The objective of the thesis is to provide a computational model 
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sufficient to explain the phenomenon of representational change observed within such short durations. 

We demonstrate the model’s effectiveness by simulating three of the developmental studies by Gentner 

and her colleagues. 

1.2 Claims and Contributions 

Claim 1: Recent experiences affect how new problems or tasks are encoded. This can be modeled using 

interim generalizations.  

The Sequential Analogical Generalization Engine (SAGE) model of analogical generalization focuses on 

learning generalizations that are stored in long-term memory (McLure, Friedman, & Forbus, 2010). In 

SAGE, generalization pools provide models of concepts.  We propose that there are also generalizations 

built up in a similar way in working memory, which we call interim generalizations (Kandaswamy, 

Forbus, & Gentner, 2014).  Interim generalizations are proposed to be involved in within-task 

comparisons and learning.  Only a small number of descriptions can be stored in interim generalization 

pools, and retrieval is based on similarity, biased by recency.  In our model, comparisons of a current 

problem with interim generalizations provides a filter, removing elements that may be irrelevant for the 

task.   

Claim 2: Forced choice tasks can be modeled using structure mapping comparisons.  

1) The difference in structural evaluation scores between a standard and the alternatives is used 

for selecting a winning choice.   

2) Verification of candidate inferences produced by comparisons is used to improve mappings. 

3) When comparisons result in scores that are too close to discriminate, re-representation is 

triggered to attempt to differentiate between the alternatives.  
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Candidate inferences specify what additional knowledge in the base can potentially be transferred to 

the target. Consequently, the candidate inferences which were verified to be true becomes part of the 

target and thereby increases the score of the resultant mapping. Verification involves comparing the 

candidate inferences to prior knowledge about the target.  If scores are close, a decision cannot be 

made. We propose that re-representation (Yan, Forbus, & Gentner, 2003) is performed in order to 

improve discrimination. In our model, we use the difference in average-self matching score to determine 

if re-representation is worth the effort. 

Claim 3:  Labeling two examples the same triggers a comparison for the purpose of understanding the 

meaning of the label. This can be simulated using structure mapping comparisons and generalizations. 

1) The examples that are labeled the same are compared and assimilated into a generalization.  

2) The generalization highlights commonalities and deemphasizes dissimilarities. 

3) Examples are augmented with conceptual commonalities if possible, resulting in enhanced 

generalizations. 

For each novel word/label, a generalization pool is created to assimilate examples introduced with that 

label. Generalization pools have a threshold that specifies how similar the examples should be for being 

assimilated into a generalization.  We model the tendency for a common label to lead to assimilation via 

lowering the assimilation threshold when a label is provided in a comparison.  The augmentation of prior 

knowledge about concepts provides a means of connecting new information with existing knowledge. 

Contribution 1: A model of interim generalization pool (SAGE-WM) 

We built SAGE-WM, a model of interim generalization pools, based on SAGE (McLure, Friedman, & 

Forbus, 2010).  We limit the number of elements that can be present to emulate working memory 
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constraints. Psychological evidence suggests that the use of interim generalization pools is governed by 

similarity and recency.  We model these by using SME for retrieving the most similar generalization or 

example, while biasing the retrieval based on recency.  

Contribution 2: A model of forced choice tasks 

The primary contribution of the thesis is a model of forced choice tasks built on the Companions 

Cognitive architecture (Forbus & Hinrichs, 2006). In addition to supporting analogical reasoning and 

learning, the Companion architecture provides natural language understanding capabilities and sketch 

understanding capabilities, which we use to automatically encode the stimuli in modeling the 

psychological experiments.   

We simulated three studies to capture the role of comparison in the phenomenon of representational 

change within forced-choice tasks: 

 

Figure 2: Examples of stimuli from Kotovsky & Gentner (1996), Christie & Gentner (2010), and Namy & Gentner (2002). 
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1) Christie & Gentner (2010): Where hypotheses come from: Learning new relations by structural 

alignment. 

2) Kotovsky & Gentner (1996): Comparison and categorization in the development of relational 

similarity. 

3) Namy & Gentner (2002): Making a Silk Purse Out of Two Sow’s Ears: Young Children’s Use of 

Comparison in Category Learning. 

 Each study highlights various roles played by structure mapping comparisons in representational 

change. Figure 2 provides examples from each study. Christie & Gentner (2010) showed the importance 

of common label and explicit comparison. They introduced the children in the comparison condition to 

two standards with the same label (“this is a jiggy”) and gave an explicit instruction to compare them 

(example: “can you see why these both are jiggies?”).  The children in comparison condition made the 

relational choice more often than the children in other conditions who did not get an opportunity to 

compare. Their results show the power of comparison in bringing to focus the relational similarity that 

were once hidden, perhaps because children may encode more object attributes by default.  

Namy & Gentner (2002) studied whether comparison during word learning not only highlights 

commonalities but could also enrich the abstraction by utilizing prior knowledge about the objects. They 

used stimuli consisting of objects that were familiar to the children. The experiment had two conditions. 

In both conditions, they introduced the objects with the same label and invited them to compare. In the 

one-kind condition, the standards are from the same category, while in the two-kind condition they 

belong to different taxonomic categories. In both conditions, the standards share perceptual 

commonalities. One of the choices is perceptually similar to the standards but belongs to a different 

category. The other, called the taxonomic choice, is from the same category of at least one of the 
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standards but does not share perceptual commonalities with them. (see Figure 2). As predicted, the 

children in the one-kind condition made the taxonomic choice more frequently than the children in the 

two-kind condition.  

Christie & Gentner (2010) and Namy & Gentner (2002) show how within-task comparison leads to 

representational change. But comparison has a much larger role to play in shaping representations. 

Between-task comparisons of progressively alignable stimuli can provide valuable experience through 

which children can learn to discriminate between what is relevant or irrelevant to the given task. They 

addressed this in Kotovsky & Gentner (1996). They explored children’s performance on tasks involving 

simple higher-order patterns, specifically symmetry and monotonic increase. They increased the stimuli 

complexity by changing the polarity and the dimension of change (see Figure 2). The 4 year olds 

performed poorly on all but the same-dimension-same-polarity triads. In a subsequent experiment, they 

prepared an ordered set of stimuli which promotes progressive alignment. Children in the progressive 

alignment (PA) condition improved in their performance in cross dimension tasks, while the children in 

the control condition did not.  

The studies show how comparison, language and progressive alignment can enable children to 

appreciate relational similarity, perhaps by influencing the way they represent the stimuli. We evaluated 

our claims about representational change by building a model of forced choice tasks and comparing its 

response with that of the children in the studies. We discuss the studies and the model in more detail in 

later chapters. 
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1.3 Organization 

Chapter 2 reviews the theoretical background and systems used in this thesis. It includes an overview of 

the Companion cognitive architecture plus the enhancements made to it as part of the thesis.  We also 

introduce SAGE-WM, a model of interim generalizations, based on SAGE. 

In Chapter 3, we present our model of forced choice task and analyze the roles played by structure 

mapping comparisons in representational change. First, we explore from how analogs from recent 

experience affect encoding.  Second, we describe methods for conceptual augmentation, via enriching 

generalization and via candidate inference validation. Finally, we describe the role of re-representation 

in resolving impasses in forced choice tasks.   

In chapter 4, we present our simulations and results. First, we explore the role of comparison and 

language in learning relational abstractions via modeling Christie & Gentner (2010) experiments. The 

simulation highlights the representational change brought by the effects of common labels and 

comparison. Second, via simulating Namy & Gentner (2002) experiments we show how word learning 

comparisons not only highlight commonalities, but also enhance the resultant abstraction by bringing in 

additional knowledge when possible, as a form of representational change. Finally, we show how recent 

comparisons assimilated as interim generalizations helps in the transfer of representational knowledge 

via simulating experiments from Kotovsky & Gentner (1996).  

We discuss related work in chapter 5. In Chapter 6, We revisit the claims and finish with general 

discussion and suggestions for future work. The final sections of the thesis include references and 

appendices. 
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Chapter 2: Analogy and the Companion Cognitive Architecture 

This chapter provides the background needed for the rest of the thesis, by summarizing structure-

mapping theory, the simulations we are using, and the Companion cognitive architecture.  A primary 

contribution of the thesis, SAGE-WM is introduced here, along with extensions to the Companion 

architecture and CogSketch.  

2.1 Structure Mapping Theory 

Structure mapping theory proposes that analogy is the process of mapping knowledge from one domain 

(the base) into another (the target).  Human mental representations are structured and comparison is 

the process of aligning them.  Analogy and similarity emerge out of the same process of structural 

alignment.  The comparison is categorized into analogy, literal-similarity, or appearance match based on 

the nature of the alignment.  

Structure mapping theory postulates psychological constraints on the alignment.  First, the parallel 

connectivity constraint states that statements in alignment must have their arguments also in alignment. 

Second, the one-to-one correspondence constraint states that one element of the base can match to 

only one other element of the target.  Together, these constraints imply structural consistency of a 

mapping.  The tiered identicality constraint states that local matches are only proposed when predicates 

are identical, or when aligning non-identical functions can lead to larger matching structures, i.e. by 

ensuring that parallel connectivity is not violated.  Finally, the systematicity preference is that mappings 

which involve systems of interconnected relations are preferred.  Systematicity biases the alignment 

process towards interpretations that provide explanations. Since explanations involve statements of 

causal, inferential, and evidential relationships involving other statement, they are preferred over 

isolated relational structures. 
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Structure-mapping makes the following representational assumptions: 

1) A structured description consists of objects, their attributes, and relations between objects.  

Objects (often referred to as entities) can be animate or inanimate, physical or conceptual.  An 

instance of a triangle is an object, as is the number 3, in this sense.  Attributes are statements 

using one-place predicates, e.g. the category of an object, its shape, color, and so on.  Relations 

are statements using binary or higher arity predicates.  Spatial relations and causality are two 

common types of relationships. 

2) The order of a statement is one plus the order of its arguments.  Objects have order zero.  Thus 

attributes (e.g. (Person John)) are first-order statements, as are relations involving objects 

(e.g. (inside John Cave)).  Statements that connect other statements are higher-order 

statements, e.g. (cause (and (MovingEvent Run5) (performedBy Run5 

John)) (inside John Cave)) is a second-order statement.   

3) Functions are used to represent dimensions or components of an object or situation, e.g. 

DarknessFn to indicate how light something is.  There is a tradeoff between using domain-

specific relations and more general relations with domain-specific dimensions.  As described in 

Chapter X, it appears that children start with more domain-specific relations and later re-

represent using dimension independent relations. For example: (darkerThan A B) can be 

re-represented as (greaterThan (DarknessFn A) (DarknessFn B)). 

2.2 Structure-Mapping Engine 

The Structure-Mapping Engine (SME) (Falkenhainer, Forbus, & Gentner, 1986) provides a computational 

model of the structure-mapping process. It takes as input two propositional descriptions, the base and 

target, and produces one or more mappings as its output. The mapping consists of three components: 



26 
 

1) A set of correspondences between the structural elements (attributes, relations and objects).  

2) A score that provides a numerical estimate of similarity, which can be normalized as explained in 

Chapter 3. 

3) A set of candidate inferences projected based on non-overlapping structure according to the 

correspondences of that mapping. 

SME typically produces only one mapping, but can produce up to three if there are close alternatives.  It 

uses a greedy algorithm to provide good answers in polynomial time. 

2.3 Sequential Analogical Generalization Engine (SAGE) 

SAGE is a model of analogical generalization (McLure, Friedman, & Forbus, 2010).  SAGE takes as input a 

sequence of positive examples of a concept, and produces in long-term memory a set of generalizations 

and unassimilated examples in a generalization pool representing that concept.  The generalizations are 

probabilistic, in that they include the likelihood of each statement (attributes and relations).  They can 

be disjunctive, if there is more than one generalization.  Outliers are handled by maintaining 

unassimilated examples.   

 

Figure 3: Illustration of SAGE operation. 
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SAGE’s processing of an example works like this.  Given a new example E, SAGE uses MAC/FAC (Forbus, 

Gentner, & Law, 1995), a model of similarity based retrieval, to find the most similar item in the pool to 

E. This item can be either a generalization or an unassimilated example.  If it is a generalization and the 

similarity score is over an assimilation threshold, SAGE merges the new example into the generalization.  

If it is an example and the similarity score is over the threshold, SAGE merges the two examples into a 

new generalization.  The merge process combines the overlap between its two inputs, and updates the 

frequency of occurrence of each statement in the alignment.  That is, for merging two examples, a 

statement in both will have a probability of 1.0 while a statement occurring in one but not the other will 

have a probability of 0.5.  When merging an example into a generalization, the frequency of occurrence 

for each statement is updated similarly.  This can cause infrequent, variable, or noisy information to 

“wear away” with experience.  An example of SAGE generalization is depicted in Figure 3. 

SAGE has been used to model a variety of psychological phenomena, including learning words 

(Lockwood, Lovett, & Forbus, 2008), learning grammar (Taylor, Friedman, Forbus, Goldwater, & 

Gentner, 2011), and conceptual change (Friedman, 2012)) .  

2.4 A model of interim generalizations (SAGE WM) 

In analogical processing, new information about an object or event can be inferred based on its 

similarity to an existing generalization. There is psychological evidence that recent experience provides a 

context to interpret and understand our current situation (Day & Gentner, 2007).  We propose that a 

SAGE-like mechanism is also used in working memory, to construct interim generalizations.  The model 

for this processing is SAGE-WM.   

Most of the operations of SAGE-WM are the same as SAGE.  We assume that there is a default 

generalization pool in working memory that is used to help accumulate experiences with tasks.  We 
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assume that the interim generalization pool can only maintain a small number of descriptions.  Given a 

new example, SAGE-WM retrieves the most similar item from this pool, based on both similarity and 

recency.  Moreover, when an item has a label associated with it, the label is used as a filter for retrieval, 

to model people’s preference for retrieving examples or generalizations that share the same label. 

2.5 CogSketch 

CogSketch is a domain-independent sketch understanding system (Forbus, et al., 2008). Users interact 

with CogSketch by drawing using a pointing device (e.g. a mouse or stylus). CogSketch interprets the ink 

by computing spatial, positional and shape relations between objects, and optionally within objects as 

well. Furthermore, CogSketch supports multiple subsketches within a single sketch.  We use this feature 

to represent the stimuli in a forced choice task.  Recall that a typical forced choice stimulus consists of 

one or more standards and multiple choices. The standards and choices are represented as subsketches 

within a sketch.  

Figure 4 depicts an example from Christie & Gentner (2010) experiments and the corresponding 

subsketch. Cogsketch automatically computes qualitative visuo-spatial relations for objects and creates 

 

Figure 4: Example from Christie & Gentner (2010) stimuli and the corresponding sketch. 
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descriptions for each subsketch. For example, cogsketch computes that the dog in Figure 4 is above and 

to the right-of the elephant. 

Computing shape relations and shape attributes require segmenting the objects to its constituent parts 

such as edges and edge-cycles (McLure, Friedman, Lovett, & Forbus 2011). As part of the thesis work, we 

increased the accuracy and reliability of CogSketch corner detection and segmentation algorithms to 

handle organic-shaped ink representing real world objects, such as the ones used in the stimuli from 

psychological studies.  Furthermore, we augmented the representations created by CogSketch to 

include shape-relations such as same-shapes, reflected-among-X-Axis (a mirror reflection among x-axis), 

same-color, etc.  We also augmented shape-attributes created by CogSketch to include qualitative shape 

descriptions based on simple shape properties such as shape-convexity, compactness, orientation, 

circularity and elliptic variance, etc. (Peura & Iivarinen, 1997).  

Additionally, CogSketch allows users to provide conceptual labels for objects in sketches using 

collections (i.e. concepts) and relations from the Cyc knowledge base. By labeling an item with a 

collection from Cyc, the user is indicating that the item is an instance of that collection. We use 

CogSketch’s conceptual labeling as an alternative to object recognition.  For example, instead of 

CogSketch having to recognize the ink in Figure 4 to represent a Dog and an Elephant, we label the 

objects with the Cyc Collections ‘Dog’ and ‘Elephant’ respectively. 

 

Figure 5: Simple shape descriptors (Peura & Iivarinen 1997). 
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2.6 Companion Cognitive Architecture 

Every cognitive architecture is based on a fundamental idea. For example, the Soar cognitive 

architecture is based on the problem-space computational model (Laird, 2012). The Companion 

cognitive architecture is based on the idea that analogy lies at the heart of human cognition (Forbus, 

Klenk, & Hinrichs, 2009). It is a multi-agent architecture and inter-agent communication is achieved 

using KQML messages. Companion agents use computational models of analogical processes: Structure 

Mapping Engine (SME) for similarity comparison, SAGE for persistent generalizations, MAC/FAC for 

retrieval and SAGE-WM for interim generalizations. Some Companion agents are specialized for a 

specific service such as sketch processing (CogSketch agent) and processing user interaction (Interaction 

Manager). In summary, the Companion architecture acts as the glue that ties together different 

essential tools and provides us with a unified apparatus to model cognition. 

 

Figure 6: Companion Cognitive Architecture. 
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2.7 Interaction Manager 

The Explanation Agent Natural Understanding System (EA NLU) (Tomai, 2009) is used as the dialogue 

understanding system that processes the language portion of user interaction. EA uses head-driven 

phrase structure grammar and a lexical source to parse and interpret language. The interpretation 

process uses Discourse Representation Theory (Kamp & Reyle, 1993) and produces a semantic 

interpretation of the text.  When producing the interpretation, EA maintains parse, sense and 

coreference ambiguities as choice sets.  Once the ambiguities are resolved via selection of choices, the 

final interpretation is produced.  

The Interaction Manager is the Companion agent that runs EA NLU.  The parse, choice-set and 

interpretation information are stored in its working memory. To resolve reference ambiguities involving 

deictic references in multimodal dialogues, the Interaction Manager communicates with one or more 

CogSketch Agents, as described below. 

2.8 CogSketch Agent 

Each sketch being used by a Companion is linked into the system via a CogSketch Agent.  This agent 

controls the CogSketch interface and provides reasoning services for other agents that need information 

from the sketch.  References such as “the elephant”, for example, when one appears in a sketch, can be 

interpreted as referring to the entity in the sketch.  Other agents can subscribe to events in the sketch, 

to detect user interactions such as changing what sketch is active or the selection of a glyph within a 

sketch.  This helps maintain a shared focus for communication between a Companion and people.  For 

example, to refer to sketched objects when using language to name them, they are selected first, so that 

the Companion knows which object(s) we are talking about. 
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2.9 Session reasoner 

The Session Reasoner is used for domain reasoning. In this thesis, it is responsible for performing forced 

choice tasks, executing the instructions interpreted by the Interaction Manager and using data from it 

and from the CogSketch Agent.  This is best illustrated by an example.  When the user labels an object, 

e.g. “This is a Toma.”, this statement is interpreted (by the Interaction Manager) as meaning that the 

label “Toma” should be applied to the currently selected entity (as found in the CogSketch Agent).  The 

Session Reasoner gathers the relevant information from the CogSketch agent.  Instructions to compare 

and choose are also handled by the Session Reasoner, which directs the CogSketch Agent to highlight 

the appropriate choice to indicate to the user what it has selected.  

2.10 Multi-modal interaction 

The forced choice task involves multi-modal interaction. The children performed the tasks according to 

the instructions provided by the experimenter, which involved the experimenter pointing to objects in 

 

Figure 7: Inter-agent communication for multi-modal interaction. 
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pictures in front of the children and talking about them. Similar to the children, Companions receive 

input as CogSketch sketches and simple English language instructions. The equivalent of a pointing 

gesture for Companions is the selection of sketch items. As part of the thesis work, we added to 

Companion architecture the ability to resolve deictic references (pointing/selecting an object in the 

sketch and saying “this”). 

Figure 7 illustrates the deictic reference resolution process The Interaction Manager subscribes to the 

CogSketch Agent for sketch-related events. Based on the incoming event notifications, the Interaction 

Manager constantly updates the DiecticReferenceContext in its working memory. At any given time, the 

DiecticReferenceContext contains information about the currently active sketch/subsketch and the 

selected items in the sketch.  The interaction manager resolves the demonstratives (‘this’ (or) ‘these’) in 

the dialogue to the selected sketch item (s) based on the DiecticReferenceContext. Thus, we emulate 

the interaction between the experimenter and the children (e.g. “This is a Toma”). 

When the experimenter says to the children “Which one of these is a toma?”, they are asking the 

children to point to the choice that they think is the Toma. Such utterances in the Companion are 

marked as interrogatives, which involve demonstratives and are handled accordingly.  The system 

resolves ‘these’ to the selected items in the sketch and uses the plans in the Session Reasoner 

corresponding to the forced choice model (chapter 3) to pick one of the choices as the answer.  
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Chapter 3: A Model of Forced Choice Tasks 

 

Figure 8: A model of forced choice task. 
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Forced choice tasks require choosing between two or more alternatives based on how similar they are 

to one or more standards.  This provides a simplification of many real-world problems, which is why it is 

so heavily used in psychological experiments.  They are easy to administer and provide a useful way of 

exploring many phenomena, especially involving similarity.  There are many kinds of forced-choice tasks.  

For the purpose of the thesis, we are primarily interested in relational match forced choice tasks, where 

one of the choices shares relational structure with the standard. 

A model of forced choice tasks should account for the following: 

1) The processes determining the forced choice judgement and the ability to identify a confident 

decision, even in the absence of feedback.  

2) The influence of recent experiences and prior knowledge in forced choice decision. 

3) The processes for triggering and controlling representational improvements. (e.g. conceptual 

augmentation and re-representation). 

The entire process can be divided into two phases: encoding and comparison. The encoding phase builds 

representations at the appropriate level of abstraction for solving the forced choice task. The 

comparison phase determines relative similarity and makes the choice. This may require re-

representation if the choice is unclear.  Even though we separate the operations into encoding and 

comparison, there is interaction between them via interim generalizations. We discuss each phases in 

turn.  

3.1.1. Encode stimuli using CogSketch 

This stage models the visual encoding processes that operate immediately upon the presentation of the 

stimuli.  The visual stimuli used in forced choice experiments are presented as sketches to the 

CogSketch, which, as noted in Chapter 2, generates human-like qualitative visuospatial representations 
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of the stimuli. Furthermore, we use CogSketch for conceptual labeling, which allows us to pick a concept 

from Cyc, to indicate the concept corresponding to the objects in the sketch, thereby sidestepping the 

need to model object recognition. The representations generated by CogSketch includes visuo-spatial, 

shape and conceptual information. 

3.1.2. Encode using remindings from recent experiences 

As noted earlier, psychological evidence suggests that people are applying recent experience to help 

encode new stimuli.  We model this using remindings from SAGE-WM interim generalizations.  When a 

choice is made, the winning mapping is added to the interim pool for recent experience. We encode the 

winning mapping by creating a generalization based on the mapping and filtering out facts that have 

probability less than 1.0. Thereby, eliminating statements that did not participate in the alignment. A 

case representing the winning mapping is created based on the remaining facts and added to the 

interim pool. Repeated exposure to similar tasks results in the assimilation of winning mappings as 

interim generalizations. 

Kotovsky & Gentner (2010) studies show that children require multiple exposure to concrete similarity 

tasks to successfully transfer representational knowledge to more complex tasks that require abstract 

similarity. Based on their findings, we posit that humans, especially children, require more than one 

exposure to a task type in order to gain and transfer representational knowledge reliably. It is 

reasonable to assume that generalizations formed by repeated exposure (more than one) has a larger 

impact than an isolated experience.  We model this by considering only remindings that are 

generalizations and ignoring remindings based on isolated experiences i.e. a single winning mapping. 

Given a subsequent task, the standards and choices are used as probes for remindings from interim 

pool.  If an interim generalization is retrieved as the reminding for a standard (or) a choice, it is applied 
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by filtering out all of the statements in the standard or the choice that do not align with the contents of 

the interim generalization. Thus, the interim generalization provides a means of highlighting what is 

likely to be important, by filtering out statements, that from recent experience were known not to have 

contributed for success in the task.   

For word extension forced choice tasks, the labels are maintained as part of the generalizations in the 

interim pool and is used as a filter for retrieval. For example, if a new stimulus is presented with the 

label ‘Toma’, only interim generalizations corresponding to ‘Toma’ are retrieved. 

3.1.3. Abstract & Augment Commonalities 

When two things are labeled the same, it increases the tendency for people to compare them. Young 

children might require an explicit invitation to compare (e.g. “can you see why these both are tomas?”). 

This comparison process increases the odds of an interim generalization being created.  We model this 

by creating an interim pool for the label and adding descriptions of items that share the label into the 

 

Figure 9: An example of conceptual augmentation through schema comparison. 
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pool. The assimilation threshold of the pool specifies how similar two things should be, judged via 

structure mapping, for being generalized. We model the increased tendency to generalize by lowering 

the assimilation threshold of the interim pool. 

Additionally, when the descriptions have a Cyc conceptual label, the generalization is enriched as 

follows. The background knowledge about concepts are approximated by formally encoding material 

from a children’s dictionary (Wordsmyth Children's English Dictionary & Thesaurus) and stored in the 

knowledge base.  The relation synonymousExternalConcept is used to connect the Cyc concept 

to the generalization corresponding to the concept.  LearnedSchemaSource indicates that the 

generalization is created based on a text source (dictionary). For example: a schema is created for the 

Cyc concept Bicycle based on the dictionary definition and is connected to the concept using the 

proposition below.  

(synonymousExternalConcept Bicycle LearnedSchemaSource (ConceptSchemaFn 

Bicycle))) 

The schemas are encoded as SAGE persistent generalizations (Appendix A), so as to model knowledge 

assimilated in long term memory.  We compare the descriptions to acquire entities that correspond to 

each other in the mapping. The schemas associated with the conceptual labels of the entities are 

instantiated for each description and compared using SME. The expression correspondences in the 

mapping represents the conceptual commonalities.  Before generalization, each description is 

augmented with the commonalities, as illustrated in Figure 9. Hence the generalization is enriched using 

background conceptual knowledge.   
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3.1.4. Forced choice comparison 

The similarity score computed by SME is used to ascertain which choice should be selected, i.e. the 

higher similarity choice should be selected.  The default score computed by SME is unnormalized, and 

thus it also depends on the relative size of the compared items.  To remove this dependence on size, we 

normalize the SME score.  We use base-normalized scores, i.e. we divide the similarity score by the 

score that would be computed by comparing the base to itself.  This provides a measure of relative 

structural overlap between the choices and the standard.  

Given: structural evaluation score between a base b and target t = M (b, t). 

base normalized score = 
𝑀(𝑏,𝑡)

𝑀(𝑏,𝑏)
 

The forced choice tasks modeled here did not involve feedback i.e. The experimenter in the 

psychological studies did not indicate to the children if the choice they selected is right or wrong. 

Likewise, the model does not receive any feedback about the choice it made. To utilize recent 

experiences for representational change, it is imperative to be able to discriminate between positive and 

negative experiences.  If there is a clear difference in the base normalized scores, the experience is 

considered as positive as the model is able to select the choice with the higher score.  Otherwise, if the 

scores are equal, the model arrives at an impasse and attempts to resolve the impasse using re-

representation. When the model is able to make a clear decision, it creates a generalization to encode 

the winning mapping and adds it to the interim pool. 
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3.1.5. Verify candidate inferences 

Candidate inferences can help provide more information about the stimuli, potentially increasing the 

differences between similarity scores to make a decision clear.  Candidate inferences are conjectures, 

whose correctness must be verified before they are accepted.   For comparisons involving familiar 

concepts, their schemas are utilized for verifying candidate inferences.   

In a forced choice task, the standard is compared to each of the choices. The comparisons may result in 

the projection of candidate inferences. When the entities in the choice have Cyc conceptual labels, the 

corresponding schemas are instantiated and compared to the candidate inferences using SME. The 

expression correspondences in the resultant mapping represent validated inferences and are used to 

augment the target of the comparison i.e. the corresponding choice, as illustrated in Figure 10. 

 

Figure 10: An example of candidate inference validation. 
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3.1.6. Re-represent to resolve the impasse 

Rerepresentation re-construes parts of compared descriptions in order to improve a match (Yan et al., 

2003). It is an important process in adding fluidity to analogical reasoning. Rerepresentation is 

necessary, given the variability of encoding processes. When the model arrives at an impasse, it uses re-

representation to attempt to increase the similarity of one of the mappings, between the standard and 

the choices. While rerepresentation is important, it should be constrained. Unconstrained 

rerepresentation could make any description match to any other and is also computationally expensive. 

Hence, when there are multiple mappings, the model should be diligent about which mapping is chosen 

as a candidate for rerepresentation.  

The forced choice model selects the mapping to re-represent based on differences in average 

normalized similarity scores. The average-normalization score captures the overall similarity between 

two descriptions based on both shared and unshared structures. The equation for average normalized 

score is given below:  

Given: structural evaluation score between a base b and target t = M (b, t). 

Average- normalize- score = 
2𝑀(𝑏,𝑡)

𝑀(𝑏,𝑏)+𝑀(𝑡,𝑡)
 

The primary objective of re-representation is to attempt to bring into alignment the non-aligned 

statements in the mapping. The structure-mapping theory of rerepresentation (Yan et al., 2003) outlines 

ways to improve the alignment in a comparison by reconciling statements that did not match because of 

violating a constraint of structure-mapping theory. Detecting such violations will enable identifying 

potential candidates (non-matching relations) for re-representation. These are called opportunities, and 

based on the type of violation the opportunities are categorized into Holes, gulches, rivals and left-

overs. 
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Constraint Violates parallel connectivity? Opportunity 

Identicality Yes Holes 

No Gulches 

One to One Yes Rivals 

No Leftovers 

Table 1: Re-representation opportunities (Yan et. Al, 2003) 

SME identifies statements in the base that fail to align with statements in the target and, based on 

structural overlap, projects them as candidate inferences (Cis). When the reverse-candidate-inference? 

flag is set, SME projects non-aligned statements in target as reverse-candidate inferences (RCis). Cis and 

RCis provides a way to identify potential opportunities.  We detect opportunities for re-representation 

using the candidate and the reverse candidate inferences, as illustrated via the example below.  

Base Target 

(cause (walk John Cave) 

       (inside John Cave)) 

(cause (run Jill Chamber) 

       (inside Jill Chamber)) 

Expression correspondence: (inside John Cave) <-> (inside Jill Chamber) 

Entity correspondences: Jill <-> John, Cave <-> Chamber   

Candidate Inference (Ci): (cause (walk Jill Chamber) (inside Jill Chamber)) 

Reverse Candidate Inference (RCi): (cause (run John Cave) (inside John Cave)) 

Table 2: An example mapping and inferences 

The entities in the cause statements in both Ci and RCi are in correspondence. Also, both statements 

have a similar structure.  However, they did not align due to violation of the identicality constraint i.e. 

the arguments walk and run are non-identical relations. Statements in Cis and RCis, whose entity 

arguments are in alignment and have similar structure, are paired together as potential opportunities. If 
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the root predicate fails to match, it is identified as a Gulch. Otherwise, if one of the argument predicates 

did not match, as in the example above, then it is a Hole. Second, we filter the candidates based on the 

availability of transformations or decompositions in the knowledge base. Transformations are truth 

preserving rewrite rules. For example, (hotterThan Coffee IceCube) can be rewritten as 

(greaterThan (Temperature Coffee) (Temperature IceCube)) without loss of 

information. we use ‘equiv’ (bidirectional implication) statements in KB, for searching for 

transformations. Decompositions are rewrite rules which might lead to some loss of generality. For 

example, (run John Cave) can be rewritten as (moveTo John Cave), but we might lose the 

information about the manner in which John moved into the Cave. We search for decompositions using 

‘implies’ statements and ‘genlPreds’ statements, meta-predicates for stating that one predicate is a 

generalization of the other. Using genlPreds to find a common ancestor in the predicate hierarchy is 

similar to the minimal-ascension approach discussed in Falkenhainer (1988). 

 

Figure 11: An example of search space for rerep-suggestions for Predicate A and Predicate B 
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The search space can be visualized as a graph, where the predicates are the nodes and the rewrite-rules 

are the edges. We constrain the search using context and depth. The search for rewrites are restricted 

to the current domain context, which is a KB Microtheory and is set when the companion is initialized 

for solving problems of a particular domain.  The rewrite rules correspond to knowledge gained over 

experience in that domain.  For our model, we restricted the search to a depth of 1 for tractability and 

to limit losing semantic information due to over generalization. We illustrate the search space with an 

example in Figure 11. The example shows the candidate rewrites for re-representing predicates 

predicate A and predicate B. The candidates are chosen based on whether they are within the 

depth of 1 and whether they are inside the domain context. For example, predicate E,  

predicate H and predicate I, are within context but are not considered as they exceeded the 

depth. Likewise, predicate J and predicate K are within depth, but are filtered out as they are 

outside the domain context.  

The transformations and decompositions that are chosen as candidates are used to derive suggestions 

for re-representations. For the example in Table 2, assume that there is a general predicate moveTo for 

the predicates run and walk. The resultant rerep-suggestion is given below.     

(baseRewrite (walk John Cave) moveTo GenlPredRewrite)  

(targetRewrite (run Jill Chamber) moveTo GenlPredRewrite) 

Finally, the set of <Ci, RCi, rerep-suggestions> for the mapping is returned.  Potentially, there could be 

multiple suggestions for a non-aligned statement pair. We use the simplest strategy for the forced 

choice model and apply the first rewrite suggestion that could bring the statements into alignment. 
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After re-representation, the mapping is performed again i.e. between the re-represented base 

(standard) and the re-represented target (one of the choices). If the base-normalized score of the 

mapping is higher than the alternative, the model selects the choice as the winning choice, as shown in 

Figure 8. Otherwise, if there are no re-representation suggestions or if the score did not improve, the 

model declares failure, unlike the children, who always had to make a choice. The intent is to capture 

situations where impasses cannot be resolved using re-representations.  

The re-representation system as described here is not intended to be complete, for example it does not 

support detecting rivals and leftovers. It also does not support re-representation mechanisms like entity-

splitting or entity-merging.  Efficiency and completeness of re-representation is not under primary 

evaluation in any of the contributions. Caching representational knowledge or employing a more 

sophisticated search might allow for a better re-representation system, but that is outside the scope of 

this thesis. 
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3.2 General analysis of the Relational Match Forced Choice Task 

A general template of the relational match forced choice task is shown in Figure 12. The task has one 

standard and two choices.   Both choices can share attributes with the standard, and even some 

relations, but there is at least one additional relationship shared between the standard and one of the 

two choices which will make the match different enough to make the correct choice discernable.  How 

might the outcomes vary depending on the relative sizes of the relational versus attribute overlap?   

To analyze this, we use synthetic representations, i.e. arbitrary predicates.  For simplicity, we assume 

that the perceptual choice shares no relations with the standard and the relational choice shares no 

attributes with the standard.  We vary the number of shared relations for the relational choice from zero 

to 50, and the number of shared attributes with the perceptual choice likewise from zero to 50.  

As the plot in Figure 13 shows, shared relations have more influence on the decision than shared 

 

Figure 12: A simplified template of relational match forced choice task. 
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attributes, leading to a higher relational response. This is not surprising, since SME’s trickle-down 

method of implementing systematicity increases the score of each item below it, and each attribute 

contributes additional score to only one object, whereas first-order relations (which were all that were 

used here) contribute score to two or more objects.  We assume that human representations typically 

contain more attribute information than relational information (the Specificity Conjecture, Forbus & 

Gentner, 1989), although the balance changes with expertise (and with age, which we consider to be 

gaining expertise across a wide range of domains) to include more relations.  Thus for children, we 

would expect them to be more on the left-hand side of the plot.  Thus, independent of the specific 

representational choices that are made, this model plus the Specificity Conjecture can explain the 

prevalence of perceptual choices with children (or the inexperienced in a domain) over relational 

choices in such tasks.  

 

Figure 13: Response pattern of forced choice model. 
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How then adults (and experts) respond more relationally in the forced choice tasks? The 

representational change mechanisms explained in the model could be part of a broader repertoire of 

representational learning which is responsible for adult/expert relational responding.  

The next chapter describes how this model of forced choice tasks has been used to simulate three 

psychology experiments.  The model initially responds more like the children (i.e. the left-hand side of 

the plot), but can learn via experience and language to respond relationally and move towards the right-

hand (relational) side of the plot. 

Chapter 4: Simulations 

Young children are prone to focus on object matches rather than relational matches, while adults tend 

to respond more relationally. The Relational Shift hypothesis (Gentner & Rattermann, 1991) suggests 

that this difference is due to a lack of knowledge about relational structures in younger children, and 

that as they learn more, they gain the ability to perform more relational matches. Gentner and her 

colleagues explored two forces that could be driving relational shift: relational language and progressive 

alignment.  

Language has a mutually facilitating partnership with relational representation and reasoning. Learning 

symbols and terms for relations, i.e. relational language, substantially augments our relational ability 

(Gentner & Christie, 2010). As children, we acquire a variety of relations, including spatial relations such 

as above, and on, and functional relations like edible and dangerous. Common labels help bring focus on 

to the common relational structure and thus fine-tune representations. Gentner (2003) has argued that 

common labels trigger comparison and thus promotes learning new relational abstractions via structure 

mapping. Another way in which representations are improved is via progressive alignment, where 
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experience with sequences of highly similar examples lead to rapid learning by abstraction of common 

relational structure and thereby enabling recognition of more abstract relational structures. 

There are three mechanisms of representational change facilitated by relational language and 

progressive alignment. 

1. Abstraction: The common system resulting from the alignment becomes more salient and more 

available for future use. 

2. Inference-projection: When the comparison involves one description that is richer than another, 

the spontaneous projection of candidate inferences can enrich the less-complete description. If 

there is background knowledge available, the inferences can be confirmed and be used to boost 

the alignment. 

3. Re-representation: Re-representation is performed if there is a reason to believe that improving 

the overall match, could help in resolving the current situation/problem. 

In this chapter, we present simulation studies that show how these mechanisms, in the context of our 

other assumptions about processes and representations, suffice to explain the results of three papers 

describing human-subjects experiments.  The first two psychology studies (Christie & Gentner (2010) 

and Namy & Gentner (2002)) highlight representational learning facilitated by language. The simulations 

show how common labels help in the creation of abstractions, including filling in missing pieces by 

projecting inferences from prior knowledge.  The third psychology study (Kotovsky & Gentner (1996)) 

shows the effects of progressive alignment and re-representation on representational change.   

4.1 Christie & Gentner (2010) Simulation 

Christie & Gentner (2010) showed that children (ages 3-4) can learn new relational abstractions via 

shared labels and comparison. They used novel spatial relational categories in a word extension task, as 
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illustrated in Figure 14. Here the relationship might be characterized as “An animal above another 

identical animal”.  

In the Solo condition, children were shown a single standard (here, Standard 1) and told it was a novel 

noun (e.g. “Look, this is a jiggy! Can you say jiggy?”). In the Comparison condition, children were invited 

to compare two examples (e.g. “Can you see why these are both jiggies?” when presenting Standard 1 

and Standard 2 simultaneously). In both conditions, children were then presented with a forced-choice 

task, where they had to choose which one of the alternatives is a jiggy (e.g. “Which one of these is a 

jiggy?” when presented with the relational match and object match cards). Children in the Solo 

condition preferred the object match, while those in the Comparison condition chose relational matches 

twice as often as object matches. This provides evidence that comparison can lead to learning new 

relational abstractions.  

 

Figure 14: Example of stimulus from Christie & Gentner (2010). 
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In a second experiment, a third condition was added.  In the new Sequential condition, children saw two 

standards one at a time, to test whether or not simple exposure to more examples was sufficient to 

promote learning. They found significant differences between the Sequential and Comparison 

conditions, and between the Solo and Comparison conditions, but the difference between the 

Sequential and Solo conditions were not significant. This provides additional evidence that it is 

comparison, not just more examples, that is promoting learning. 

By simulating the Christie & Gentner (2010) experiments we show that our computational model of 

forced-choice tasks is sufficient to explain this phenomenon. We describe below two simulation 

experiments, including sensitivity analyses to shed light on why it does so. 

 

Figure 15: The sketched version of the stimulus in Figure 14, shown here as four subsketches. 
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4.1.1. Word Learning via Analogical Generalization  

The forced choice task model can simulate word learning, as explained in Chapter 3. To recap, for each 

word, there is a generalization pool. Every time the word is used, an appropriate subset of the world, in 

our case the subsketch (Figure 15), is encoded to capture information about what that word denotes, 

and is added to the pool. The generalizations constructed can be considered as the meanings for the 

words. The ability to track multiple generalizations provides a mechanism for handling multiple senses 

of a word. The ability to store unassimilated examples provides a means of handling edge cases, and 

helps provide noise immunity in the face of changes in the underlying distribution of examples of a 

concept. This generalization-based account has been used to successfully model spatial propositions of 

contact in English and in Dutch (Lockwood et al., 2008). Recall that SAGE and SAGE-WM create 

generalizations in essentially the same way. In addition, SAGE-WM has a size limit and the retrieval is 

biased by recency, neither of which is necessary for Christie & Gentner (2010) simulation. For Christie & 

Gentner (2010) simulations, the forced choice model uses SAGE for creating relational abstractions 

instead of SAGE-WM, because these experiments were done before SAGE-WM was implemented. 

4.1.2. Simulation Experiment 1 

Experiment 1 used two conditions to show children the new concept, followed by a forced-choice task. 

We model these as follows: 

a. Solo Condition: The single example is added to the generalization pool for the word and 

is chosen as the base of the comparison.  

b. Comparison Condition: The two examples are added to the generalization pool, but 

since the experimenter has asserted that they are both examples of the labeled 

concept, we assume that the child is more likely to compare and assimilate them into a 
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generalization, which, as explained in chapter 3, is modeled by lowering the assimilation 

threshold from its default of 0.8 to 0.1. We also assume that the probability cutoff is 0.6, 

so that facts which do not appear in the shared structure will be eliminated from the 

generalization. 

In both conditions, the model compares the base of comparison, the single standard or the 

generalization, to each of the choices. The choice with the highest based normalized score is chosen as 

the winning choice. 

The original experiment used 8 stimulus sets. We encoded 8 sketches of animals, using CogSketch. Each 

element of the stimulus set (e.g. Standard 1, Standard 2, etc.) was drawn as a separate subsketch. Filters 

were used to automatically remove three types of information: Redundant information (e.g. given 

(rightOf B A), (leftOf A B) is redundant), irrelevant information (e.g., global estimates of glyph size like 

MediumSizeGlyph), and bookkeeping information (e.g. relationships describing timestamps of glyph 

creation). Table 3 shows the final encoding for the sketched stimulus set (Figure 15) and the resultant 

generalization. 

Standard-1 Standard-2 

(sameShapes Object-99 Object-420)  

(above Object-99 Object-420)  

(isa Object-420 Elephant) 

 (isa Object-99 Elephant) 

(sameShapes Object-104 Object-425) 

(above Object-104 Object-425) 

(isa Object-425 Dog) 

(isa Object-104 Dog) 

Generalization for “jiggy” 

(above (GenEntFn 1 0 jiggy) (GenEntFn 0 0 jiggy))  

(sameShapes (GenEntFn 1 0 jiggy) (GenEntFn 0 0 jiggy) 

                                                                          Table 3: Encoding for sample sketch. 
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For this simulation, we treated the amount of conceptual and perceptual attributes that the children 

might encode as an interesting open parameter as we do not know of data that provided specific 

estimates. Consequently, we performed a sensitivity analysis by running the simulation while varying the 

number of conceptual attributes to ascertain their impact on the results. Specifically, we varied the 

number of attributes from zero to nine. We assumed that encoding is reasonably uniform, i.e. that the 

same attributes would always be computed for identical objects. For simplicity, we further assumed that 

the set of attributes computed for one entity had no overlap with the set of attributes computed for 

another entity whose shape is different. Given these assumptions, we used synthetic attributes (e.g. 

Uniquestandard-1MtAttribute8) for convenience.  

Figure 16 shows the results. From the data, we can see that the model chose the relational match 100% 

of the time for the Comparison condition. This is qualitatively consistent with the behavior of 

participants in the Comparison condition, where participants chose the relational match around 60% of 

 

Figure 16: Results of Simulation experiment 1. 
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the time. We believe that the lack of object matches in this simulation condition are due to the use of 

completely independent attributes for each entity type in the stimuli sets. Since they are independent, 

no attributes are left in the generalization after assimilation. The more overlapping attributes there are, 

the more likely an object match is to become possible.  

As depicted in Figure 16, in the Solo condition, as the number of attributes rises, the proportion of 

object matches rises (i.e., the proportion of relational matches falls). Again, this provides a good 

qualitative fit for the results of (Christie & Gentner 2010) Experiment 1. Since attributes are more salient 

to children, due to lack of relevant domain knowledge (Rattermann & Gentner, 1998), it is reasonable to 

assume that they would encode more attributes than relations, which is compatible with the simulation 

results. 

Recall that we assume that the probability cutoff is set high enough that non-overlapping information is 

immediately filtered out. (Since these are novel concepts, there can be at most two examples in any 

generalization, and hence the probability of any fact not in the overlap would be 0.5, which is less than 

the 0.6 threshold.) Would adding in probabilistic information improve the fit of the model to human 

data? To determine this, we tried changing the probability cutoff to its usual default of 0.2. This leads to 

all attributes remaining in the generalization, which results in the score for the object match being 

boosted so high that it always wins over the relational match, regardless of the experimental condition 

used. This suggests that when children are invited to compare, they do indeed restrict themselves to 

keeping exactly the overlapping structure. 

4.1.3. Simulation Experiment 2 

Experiment 2 in (Christie & Gentner 2010) actually consists of two experiments. Both involved a new 

condition, the Sequential condition, designed to rule out non-comparison explanations. In Experiment 
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2a, fillers, in the form of pictures of familiar objects, were interposed between the serial presentation of 

the standards. No invitation to compare was issued. In Experiment 2b, no fillers were used, and the Solo 

and Comparison conditions from Experiment 1 were added, by way of replication. In our model, fillers 

would be added to some other generalization pool, thus 2a and 2b look identical from the perspective of 

our model.  

For the Sequential Condition, the two examples are added to the generalization pool, but with the 

default assimilation threshold 0.8. Again we varied the number of conceptual attributes, in the same 

way as in Simulation Experiment 1. 

Figure 17 illustrates the results. As anticipated, the results for the Sequential condition are similar to the 

results the model generates for the Solo condition. This is because of the model does not generalize the 

two standards, and hence the choices will be compared to the examples in the generalization pool. This 

makes the results of the Sequential Comparison condition be the same as the Solo condition. 

 

Figure 17: Results of Simulation Experiment 2. 
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We know of no direct psychological evidence that would provide constraints on the value of the 

assimilation threshold. Consequently, we performed a sensitivity analysis by varying the assimilation 

threshold between 0.1 and 0.9, while varying the number of attributes from zero to nine. Figure 18 

illustrates the results. The region marked as black indicates a high proportion of relational match choices 

and then the contour fades down gradually. 

The slope of the contour indicates that the model readily generalizes the standards when both the 

assimilation threshold and the number of object attributes are low. This can be interpreted as follows. A 

low assimilation threshold corresponds to a higher willingness to accept the standards as belonging to 

the same category, which fits the assumptions of our model. A low number of object attributes indicates 

a leaner encoding i.e. not enough attention was paid to the object, or it may be unfamiliar. This is a 

second possible explanation for why some children chose the relational match for the Sequential 

condition. 

 

Figure 18: Sensitivity Analysis. 
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We have shown that a model of forced choice task can simulate the behavior found in (Christie & 

Gentner 2010). The invitation to compare, we argue, leads the child to aggressively attempt to form a 

generalization between the relational learning, as measured by responses in the forced choice task.  

4.2 Namy & Gentner (2002) Simulation 

Research on how children learn novel categories have resulted in a conflicting set of findings. On one 

hand, studies show that children’s categorization reflect understanding of deep conceptual properties. 

On the other, there are results that suggest that children tend to rely primarily on perceptual similarity 

for categorization (Namy & Gentner, 2002).  

Categorization requires grouping and generalizing objects that are perceived to be similar. An 

object/scenario will be categorized differently according to how it is represented. Subsequently, the 

conflicting findings might be explained by differences in the way children are encoding, perhaps due to 

the context and requirements of the task. The Namy & Gentner (2002) studies reconcile the conflict by 

means of structure mapping theory and provides insight into how representations can change based on 

the purpose of the comparison. 

As shown earlier, common labels invite structural alignment, in order to help the learner understand 

what makes them the same. In addition to emphasizing common structure, inducing comparison via 

common labels enables accessing conceptual commonalities via access to long-term memory that may 

not have been evident prior to structural alignment.  In other words, the process of aligning perceptual 

and lower-order relational information can give rise to the augmentation of representations with higher-

order relational commonalities.  

Namy & Gentner (2002) tested their hypotheses in two experiments.  In both experiments, they had 4 

year olds perform forced choice tasks involving simple daily objects (Figure 19). The first experiment was 
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designed to provide evidence for structural alignment as the driving mechanism behind elicitation of 

conceptual commonalities.  

The first experiment had two conditions. In the One-Kind condition, children were shown two standards 

from the same taxonomic category, e.g. two pieces of fruit. In the Two-Kind condition, the standards 

were from different categories. In both conditions, the standards were introduced with the same label 

and the children were invited to compare them (e.g. “This is a blicket and this is also a blicket. See how 

these are both blickets?”). Children were then presented with a forced choice task, where they had to 

choose from the alternatives (e.g. “can you tell me which one of these is a blicket?”). One of the choices 

was perceptually similar to both the standards.  The other choice was not perceptually similar, but 

belonged to the same taxonomic category of at least one of the standards.  

 

Figure 19: An example of stimulus from Namy & Gentner (2002). 
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Children from One-Kind condition preferred the category/taxonomic choice more often than the 

children in Two-Kind condition. This provides evidence that structure-mapping comparison can play a 

role perceiving conceptual commonality, thereby enriching children’s perceptual-centric representation 

with more conceptual information. 

In Experiment 2, Namy & Gentner (2002) investigated the role of common labels vs different labels in 

structural alignment and in seeking out conceptual commonalities. The stimuli from the One-Kind 

condition were used. Experiment 2 had two conditions. For the Unifying-Word condition, the standards 

were labeled the same.  For the Conflicting-Word condition the standards were assigned different 

labels. The results showed that the children who received standards with the same labels favored the 

category choice more often than the children who received conflicting labels. 

In summary, the Namy & Gentner (2002) results show that common labels invite structural alignment, 

which facilitates the perception of higher order relational commonality. We simulate the forced-choice 

task experiments from Namy & Gentner (2002) using our model and demonstrate that the model is 

capable of exhibiting behavior consistent with their results. 

4.2.1. Conceptual Augmentation and Candidate Inference Validation 

Here we recap two important aspects of the forced choice model for simulating Namy & Gentner (2002) 

experiments. First, when familiar objects are introduced with the same label and are compared, we 

instantiate their schemas, compare the instances and augment the compared cases with commonalities 

found from the mapping. Second, when the choices are familiar objects, we use their schemas to 

validate candidate inferences of the forced choice comparisons.  That is, the schema is instantiated and 

the instance is compared to the candidate inferences. The statements aligned in the mapping represents 

valid inferences and are used to augment the target (choice) case. Chapter 3 explains the processes in 
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more detail. The schemas are represented as SAGE persistent generalizations derived from contents of a 

children’s dictionary and from Wiktionary, for two of the items not found in the dictionary. See 

Appendix A for examples. 

4.2.2. Simulation Experiment 1 

The experiment used 10 sets of stimuli.  Each of the original stimuli consisted of 5 color drawings of real-

world objects. We encoded the stimulus sets using CogSketch.  Each stimulus was a single sketch with 

five subsketches, one per drawn object.  CogSketch allows importing images as backgrounds. We used 

this feature to import the scanned version of the original stimuli. Six Northwestern graduate students 

contributed by tracing over the images to create digital ink (Figure 20 illustrates).  As per the above, this 

simulation experiment contains two conditions: One-Kind condition and Two-kind condition. We model 

these as follows. 

 

Figure 20: An example of a traced version of an object from Namy & Gentner (2002) stimuli. 
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One-Kind Condition: Descriptions of the two standards are compared and the entity correspondences 

are used to identify seeds, i.e. conceptually labeled objects, for augmentation. The schemas 

corresponding to the conceptual labels are instantiated i.e. appropriate substitutions are made in order 

to create an instance, as shown in the Table 4. 

Schema: (ConceptSchemaFn Belt-Clothing) 

(isa (GenEntFn 0 0 (ConceptSchemaFn Belt-Clothing)) Belt-Clothing) 

(isa (GenEntFn 1 0 (ConceptSchemaFn Belt-Clothing)) Waist) 

(isa (GenEntFn 2 0 (ConceptSchemaFn Belt-Clothing)) Leather) 

(wornOn (GenEntFn 0 0 (ConceptSchemaFn Belt-Clothing))  

        (GenEntFn 1 0 (ConceptSchemaFn Belt-Clothing))) 

(mainConstituent (GenEntFn 0 0 (ConceptSchemaFn Belt-Clothing))  

                 (GenEntFn 2 0 (ConceptSchemaFn Belt-Clothing))) 

Instance created for seed: (isa Object-1 Belt-Clothing) 

(isa Object-1 Belt-Clothing) 

(isa (GenEntFn 1 0 (ConceptSchemaFn Belt-Clothing)) Waist) 

(isa (GenEntFn 2 0 (ConceptSchemaFn Belt-Clothing)) Leather) 

(wornOn Object-1 (GenEntFn 1 0 (ConceptSchemaFn Belt-Clothing))) 

(mainConstituent Object-1  

                 (GenEntFn 2 0 (ConceptSchemaFn Belt-Clothing))) 

Table 4: An example of a schema and its instance, given seed. 
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The instances are compared and the descriptions of the standards are augmented with the 

commonalities. An interim pool for the label is created and the augmented descriptions are added. As 

the comparison involves a common label, the assimilation-threshold is lowered to 0.1. As a result, a 

generalization is created, that captures both perceptual and conceptual commonalities of the standards. 

As in Christie & Gentner (2010) simulation, the probability cutoff is set to 0.6 for eliminating facts that 

do not appear in the shared structure from the generalization. 

The model compares the generalization to the choices. The augmented conceptual information in the 

generalization is projected as candidate inferences, as illustrated in Figure 21. Recall that the taxonomic 

choice belongs to the same category as the standards, which is reflected by its schema. Owing to that, 

most of the candidate inferences can be verified for the taxonomic choice, but not for the perceptual 

choice. This results in boosting the base-normalized score of the taxonomic-choice. Accordingly, the 

taxonomic choice is chosen as the winning choice 90% of the time for the One-Kind condition.  

 

Figure 21: Simulation of One-Kind and Two-Kind condition. 

 



64 
 
Two-Kind condition: The process is same as in the One-Kind condition. The schemas corresponding to 

the concepts are instantiated and compared. However, the standards are from different taxonomic 

categories. Consequently, the mapping between the schema instances does not have many aligned 

statements, indicating that the standards have low conceptual commonalities. As a result, a 

generalization is created that captures the perceptual commonalities but with an insignificant amount of 

conceptual content, as there were not many conceptual commonalities. 

 Perceptual Choice win Taxonomic Choice Win Tie 

One-Kind condition 10% 90% 0% 

Two-Kind condition 80% 0% 20% 

Table 5: Namy & Gentner (2002) Experiment 1 Simulation Results. 

The model compares the generalization to the choices. But unlike the One-Kind condition, most of the 

candidate inferences are cannot be verified via schema instantiation. This results in the perceptual 

commonalities dominating the match and hence the perceptual choice wins 80% of the time. Table 5 

shows the results. 

4.2.3. Simulation Experiment 2 

Experiment 2 uses the stimuli from Experiment 1 One-Kind condition. We simulated the conflicting label 

condition of Experiment 2 as follows. When same label invites alignment, differing labels could have an 

opposite effect. This might result in the children focusing on one standard while ignoring the other, or 

the children might engage in alignment but terminate it at an early stage (Namy & Gentner 2010). 

Consequently, they would not have enhanced the generalization with conceptual commonalities. We 

decided to test both possibilities via our simulation. 
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First, we simulated the possibility where the children might be focusing on only one of the standards. 

We expect this to be the default behavior of the model i.e. in absence of a common label, there will be 

different interim pools for different labels. The simulation was run with using only one of the standards 

as the base of the comparison. We tested both standards, i.e. for each stimulus we chose the first 

standard as the base for one experiment run and the second standard as the base for another run. The 

results are shown in Table 6. The model selected the taxonomic choice less than 10% of the time. 

Second, we simulated the possibility where the children might engage in alignment and may even 

generalize, but terminate early. We modeled this by lowering the assimilation-threshold, but switching 

off the conceptual augmentation capability of the model. So the standards were generalized, but not 

conceptually augmented using schema comparisons. Hence the resultant generalization will only 

capture the perceptual commonalities between the standards. As expected, the results are similar to the 

Two-Kind condition of experiment 1. The model chose the perceptual choice 80% of the time.  (Table 6) 

 Perceptual Choice Win Taxonomic Choice Win Tie 

Standard-1 as Base 100% 0% 0% 

Standard-2 as Base 60% 10% 30% 

Generalization (without 

conceptual augmentation) as Base 

80% 0% 20% 

Table 6: Namy & Gentner (2002) Experiment 2 Simulation Results. 

In both cases, the results are as expected i.e. in absence of common label, the model favors perceptual 

choice more than the taxonomic choice. The results do not help us in figuring out which one of the 

possibilities may have happened in absence of a common label. Nevertheless, we have shown that our 

model is consistent for either possibility and responds similarly to the children i.e. selects perceptual 

choice most of the time for the Experiment 2 conflicting label condition.  
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The last two simulations showed us how common labels help in acquisition and augmentation of 

relational abstractions, and in turn improve representations. In the next simulation, we show that even 

in the absence of labels, representational learning can happen within a short duration via progressive 

alignment. 

4.3 Kotovsky & Gentner (1996) Simulation 

Kotovsky & Gentner (1996) explored children’s performance on comparison tasks involving simple 

higher-order patterns, such as symmetry and monotonic increase (Figure 22). In each triad, the top 

figure is the standard, and the bottom two figures are the choices from which a participant must pick. 

One choice always has the same higher-order relationship between its entities as does the standard, 

while the other has the same entities as the relational choice, but permuted so that the relationship 

does not apply. The triads in Figure 22 illustrate the 2x2 manipulation, namely the polarity (same or 

 

Figure 22: An example of four types of triads for a size symmetry standard. 
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opposite) of the higher-order relation and the dimension (size or brightness) over which the relationship 

holds Children were asked to choose which one of bottom choices was most like the top one. No 

feedback was given at any time. However, some easy high similarity triads were provided as check trials. 

The Relational Shift hypothesis predicts that older children will do better than younger children, and 

that all children will do better when there are lower-order commonalities supporting the higher-order 

commonalities. The results were consistent with these predictions: 4 year olds performed below chance 

on all but the same dimension/same polarity stimuli, where they were above chance. By contrast, 6-

year-old and 8-year-old children were able to see the relational pattern to some degree without the 

support of first-order relational overlap, but better with it. The cross dimension/opposite polarity case 

was the hardest condition, even for eight year olds. Yet some children discovered this match over the 

course of the study. As Kotovsky & Gentner (1996) remark: 

 “The emerging appreciation of relational commonality can be seen in this comment by an eight year old, 

who after struggling with her first several cross-dimension matches, then excitedly articulated a 

startlingly apt description of relational similarity: “It’s exactly the same, but different!” She proceeded to 

choose relationally for all the remaining triads” 

 

 

 

 

Table 7: Order of triad pairs in progressive alignment condition in Kotovsky & Gentner 1996. 

Dimension Dimension of 
Standard 

High Order Relation 

same size monotonic-increase 

same size symmetry 

same color symmetry 

same color monotonic-increase 

cross size symmetry 

cross color symmetry 

cross size monotonic-increase 

cross color monotonic-increase 
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How can we explain such learning within less than 20 trials, without feedback? It requires that a child be 

able to detect that they do not know a good answer. There is informal evidence for this in that children 

in the study often puzzled over the cross-dimensional triads, saying things like “A dark one and a big one 

make daddies. The other one has two twins and a daddy on the side.” Children further need to figure 

out ways to re-represent the stimuli so that the choice becomes clear. This re-representation process is 

aided by the experience of comparing and aligning relational structure across trials, as Kotovsky and 

Gentner showed in a second study. 

In that study, 4-year-olds were given a progressive alignment sequence, as shown in Table 7: first 8 

same-dimension (and same polarity) triads, which were relatively easy to align; and then 8 cross-

dimension triads (also same-polarity). A control group received 8 initial size-change triads (so that they 

did not experience easy alignments over the saturation dimension. The progressive alignment group 

performed better on the subsequent cross-dimensional triads than did the control group). This suggests 

that successfully aligning the same-dimension triads led children to see the higher order patterns that 

they had formerly missed—that is, to re-represent the stimuli. We simulate Experiments 1 & 2 of 

Kotovsky & Gentner (1996) as follows. 

4.3.1. Simulation Experiment 1 

Recall that the four types of triads (ordered in terms of predicted difficulty) are: 

1. Same dimension/same polarity (SDSP) 

2. Same dimension/different polarity (SDDP) 

3. Different dimension/same polarity (DDSP) 

4. Different dimension/different polarity (DDDP) 
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We created two ordered sets of 16 triads grouped by polarity, shuffled so that there would be no more 

than two of the same triad types consecutively, as in Experiment 1 of Kotovsky & Gentner (1996). In 

particular, as in that study, same-dimension triads (like the top left triad in Figure 22) and cross-

dimension triads (bottom left, Figure 22) were mixed semi-randomly across the study.  

We evaluated our model on the two sets. The model performs the triads task sequentially following the 

determined order. The model uses three parameters. The assimilation threshold (0.95) is used by SAGE 

WM to determine when to assimilate winning mappings into generalization. It is also applied during the 

reminding phase to choose the most similar generalization. The re-representation threshold (0.55) 

controls when a mapping between a base and a target looks promising enough to attempt re-

representation. The size-limit (5) determines the maximum number of items in the SAGE-WM interim 

generalization pool.  

When the model has no clear choice, it does not make a decision, unlike the children, who always had to 

make a choice. (Importantly, the children were not given feedback as to whether their choices were 

correct or not.) The Kotovsky & Gentner experiments measured the proportion of relational responses. 

Table 8 shows the results for four year olds along with the model’s responses. As noted above, the 

correct choice is always the relational choice, so the children were above chance only for the SDSP case. 

 Children 
Relational Response % 

Model 
Relational 

Response % 

Model 
Non-Relational 

Response% 

Model 
No-choice 

SDSP 68% 100% 0% 0% 

SDDP 49% 0% 87.5% 12.5% 

DDSP 49% 37.5% 0% 62.5% 

DDDP 48% 12.5% 12.5% 75% 
Table 8: Proportions of choice types for Kotovsky & Gentner (1996) Experiment 1 Simulation. 

The results of the model are qualitatively consistent with the children’s behavior. First, the SDSP cases 

are easiest. The model gets 100% of these correct because the automatic encoding process, using 
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CogSketch, is deterministic and uniform, whereas children (68% correct) are likely to vary more in their 

encodings. Second, when the no-choice model answers are randomly distributed between the two 

possible choices, the model is at chance for DDDP, somewhat better than chance for DDSP, and far 

worse than chance for SDDP.  

In the SDDP stimuli, there is sufficient relational overlap between even a non-relational standard to 

make the base-normalized comparison scores different enough to satisfy the system that it has a 

reasonable answer. We suspect that increasing the required difference in similarity between the two 

alternatives would eliminate this behavior. In the DDSP case, while the same dimension triads were not 

consecutive, they were sometimes close enough that occasionally interim generalizations were getting 

created. This suggests that our model can form interim generalizations a bit more readily than children 

do. 

4.3.2. Simulation Experiment 2 

Experiment 2 was designed to test the Progressive Alignment hypothesis, i.e. that children who first 

received highly similar (i.e., highly alignable) closely spaced trials could then do tasks that were beyond 

them previously. The stimuli consisted of only same polarity triads. There were two conditions. 

1. Experimental condition: Eight same dimension triads followed by eight cross dimension triads. 

The same dimension triads consisted of both saturation-change and size-change triads. To 

encourage progressive alignment, the triads were ordered as shown in Table 7. The children 

received two of each type.  

2. Control condition: Same as in the progressive alignment condition, but (as in the Kotovsky & 

Gentner 1996 study) the eight same dimension triads are all size-change triads, with no 

saturation-change triads. 
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The procedure is the same as in Simulation Experiment 1. The proportions of relational choices are 

shown in Table 9. Consistent with the human pattern, the model was extremely accurate on the same-

dimension triads in both conditions.  

Experiment 2 conditions Dimension Relational choice Non-relational choice No choice 

Experimental (PA) Condition Same 100% 0% 0% 

Different 100% 0% 0% 

Control Condition Same 100% 0% 0% 

Different 50% 0% 50% 
Table 9: Proportions of choice types for Kotovsky & Gentner (1996) Experiment 2 Simulation. 

Also consistent with the human data, the model was far more accurate on the subsequent cross-

dimensional triads in the experimental (progressive alignment) condition than in the control condition. 

In the progressive alignment condition, the model formed four interim generalizations for size-change vs 

saturation-change based on the type of change, symmetry or monotonicity. Examples of how the model 

forms and uses interim generalization are illustrated in Figure 23 and Figure 24 respectively. 

 

Figure 23: Creation of Interim Generalizations, during SDSP triads in Experiment 2 PA condition. 
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When the model retrieves an interim generalization as a reminding, only the overlap between the 

reminding and the portion of the stimulus is kept. The average-normalized-score of the relational 

choices increase as the non-contributing object attributes are filtered out.  This drove re-representation, 

leading to relational choices being preferred. Figure 25 shows the representational change to the size-

symmetry standard. First, the object attributes are filtered out because of the reminding and then, the 

dimension centric relations (e.g. (biggerThan A B) is re-represented into a dimension 

independent for, (e.g. (greaterThan (Area A) (Area B)). 

By contrast, in the control condition, the model did not form any interim generalizations involving 

saturation-change. These results are qualitatively consistent with the results of Kotovsky & Gentner 

(1996). Like the children, the model performed better on cross-dimensional triads after progressive 

 

Figure 24: Remindings from interim generalization pool, for a cross dimension triad in Experiment 2 (PA) condition. 
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alignment on both dimensions than after progressive alignment only on the size/area dimension. Thus, 

the simulation has shown that the forced choice model can simulate the progressive alignment effects 

on 4 year olds found in (Kotovsky & Gentner 1996).  

However, there are some discrepancies. First, the simulation performs too well, especially on the same-

dimension triads. The model’s high degree of uniform encoding, and aggressive use of re-

representation, appears to be going beyond what the children are doing. Perhaps, the differences may 

be partly due to the variability in encoding among children. Second, our model currently does not do 

several things that children probably do during the course of development. For example, it does not 

change its encoding strategy to shift to a more abstract comparative relation, nor does it introduce a 

new higher-order relationship (symmetry or monotonicity) to encode the newly-discovered pattern. 

 

Figure 25: Graphical representation of the relational choice during different stages. 
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Since the model’s behavior is qualitatively consistent with 4 year olds without these operations, it may 

be that the children are not doing this, but there is insufficient evidence to tell one way or the other.  

Finally, we note that the simulation’s responses are uniform and performance improves rapidly, 

whereas children exhibit a wider range of behavior. For example, even the 8 year olds in the original 

experiment were not at ceiling in this task.  We predict that expanding the range of re-representation 

operations available, as well as looking for re-representation opportunities in both pairs, would widen 

the search space of the model and perhaps capture the more gradual improvement trajectory of 

children. 

In summary, the results of the simulations support the claims of the thesis embodied in the forced 

choice model. We have demonstrated that the model can simulate comparison driven representational 

change, and the subsequent improvement in relational responding, observed in young children in the 

forced choice tasks. 

Chapter 5: Related work 

Representations are important for modeling cognition, and changes in cognitive capabilities are often 

tied to changes in representations (Dietrich & Markman, 2000). Gentner and her colleagues have done 

many studies regarding the dynamics of relational representations and its importance to analogy.  This 

thesis builds on their work to provide a computational, algorithmic level explanation of representational 

change driven by language and progressive alignment, within the domain of forced choice tasks.  

This chapter compares other relevant psychological and computational research. First, we summarize 

three psychology theories that addresses the issue of representational change, Karmiloff-smith’s 

representational redescription (Karmiloff-Smith, 1995), Siegler’s overlapping-waves theory (Siegler, 
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1998) and a dynamic systems approach for representational change (Stephen, Dixon, & Isenhower, 

2009). Second, we discuss DORA, a computational model of learning relational representations 

(Doumas, Hummel, & Sandhofer, 2008), and a Bayesian model for learning relational representations 

(Kemp & Jern, 2009). 

5.1 Cognitive psychology theories 

5.1.1. Representational redescription hypothesis 

The Representational Redescription hypothesis (RR) (Karmiloff-Smith, 1995) outlines an iterative process 

of how representations change during development.  The RR framework posits that representational 

competency progresses through four different levels: Implicit (I), Explicit-1 (E1), Explicit-2 (E2) and 

Explicit-3 (E3). The flexibility of representations and their access to verbal explanation increases with 

each level. The implicit level (I) is the most inflexible and the explicit-3 level (E3) is the most flexible. RR 

predicts that the progression through the levels follow a U-shaped curve i.e. children’s performance in 

the task drops when they progress through intermediate levels of representation due to 

overgeneralization.  

 

Figure 26: Balance Beam Task 
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For example, Pine & Messer (2003) tested the RR-model via children’s progression through a balance 

beam task, illustrated in Figure 26, consisting of symmetrical and asymmetrical weights. As predicted by 

RR-model, initially children were eventually able to balance both types of beams but were unable to give 

any verbal explanation. This is interpreted as indicating that they were operating at the implicit level (I). 

Children then go through a phase where they appear to focus on the importance of weight for 

balancing, but overgeneralization causes them to perform poorly with asymmetrical beams. This level is 

soon followed by weight-based verbal explanations of why the beams did not balance. Eventually, they 

attain mastery with weight-and-distance based explanations of why the beams balance (E3).   

There are a number of studies that provide support for the RR model (Butler, 2007). RR attempts to 

explain cognitive development in phenomenological terms rather than specifying precise mechanisms of 

change (Karmiloff-Smith, 1995).  In contrast, our model gives a detailed description of a set of 

operations and representations sufficient for the computational implementation of representational 

change. 

5.1.2. Overlapping Waves Theory 

Siegler’s overlapping waves theory (Opfer & Siegler, 2007) focuses on the development of problem 

solving abilities in young children. According to this theory, children know and use a variety of problem 

solving approaches involving different strategies, rules and representations. The theory posits that 

children formulate new rules by noticing and including potential explanatory variables whenever their 

observations conflict with expectations. Thus a child might start out using a rule based on only the 

variable of weight to solve a balance scale task. With experience and feedback, they learn that rules 

involving both length and weight are better predictors of the observations.  In other words, cognitive 

development involves meta-cognitive processes that change which strategies and representations are 
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used, and enables discovery of new ones by adaptation. But observing a conflict or other means of 

feedback is not always necessary for learning. For instance, children in Kotovsky & Gentner (1996) 

studies showed improvement in performance on cross-dimension tasks after experiencing progressively 

alignable same-dimension tasks. They did this without any feedback from the experimenter. 

Overlapping waves theory does not account for such changes. It does not provide an account of the 

mechanisms behind the discovery of potential explanatory variables nor the mechanisms that drive 

strategy change.     

5.1.3. Dynamic systems approach 

Stephen, Dixon, & Isenhower (2009) approach representational change from a dynamic systems theory 

perspective. They propose that new representations emerge from self-organization as explained by the 

theory of non-linear dynamics.  Self-organization occurs via spontaneous breaking and reforming of 

constraints binding the parts of the system. The change is triggered by a critical instability i.e. when the 

entropy of the system reaches a critical point.  

They tested their hypothesis in a gear system domain, where the participant is tasked with resolving the 

direction of rotation of a target-gear given the rotation of a driving gear. Their results are consistent 

with their hypothesis.  However, they do not provide a computational model, nor is it clear that it could 

model any of the phenomena modeled in this work. 

Unsurprisingly, none of these psychological models provide detailed representation or process models 

of representational change.  This thesis, while not directly handling the same range as the models 

above, provides an algorithm-level account, which leads to new insights (e.g. postulating interim 

generalizations) and provides new capabilities for cognitive architectures and AI systems. 
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5.2 Computational models 

5.2.1. Discovery of Relations by Analogy (DORA) 

Doumas et al. (2008) present a theory of how structured relational representation can be learned from 

unstructured nonrelational examples. DORA learns new relations by detecting relational and featural 

invariants across experience. DORA is a symbolic-connectionist model. It is based on distributed 

semantic network activation and uses a set of algorithmic operations for discovery and predication of 

new relations (see Figure 27 from Doumas et al. (2008)). 

1. At the bottom level, there are distributed semantic units that code features of objects and 

relations. 

2. Next layer has Predicate-Object (PO) units that code for individual predicates and objects 

(Example: Larger, Fido) 

3. The third layer, called the Role Binding layer (RB), binds the attributes to objects to create single 

place predicates (example: larger (Fido)) 

 

Figure 27: DORA’s relational representations. 
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4. On the top, we have the predicate layer (P), which binds predicates into multi-place relations. 

(example: bigger (Fido, Sara)) 

DORA represents relational structures as linked-set of role-filler pairs. DORA starts with a holistic 

representation of hand-coded object features that roughly corresponds to perceptual invariants. For 

example, the visual invariants include ‘round’, ‘square’, ‘shiny’ and relational invariants include ‘more’, 

‘less’, ‘same’.  

When propositions enter working memory, DORA sequentially activates a series of semantic units 

corresponding to the propositions. For example, assume that there are two objects in current focus: a 

red truck and a grey elephant. The semantic units corresponding to the object (elephant and truck) and 

their attributes such as grey, big, red, etc. will get activated. The role-filler binding is disambiguated by 

the temporal proximity of activation i.e. the binding of elephant to grey (grey elephant) instead to red is 

achieved by activating ‘grey’ right before or close enough to the activation of ‘elephant’. 

DORA’s operation can be explained using four sets of propositions: the driver, the recipient, the 

emerging-recipient and the long-term memory (LTM). The semantic units are shared by all them. The 

driver is the set of propositions that are current focus of attention. Activation of semantic units that 

corresponds to the driver results in activations in LTM and the propositions are retrieved into the 

recipient. Roughly, driver represents the new situation, which reminds it of a similar situation 

encountered before (from LTM) and now have access to the remindings in working memory represented 

by the recipients (Hummel & Holyoak, 1997).  

DORA, like its predecessor LISA, champions combining analogical retrieval with analogical mapping.  

After retrieval, the units in the recipients are mapped to the same type of units in the driver, creating 
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mapping-hypotheses.  The mapping-hypotheses are strengthened based on a simple Hebbian learning 

rule, as a product of activations of both the driver unit and the recipient unit.  

DORA learns new single-place predicates using a simple algorithm for intersection discovery. For 

example, when DORA compares an elephant and a bear, it attempts to map them. Thanks to the 

mapping the units in driver can activate the units in the recipient which in turn passes excitation to the 

semantic units. Thus semantic units connected to both elephant and bear gets more excitation than 

semantic units unique to just one. DORA uses this higher excitation to hypothesize a potential single-

place predicate and recruits a new PO unit i.e. the semantic units corresponding to ‘big’ will be more 

excited than others, hence a new PO for ‘big’ is predicated. Initially, the PO for ‘big’ may have unwanted 

featural overlaps, but gets refined progressively on encountering multiple examples. 

Consider a scenario where the driver contains propositions about a Dog which is ‘big’ and ‘brown’, and a 

Cat which is ‘small’ and ‘furry’. Assume that DORA has already seen a similar configuration before of 

(say) a bear and a fox that are big and small respectively. DORA will be reminded of the bear-fox 

scenario when presented with the dog-cat scenario, and will map them to each other, such that POs 

match POs and RBs to RBs. This results in a mapping between ‘big’ and ‘small’ from both scenarios. 

DORA keeps track of activations and thus notices a systematic temporal pattern of activation between 

the units in both the driver and recipient. Consequently, DORA hypothesizes a new double-place relation 

such as ‘bigger-than’. In simple words, activation of ‘big’ in driver (dog-cat) will activate the ‘big’ in the 

recipient (bear-fox) and likewise for ‘small’ which eventually leads to the predication of ‘bigger-than’. 

On encountering more examples, DORA refines the semantic features for the learned predicates using 

the same intersection discovery algorithm. Even though, learning higher-order relations, such as 

“cause”, was not part of the simulations, Doumas et al. (2008) claim DORA can learn higher-order 
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relations the same way as it learned the ‘bigger-than’ relation. Additionally, they claim that the 

predicate refinement applied iteratively will eventually lead value-independent relation such as greater-

than (size (a), size (b)) to emerge from value-dependent relation like bigger-than (a, b). 

Despite an interesting attempt to model relation discovery and predication, DORA leaves many 

questions unanswered. DORA is based on a prior model of analogy called LISA, which has issues with 

scalability (Gentner & Forbus, 2011). It departs from LISAs approach by using unique semantic units and 

by addressing relation discovery. However, it suffers from limitations in terms of scalability similar to 

LISA.  The original version of LISA is incapable of handling higher-order relational structures, unless the 

working memory limitations are alleviated via a new mechanism called group units (Hummel, Licato, & 

Bringsjord, 2014). 

 DORA recruits new PO unit whenever two existing predicates or objects are compared. There is a 

potential for explosion for PO units. DORA alludes that external constraints imposed by verbal labeling 

or adult instruction will keep the search space manageable. We agree that language provides benefits, 

but still it is far from likely that in the absence of language humans would exhibit a similar behavior. 

Additionally, the claim of using unstructured inputs must be viewed with caution due to the hand-coded 

nature of the inputs.  

Furthermore, in our view, we question the idea that children start with the concept ‘big’ and ‘small’ 

before the discovery of ‘bigger-than’ relation. Studies suggest that infants are sensitive to identity 

relations (Tyrrell, Stauffer, & Snowman, 1991) and can acquire rules about physical events (Baillargeon, 

2002). Nine-month-old infants are capable of generalizing and over hypothesizing (Dewar & Xu, 2010). 

Infant relational capabilities might be highly restricted to modality, dimension and context. Likewise, 

their representation could be more object-centric. Nevertheless, they must possess some rudimentary 
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relational capabilities, as observed in other primates and even ducklings (Martinho & Kacelnik, 2016). 

Finally, the claim that simple intersection based predicate-refinement will eventually lead to the 

formation of dimension-independent relation from dimension-specific relation needs further explication 

and evidence. 

5.2.2. Bayesian approach for learning relational categories 

Kemp & Jern (2009) present a Bayesian model for learning and using relational categories. The model is 

based on the generative theory of similarity (Kemp, Bernstein, & Tenenbaum, 2005), which states that 

similarity judgements are inferences about generative processes. Every object is the outcome of a 

generative process, and two objects are similar if they are likely to have been generated by the same 

process. 

The model starts with schemata represented using a logical language. The schemata correspond to 

abstractions created after encountering multiple instances of a concept. According to Kemp & Jern 

(2009), the schemata could be created using a Hierarchical Bayesian Approach described in (Gelman, 

Carlin, Stern, & Rubin, 2014). Each category is associated with a schema, that helps specify valid 

instances of the category. Figure 28 illustrates a schema s, the group g (randomly sampled valid 

instances) and the observation: o partially observed version of g. Given the observations, the model can 

select the most probable schema from the hypothesis space. 
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The hypotheses space is constructed using the templates in Figure 29.  The templates are instantiated by 

substituting three dimensions: size, color and ball-position for Di and three values along each 

dimensions {1, 2, 3}. Consequently, the hypothesis space consists of 1568 distinct schemas and roughly 

one million conjunctions.  

 

Figure 28: The Schema s, randomly sampled group g and partial observation o (Kemp & Jern 2009) 

 

 

Figure 29: Templates used to construct the hypothesis space 
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They used a triad task for the experiments. They varied the dimensions of size, color and position-of-the-

ball to create instances based on schemas. In the first experiment, the participants were shown a 

standard, three cards from the same category i.e. instances created using the same schema, and asked 

to decide which of the two choice groups (three cards each) belong to the same category.  The model 

was run with the same stimuli given to humans.  

The model works as follows. Given the standard group ge and the two choice groups g1 and g2. The 

model computes the relative probability of the two hypotheses.  

h1: ge and g1 are instances of the same schema, and g2 is sampled randomly from other groups. 

h2: ge and g2 are instances of the same schema, and g1 is sampled randomly from other groups. 

The priors for h1 and h2 are set uniformly i.e. P(h1) = P(h2) = 0.5. The model computes the conditional 

probability P (h1| ge, g1, g2) and P (h2| ge, g1, g2) by integrating over all schemata in the hypothesis 

space. The conditional probability of h1 will be higher if ge and g1 are instances of the same schema. 

Likewise, probability of h2 will be higher if ge and g2 are instances of the same schema. Based on which 

one is higher, the appropriate choice is chosen indicating the model’s preference. They compared 

model’s predictions to human response and found that for nine out of ten cases the model prefers the 

same choice as humans. 

One serious limitation of the model is that there is no clear explanation of the origin of the hypothesis 

space. Also, their explanation of how the schemata could be learned via encountering instances, does 

not describe the mechanisms and the representations used for learning.  Kemp & Jern (2009) note that 

two of their triads are similar to Kotovsky & Gentner (1996) triads and the model, as well as humans in 

their experiments, preferred the relational match. However, it is unclear how this model could account 
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for the children’s improvement in cross dimension triad tasks, after seeing progressively alignable same 

dimension triads. Furthermore, Bayesian approaches are typically considered to apply at Marr’s 

computational level, rather than algorithmic level.  Consequently, they provide less insight at the level of 

representations and processes. 

Chapter 6: Conclusion & Future directions 

This thesis presents a computational model of forced choice tasks.  It proposes mechanisms of 

comparison driven representational change, evaluating them via simulating cognitive psychology 

studies. Chapter 1 presented the claims of the dissertation, and a summary of the studies simulated. 

Chapter 2 reviewed the background of the Companion cognitive architecture and the extensions we 

made to it.  Chapter 2 also introduced SAGE-WM, our model of interim generalizations.  Chapter 3 

presented our model of forced choice tasks and a general analysis of our model’s response to relational 

match forced choice tasks. Chapter 4 described the three simulations performed using the model, 

providing empirical evidence to support the claims of the dissertation. In chapter 5, we compared our 

approach to other psychology theories and cognitive models of representational change. 

Here we start by revisiting our claims in light of the evidence provided by the simulations and close with 

a discussion of limitations and outline opportunities for future work.  

6.1 Claims Revisited 

Here we discuss each claim of the thesis. 

Claim 1: Recent experiences affect how new problems or tasks are encoded. This can be modeled using 

interim generalizations.  
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The idea that recent experience affects how a new situation is encoded is not a new one.  It is the 

algorithm by how this is done that is a novel contribution. We implemented SAGE-WM, a model of 

interim generalizations, to support this claim.   

According to the claim, only positive (successful) experiences are assimilated in the interim 

generalization pool for recent experiences.  This means that remindings from this pool tend to highlight 

representational structure that were useful for successful completion of the task, and irrelevant 

elements filtered out. For example, filtering out non-contributing attributes in cross-dimension triads of 

Kotovsky & Gentner (1996) simulation enabled the model to converge on the relational choice.  

Claim 2: Forced choice tasks can be modeled using structure mapping comparisons.  

1) The difference in structural evaluation scores between a standard and the alternatives is used 

for selecting a winning choice.   

2) Verification of candidate inferences produced by comparisons is used to improve mappings. 

3) When comparisons result in scores that are too close to discriminate, re-representation is 

triggered to attempt to differentiate between the alternatives.  

The psychology experiments simulated here had no experimenter feedback. Nevertheless, classifying 

experiences as positive or negative is important for the model to categorize and utilize representations. 

The model determines success or failure for itself, based on whether or not the similarity between the 

standard and the choices are sufficiently different.  That is, discriminability is measured by the 

differences in base normalized structural evaluation scores of the mappings.  The success of the three 

simulations all provide evidence for this claim.  
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The second part of the claim is not a new idea and is probably the least controversial. Structure mapping 

comparison results in the projection of inferences based on the structural overlap. The inferences are 

only surmises and need verification before use.  

The descriptions computed by people are likely to contain both perceptual and conceptual knowledge.  

However the initial coding is produced, it is highly unlikely that it includes everything that is known 

about an entity.  Thus allowing the model to draw on additional background knowledge when verifying 

candidate inferences enables it to be influenced by knowledge not in the initial encoding.  For instance, 

the Namy & Gentner (2002) simulations show how candidate inference validation tilts the comparison in 

favor of the taxonomic choice for the One-Kind condition. 

Re-representation is important for adding flexibility to analogical matching. However, since an arbitrary 

number of re-representations are in principle possible for any description, this process must be tightly 

controlled. Our third claim argues that when the choice to select is not clear, re-representation is 

invoked on the standard and the choice which is nearest, as judged by the average-normalized structural 

evaluation score.  For example, in Kotovsky & Gentner (1996) simulation, for the cross dimension stimuli 

in the progressive alignment condition of experiment 2, the remindings from the interim generalization 

pool helped in selecting the right candidate for re-representation. After re-representation, the relational 

choice wins, as rewriting dimension specific concrete relations into dimension-independent relations 

enabled the model to recognize the common relational structure. Thus, we showed how impasses can 

be resolved using re-representation. 

Claim 3: Labeling two examples the same triggers a comparison for the purpose of understanding the 

meaning of the label. This can be simulated using structure mapping comparisons and generalizations. 

1) The examples that are labeled the same are compared and assimilated into a generalization.  
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2) The generalization highlights commonalities and deemphasizes dissimilarities. 

3) Examples are augmented with conceptual commonalities if possible, resulting in enhanced 

generalizations. 

This claim addresses the importance of language/labels in representational change. There is a 

considerable literature showing that labeling sets of objects can facilitate children's forming categories 

around those objects. Subsequently, when objects share a label, there is an increased tendency to 

assimilate them into a generalization.  The commonalities are highlighted when the objects are 

compared, and is captured via analogical generalization. We simulate this using SAGE and SAGE-WM. 

The increased tendency to assimilate is simulated by lowering the assimilation-threshold. The Christie & 

Gentner (2010) simulation shows how labeling and comparing objects results in generalizations that 

highlight relational commonalities while de-emphasizing (mostly perceptual) differences. This enabled 

the model to notice the relational commonalities between the standard(s) and the relational choice, and 

hence selects the relational choice as the winning choice.  

The third part of the claim states that comparing familiar objects that are labeled the same results in an 

enriched generalization. The model enriches the generalization by augmenting the descriptions with 

background knowledge. Instead of bringing in all that is known about the objects compared, only the 

commonalities, if they exist, are considered. This is done by instantiating and comparing the schemas 

corresponding to the objects. The Namy & Gentner (2002) simulation shows how comparing familiar 

objects, which are from same category results in enriching the generalization with conceptual 

commonalities. As a result, the model chose the taxonomic choice more often than the perceptually 

similar choice, thanks to the enriched conceptual content in the generalization.  
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We revisit the forces of representational change with respect to the relational match forced choice task 

and the response pattern of the model. The model, similar to the children in the experiments, initially 

favors the perceptual or non-relational choice. However, over experience and learning, the model starts 

responding relationally, similar to the children in the experiments. This, as shown via the simulations, 

happens as the representations of the base and the targets change. Accordingly, another way to 

understand the forces of representational change is as forces acting along the dimensions of 

commonalities, as shown in Figure 30. This allows us to understand the forces that shifts/alters the 

representations somewhat independent of our representational assumptions. 

For example, in Christie & Gentner (2010) simulations, the standards share relational but not perceptual 

commonalities. The standards are labeled the same and hence generalized. The generalization is chosen 

as the base of the forced choice comparison, as opposed to a single standard in the Solo-Condition. Note 

 

Figure 30: Forces of representational change 
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that the base of Comparison-Condition (the generalization) has the same relational content as the base 

of Solo-Condition (single standard). But the generalization has lower perceptual commonalities with the 

perceptual choice. Thus we can view the effect of abstraction as exerting a downward force, by reducing 

shared attributes, changing the response of the model towards the relational (green) side.  

Conceptual augmentation happens in two ways, enriching the generalization via schema comparison 

and via candidate inference validation. For example, in the simulation of Namy & Gentner (2002) One-

Kind condition, the conceptual augmentation (both via enriching generalization and via candidate 

inference validation) increases the commonalities between the standard and the taxonomic choice, 

thereby exerting a rightward horizontal force.  

 Similarly, re-representation enables the model to notice relational commonalities that were not noticed 

earlier due to representational variance. For example, in Kotovsky & Gentner (1996) simulation, re-

representation increases the relational commonality between the standard and the relational choice, 

thus, exerting a rightward force and changing the response of the model accordingly. 

The simulation results presented here provide evidence that our model shows a plausible account of 

representational change within the relational match forced choice tasks. 

6.2 Limitations and future work 

Representational change is long-term. In Kotovsky & Gentner (1996) Experiments, adults and older 

children, but not 4 year olds, were able to appreciate relational similarity even if not supported by lower 

order similarity. Likewise, several studies show that adults exhibit exceptional relational competence 

compared to young children.  This clearly indicates that representations evolve over years of experience 

and the representational knowledge is retained over time.  In our model, we capture representational 
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change that happens within-task and between-task within a single experimental session. We realize that 

there is much to be done to model long-term representational learning.  

6.2.1. Simulating long term representational change 

To capture human-like representational change over long term, capabilities to gather statistics about the 

use of representational elements and encoding strategies will be needed. Ultimately, this information 

leads to changes in encoding strategies.  For instance, (say) a forced choice task that often requires 

comparing descriptions involving two different dimensions. The relations that are dimension-general 

(e.g. (greaterThan (Size A) (Size B))) should be preferred over dimension specific relation (e.g. 

(biggerThan A B)).  This could be derived by maintaining statistics over situations which specifically used 

this transformation.  

The process of applying transformations to elements of working memory is analogous to the rule 

matching operation of a production rule engine. Many production rule engines utilize rule-mapping 

algorithm like RETE (Forgy, 1982) which uses a tree-structured network for indexing production rules 

(Laird, 2012).  We believe that analogical retrieval could also be a very effective tool for retrieving and 

applying transformation rules. The model can maintain transformation rules as generalizations in SAGE 

and retrieve it using MAC/FAC. In a production system, a rule is triggered when its left hand side 

matches elements in the working memory. This ensures that the rule is appropriate for the context. The 

results of SAGE retrievals would have to be tested to ensure that the antecedents of candidate 

inferences are valid in the current situation.  

6.2.2. Learning new relations 

An important theme that has emerged from the study of analogy, both empirical and theoretical, is that 

solutions to problems depend critically on what is represented and how it is represented. Models based 
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on relational representations, including ours, contribute to understanding the nature of representations 

and how they change. However, little work, has been done to address the problem of how new relations 

are acquired in the first place.   

We believe that the model will greatly benefit from a mechanism to learn new predicates. For example, 

the model could have introduced new predicates for “symmetry” and “monotonicity” in Kotovsky & 

Gentner (1996) stimuli based on the reoccurrence of relational patterns.  Adding predicates to concisely 

summarize such patterns could help create higher-order structure to represent the stimuli, thereby 

making mapping and transfer more efficient. 

6.3 Simulating other tasks 

We modeled relational match forced choice tasks to provide evidence for our hypotheses about 

comparison driven representational change. There are many other tasks that has been successfully used 

in developmental studies to investigate representational change (Pine & Messer, 2003) (Opfer & Siegler, 

2006). In the future, we plan to extend the model to support a wide range of tasks used in 

developmental psychology experiments. Given the current capabilities of our system, there are two 

tasks that are within immediate reach, the balance scale task and the card sorting task. 
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6.3.1. Balance Scale Task  

The balance-scale task of naïve or intuitive physics has been of interest to developmental psychologists 

since its introduction by Piaget (e.g., Inhelder & Piaget, 1958). The task involves making a prediction 

about the state of a two-armed balance, which side will tip or whether it stays balanced, based on a 

configuration of weights (pegs) at particular distances from the fulcrum. The task is appealing because of 

age-related trends in performance and has emerged as an important problem for researchers 

attempting to model cognitive/ representational dynamics (Siegler & Chen, 1998). 

CogSketch, our sketch understanding system, has been used successfully as a part of a variety of 

computational experiments in a range of domains. CogSketch computes qualitative representations, but 

if necessary, relevant quantitative information can be computed (e.g. “distance of a peg from the 

fulcrum in balance-scale-task) and included into the descriptions (Chang & Forbus, 2012). Pine & Messer 

(2003) used a picture based balance scale task, where the participant was provided with a set of pictures 

 

Figure 31: An example of sketched version of Balance Scale Task. 
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and asked to choose the one that they think is balanced. This can be simulated with little modification to 

the current infrastructure. The balance scales in different configurations can be represented as 

CogSketch subsketches. Then the companion can be asked to pick “which one of the scale is balanced?”.  

We can enable CogSketch to include distance & size information of the pegs in the descriptions for the 

subsketch. An example is illustrated in Figure 31. 

Even though balance-scale problems can be viewed as a forced-choice task, the model presented here is 

not sufficient to cover them.  However, we conjecture that extending our model to use Friedman’s 

Assembled Coherence Theory of conceptual change  (Friedman, 2012) would be able to handle such 

learning trajectories, since it includes mechanisms for uncovering causal variables based on observed 

behaviors. 
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6.3.2. Card Sorting Tasks 

Card sorting is another task widely used by developmental psychologists to study a range of 

phenomenon such as executive functions (Zelazo, 2006), causal reasoning (Rottman, Gentner, & 

Goldwater, 2012), etc. We are interested in two versions of the task, the dimensional change card sort 

task (DCCS) and the Wisconsin card sort task (WCST) (Figure 32). 

In dimensional change card sort (DCCS), children are required to sort a series of bivalent test cards, first 

according to one dimension (e.g., color), and then according to the other (e.g., shape). DCCS measures 

cognitive and representational flexibility. The children are given clear instruction about what they are to 

do in every trial. In contrast, the Wisconsin card sort task (WCST) requires the children to discern the 

sort criterion by themselves based upon “correct” versus “incorrect” feedback given by the 

experimenter. After correctly matching a card according to a stimulus feature (color, form, or number) 

for N consecutive trials, the matching feature changes.  Successful performance on the Card Sorting 

 

Figure 32: Card Sorting Tasks 
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Tasks requires determining the correct response in dimension and then maintain responding to that 

dimension. This requires switching the encoding strategy based on the dimension to focus. Card sorting 

tasks might be modeled by representing cards using subsketches, with similarity used to determine 

which subsketches should be placed together.   

6.4 Alternative strategies for triggering and using re-representation 

Our model uses re-representation to resolve failures of discriminability.  As noted above, re-

representation can be computationally expensive and hence must be under tight control.  A different 

strategy from what was used in this work might be utilized to introduce higher-order structure to 

produce more systematic descriptions.  

Studies have shown that analogical reasoning depends on executive resources of working memory. For 

example, dual-task experiments provide evidence that there is interference in performance from a 

  

Figure 33: Symmetry generalization as reminding for cross dimension triad’s standard and relational choice. 
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concurrent WM task (Cho, Holyoak, & Cannon, 2007).  The results of (Bor, Duncan, Wiseman, & Owen, 

2003) suggest that effective reorganization of working memory content can decrease task difficulty. 

Participants who received a structured sequence of stimuli, designed to encourage reorganizing them 

into higher level chunks, performed significantly better in a spatial span task. Likewise, there is evidence 

that the gestalt principle of similarity, which leads to grouping similar elements, benefits visual working 

memory (Peterson & Berryhill, 2013). While working memory capacity is still murky, reducing working 

memory load seems like a psychologically plausible signal for re-representation.    

Here is a potential way to extend our model to cover this.  The basic idea is to allow re-representation 

during the assimilation of winning mappings and also during the application of remindings from interim 

generalization. We illustrate with an example from Kotovsky & Gentner (1996) simulation. After 

encountering the size symmetry triads, the model has a size symmetry interim generalization in the 

pool. When the model successfully completes the color symmetry triad, it adds the winning mapping to 

the interim pool. The pressure for re-representation could come from the necessity to keep working 

memory load small. That is, instead of adding a new element into the pool, the model attempts to 

assimilate it into an existing interim generalization. That way the model could reduce the number of 

elements in the pool and as a result, the size of the working memory. This strategy for triggering re-

representation could result in the creation of a symmetry generalization and a monotonicity 

generalization after encountering all same dimension triads. 

Later, when the model is given the first cross symmetry triad, it attempts to retrieve remindings from 

the pool for the standard and the choices. We propose that re-representation could be allowed during 

this phase.  Instead of having to encode and construct a new description, the model could prefer using a 

description that already exists in the working memory. Hence, during reminding the model could allow 
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re-representation as necessary, as shown in Figure 33. This would result in retrieving the symmetry 

generalization as reminding for the standard and the relational choice. As before, only the intersection is 

kept, but note that thanks to re-representation the encoding of relations (of both the standard and the 

relational choice) may already be in a dimension-independent form and thus, the relational choice 

would be selected as the winning choice.  

Chapter 7: REFERENCES 

 Baillargeon, R. (2002). The acquisition of physical knowledge in infancy: A summary in eight 

lessons. Blackwell Handbook of Childhood Cognitive Development, 1, 46–83. 

 

Bor, D., Duncan, J., Wiseman, R. J. & Owen, A. M. (2003). Encoding strategies dissociate 

prefrontal activity from working memory demand. Neuron, 37(2), 361–7. 

 

Butler, C. (2007). Evaluating the utility and validity of the representational redescription model 

as a general model for cognitive development. Diss. University of Hertfordshire, 2007. 

 

Chalmers, D. J., French, R. M. & Hofstadter, D. R. (1992). High-level perception, representation, 

and analogy: A critique of artificial intelligence methodology. Journal of Experimental \& 

Theoretical Artificial Intelligence, 4(3), 185–211. 

 

Chang, M. D. & Forbus, K. D. (2012). Using Quantitative Information to Improve Analogical 

Matching Between Sketches. In Twenty-Fourth IAAI Conference. 

 

Cho, S., Holyoak, K. J. & Cannon, T. D. (2007). Analogical reasoning in working memory: 

Resources shared among relational integration, interference resolution, and maintenance. 

Memory \& Cognition, 35(6), 1445–1455. 

 

 

Christie, S. & Gentner, D. (2010). Where hypotheses come from: Learning new relations by 

structural alignment. Journal of Cognition and Development, 11(3), 356–373. 

 

Day, S. B. & Gentner, D. (2007). Nonintentional analogical inference in text comprehension. 

Memory \& Cognition, 35(1), 39–49. 

 

Dewar, K. M. & Xu, F. (2010). Induction, overhypothesis, and the origin of abstract knowledge 

evidence from 9-month-old infants. Psychological Science. 

 



99 
 

Dietrich, E. & Markman, A. B. (2000). Cognitive dynamics: Computation and representation 

regained. Cognitive Dynamics: Conceptual and Representational Change in Humans and 

Machines, 5–30. 

 

Doumas, L. A., Hummel, J. E. & Sandhofer, C. M. (2008). A theory of the discovery and 

predication of relational concepts. Psychological Review, 115(1), 1. 

 

Falkenhainer, B. (1988). Learning from physical analogies: a study in analogy and the 

explanation process (Doctoral Dissertation). Illinois University at Urbana (No. UIUCDCS-R-

88-1479). 

 

Falkenhainer, B., Forbus, K. D. & Gentner, D. (1986). The structure-mapping engine. 

Department of Computer Science, University of Illinois at Urbana-Champaign. 

 

Falkenhainer, B., Forbus, K. D. & Gentner, D. (1989). The structure-mapping engine: Algorithm 

and examples. Artificial Intelligence, 41(1), 1–63. 

 

Forbus, K. D., & Gentner, D. (1989, August). Structural evaluation of analogies: What counts. In 

Proceedings of the eleventh annual Conference of the Cognitive Science Society (Vol. 34, pp. 

341-348). 

 

Forbus, K. D., Gentner, D. & Law, K. (1995). MAC/FAC: A model of similarity-based retrieval. 

Cognitive Science, 19(2), 141–205. 

 

Forbus, K. D., Gentner, D., Markman, A. B. & Ferguson, R. W. (1998). Analogy just looks like 

high level perception: Why a domain-general approach to analogical mapping is right. Journal 

of Experimental & Theoretical Artificial Intelligence, 10(2), 231–257. 

 

Forbus, K. D. & Hinrichs, T. R. (2006). Companion cognitive systems: a step toward Human-

Level AI. AI Magazine, 27(2), 83. 

 

Forbus, K. D., Klenk, M. & Hinrichs, T. (2009). Companion cognitive systems: Design goals 

and lessons learned so far. Intelligent Systems, IEEE, 24(4), 36–46. 

 

Forgy, C. L. (1982). Rete: A fast algorithm for the many pattern/many object pattern match 

problem. Artificial Intelligence, 19(1), 17–37. 

 

Friedman, S. E. (2012). Computational conceptual change: An explanation-based approach. 

 

Gelman, A., Carlin, J. B., Stern, H. S. & Rubin, D. B. (2014). Bayesian data analysis (Vol. 2). 

Chapman \& Hall/CRC Boca Raton, FL, USA. 

 

Gentner, D. (1983). Structure-mapping: A theoretical framework for analogy. Cognitive Science, 

7(2), 155–170. doi:10.1016/S0364-0213(83)80009-3 

 



100 
 

Gentner, D. (1988). Metaphor as structure mapping: The relational shift. Child Development, 47–

59. 

 

Gentner, D. (2003). Why We’re So Smart. Language in Mind, 195. 

 

Gentner, D. & Forbus, K. D. (2011). Computational models of analogy. Wiley Interdisciplinary 

Reviews: Cognitive Science, 2(3), 266–276. 

 

Gentner, D. & Namy, L. L. (2006). Analogical processes in language learning. Current 

Directions in Psychological Science, 15(6), 297–301. 

 

Gentner, D. & Rattermann, M. (1991). 7. Language and the career of similarity. Perspectives on 

Language and Thought: Interrelations in Development, 225. 

 

Hofstadter, D. R. (2008). Fluid concepts and creative analogies: Computer models of the 

fundamental mechanisms of thought. Basic books. 

 

Holyoak, K. J., Gentner, D. & Kokinov, B. N. (2001). Introduction: The place of analogy in 

cognition. The Analogical Mind: Perspectives from Cognitive Science, 1–19. 

 

 

Hummel, J. E. & Holyoak, K. J. (1997). Distributed representations of structure: A theory of 

analogical access and mapping. Psychological Review, 104(3), 427. 

 

Hummel, J. E., Licato, J. & Bringsjord, S. (2014). Analogy, explanation, and proof. Frontiers in 

Human Neuroscience, 8. 

 

Inhelder, B. & Piaget, J. (1958). The growth of logical thinking. 

 

Kamp, H. & Reyle, U. (1993). From discourse to logic: Introduction to modeltheoretic 

semantics of natural language, formal logic and discourse representation theory. Springer. 

 

Kandaswamy, S., Forbus, K. D. & Gentner, D. (2014). Modeling Learning via Progressive 

Alignment using Interim Generalizations. 

 

Karmiloff-Smith, A. (1995). Beyond modularity: A developmental perspective on cognitive 

science. MIT press. 

 

Kemp, C., Bernstein, A. & Tenenbaum, J. B. (2005). A generative theory of similarity. In 

Proceedings of the 27th Annual Conference of the Cognitive Science Society (pp. 1132–1137). 

 

 

Kemp, C. & Jern, A. (2009). Abstraction and relational learning. In Advances in neural 

information processing systems (pp. 934–942). 

 



101 
 

Kotovsky, L. & Gentner, D. (1996). Comparison and categorization in the development of 

relational similarity. Child Development, 67(6), 2797–2822. 

 

Laird, J. (2012). The Soar cognitive architecture. MIT Press. 

 

Lockwood, K., Lovett, A. & Forbus, K. (2008). Automatic classification of containment and 

support spatial relations in English and Dutch. In Spatial Cognition VI. Learning, Reasoning, 

and Talking about Space (pp. 283–294). Springer. 

 

Markman, A. B. & Dietrich, E. (2000). In defense of representation. Cognitive Psychology, 

40(2), 138–171. 

 

Martinho, A. & Kacelnik, A. (2016). Ducklings imprint on the relational concept of “same or 

different.” Science, 353(6296), 286–288. 

 

McLure, M., Friedman, S., & Forbus, K. (2010). Learning concepts from sketches via analogical 

generalization and near-misses. In Proceedings of the 32nd Annual Conference of the 

Cognitive Science Society (CogSci). 

 

McLure, M. D., Friedman, S. E., Lovett, A., & Forbus, K. D. (2011). Edge-cycles: A qualitative 

sketch representation to support recognition. In Proceedings of the 25th International 

Workshop on Qualitative Reasoning. 

 

Namy, L. L. & Gentner, D. (2002). Making a silk purse out of two sow’s ears: young children’s 

use of comparison in category learning. Journal of Experimental Psychology. General, 131(1), 

5–15. 

 

Opfer, J. E. & Siegler, R. S. (2007). Representational change and children’s numerical 

estimation. Cognitive Psychology, 55(3), 169–195. doi:10.1016/j.cogpsych.2006.09.002 

 

Peterson, D. J. & Berryhill, M. E. (2013). The Gestalt principle of similarity benefits visual 

working memory. Psychonomic Bulletin & Review, 20(6), 1282–9. doi:10.3758/s13423-013-

0460-x 

 

Peura, M. & Iivarinen, J. (1997). Efficiency of simple shape descriptors. Aspects of Visual Form, 

443–451. 

 

Pine, K. & Messer, D. (2003). The development of representations as children learn about 

balancing. British Journal of Developmental Psychology, 21(2), 285–301. 

 

Rattermann, M. J. & Gentner, D. (1998). More evidence for a relational shift in the development 

of analogy: Children’s performance on a causal-mapping task. Cognitive Development, 13(4), 

453–478. 

 



102 
 

Rottman, B. M., Gentner, D. & Goldwater, M. B. (2012). Causal systems categories: Differences 

in novice and expert categorization of causal phenomena. Cognitive Science, 36(5), 919–932. 

 

Siegler, R. S. (1998). Emerging minds: The process of change in children’s thinking. Oxford 

University Press. 

 

Stephen, D. G., Dixon, J. A. & Isenhower, R. W. (2009). Dynamics of representational change: 

entropy, action, and cognition. Journal of Experimental Psychology: Human Perception and 

Performance, 35(6), 1811. 

 

Taylor, J. L., Friedman, S. E., Forbus, K., Goldwater, M. & Gentner, D. (2011). Modeling 

structural priming in sentence production via analogical processes. In Proceedings of the 33rd 

Annual Conference of the Cognitive Science Society (pp. 2916–2921). 

 

Tomai, E. R. (2009). A pragmatic approach to computational narrative understanding. 

Evanston, IL. 

 

Tyrrell, D. J., Stauffer, L. B. & Snowman, L. G. (1991). Perception of abstract 

identity/difference relationships by infants. Infant Behavior and Development, 14(1), 125–

129. 

 

Yan, J., Forbus, K. D. & Gentner, D. (2003). A theory of rerepresentation in analogical 

matching. In Proceedings of the Twenty-fifth Annual Meeting of the Cognitive Science Society. 

 

Zelazo, P. D. (2006). The Dimensional Change Card Sort (DCCS): a method of assessing 

executive function in children. Nature Protocols, 1(1), 297–301. doi:10.1038/nprot.2006.46 

 

 
   



103 
 

APPENDIX A: BACKGROUND SCHEMA EXAMPLES 

Object WordSmyth Definition 

 
Drum 

An instrument for playing music that has a hollow 
round shape and a tight covering over an open 
end. You play a drum by hitting its surface with 
your hands or sticks. 
 

Schema 
(in-gcontext (ConceptSchemaFn DrumInstrument)) 

(isa (GenEntFn 0 0 (ConceptSchemaFn DrumInstrument)) DrumInstrument) 

(isa (GenEntFn 0 0 (ConceptSchemaFn DrumInstrument)) 

MusicalInstrument) 

(isa (GenEntFn 1 0 (ConceptSchemaFn DrumInstrument)) Drumstick) 

(isa (GenEntFn 2 0 (ConceptSchemaFn DrumInstrument)) 

(InstrumentPlayingFn DrumInstrument))  

(deviceUsed (GenEntFn 2 0 (ConceptSchemaFn DrumInstrument))  

            (GenEntFn 0 0 (ConceptSchemaFn DrumInstrument))) 

(deviceUsed (GenEntFn 2 0 (ConceptSchemaFn DrumInstrument))  

            (GenEntFn 1 0 (ConceptSchemaFn DrumInstrument))) 

 

 

  

Object WordSmyth Definition 

 
Rounded Lyre 

a stringed instrument of ancient Greece that is 
like a harp.  

Schema 
(in-gcontext (ConceptSchemaFn RoundedLyre-TheStringInstrument)) 

(isa (GenEntFn 0 0 (ConceptSchemaFn RoundedLyre-TheStringInstrument)) 

RoundedLyre-TheStringInstrument) 
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(isa (GenEntFn 0 0 (ConceptSchemaFn RoundedLyre-TheStringInstrument)) 

MusicalInstrument) 

(isa (GenEntFn 1 0 (ConceptSchemaFn RoundedLyre-TheStringInstrument)) 

(InstrumentPlayingFn RoundedLyre-TheStringInstrument)) 

(isa (GenEntFn 2 0 (ConceptSchemaFn RoundedLyre-TheStringInstrument)) 

Finger) 

(deviceUsed (GenEntFn 1 0 (ConceptSchemaFn RoundedLyre-

TheStringInstrument))  

            (GenEntFn 0 0 (ConceptSchemaFn RoundedLyre-

TheStringInstrument))) 

(bodyPartsUsed (GenEntFn 1 0 (ConceptSchemaFn RoundedLyre-

TheStringInstrument))  

               (GenEntFn 2 0 (ConceptSchemaFn RoundedLyre-

TheStringInstrument))) 

 

 

 

 

 

Object WordSmyth Definition 

 
Cake 

a sweet food made of batter and cooked in an 
oven. {birthday cake} 

Schema 
(in-gcontext (ConceptSchemaFn BirthdayCake)) 

 

(isa (GenEntFn 0 0 (ConceptSchemaFn BirthdayCake)) BirthdayCake) 

(isa (GenEntFn 0 0 (ConceptSchemaFn BirthdayCake)) Baked) 

(tasteOfObject (GenEntFn 0 0 (ConceptSchemaFn BirthdayCake)) 

SweetTaste) 

(hasPreparationStyle (GenEntFn 0 0 (ConceptSchemaFn BirthdayCake)) 

Baked) 
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Object WordSmyth Definition 

 
Flute 

An instrument for playing music. It is a long tube 
made of metal or wood that you play by blowing 
into a hole at one end. 

Schema 
(in-gcontext (ConceptSchemaFn Flute)) 

 

(isa (GenEntFn 0 0 (ConceptSchemaFn Flute)) Flute) 

Object WordSmyth Definition 

 
Bucket 

an open container with round sides, a flat 
bottom, and a curved handle at the top. 

Schema 
(in-gcontext (ConceptSchemaFn Bucket)) 

 

(isa (GenEntFn 0 0 (ConceptSchemaFn Bucket)) Bucket) 

(isa (GenEntFn 0 0 (ConceptSchemaFn Bucket)) ContainerArtifact) 

(isa (GenEntFn 1 0 (ConceptSchemaFn Bucket)) Handle) 

(physicalParts (GenEntFn 0 0 (ConceptSchemaFn Bucket))  

               (GenEntFn 1 0 (ConceptSchemaFn Bucket))) 
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(isa (GenEntFn 0 0 (ConceptSchemaFn Flute)) MusicalInstrument) 

(isa (GenEntFn 1 0 (ConceptSchemaFn Flute)) (InstrumentPlayingFn 

Flute)) 

(deviceUsed (GenEntFn 1 0 (ConceptSchemaFn Flute))  

            (GenEntFn 0 0 (ConceptSchemaFn Flute))) 

 

 

 

 

 


