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Abstract 
There is ample psychological evidence that analogy is 
ubiquitous in human learning, suggesting that computational 
models of analogy can play important roles in AI systems that 
learn in human-like ways.  This talk will provide evidence for 
this, focusing mostly on recent advances in hierarchical 
analogical learning and working-memory analogical 
generalizations. 

 Introduction    

In human learning, there is evidence that analogical learning 
is ubiquitous.  This includes visual reasoning (e.g. Matlen et 
al. 2020), concept learning (e.g. Kotovsky & Gentner 1996), 
rule learning (Gentner & Medina, 1998) language learning 
(Gentner & Namy, 2004), theory of mind learning (Hoyos 
et al., 2020) and conceptual change (Gentner et al. 1997).  
Inspired by these results, our group has developed 
computational models of analogical processing that have 
been used to simulate many of these same phenomena.  
These models have also been used in deployed, 
performance-oriented AI systems (e.g. Forbus et al. 2018; 
Wilson et al. 2019).  These models can be thought of as an 
analogy stack, since each builds on the next.  Matching, as 
modeled by SME (Forbus et al. 2016), provides the 
foundation.  Retrieval, as modeled by MAC/FAC (Forbus et 
al. 1995), uses SME in a second-stage filter after a coarser 
vector-based filter stage.  Generalization, as modeled by 
SAGE (Kandaswamy & Forbus, 2012), uses MAC/FAC to 
retrieve items from a generalization pool representing the 
analogical model of a concept, and uses SME to assimilate 
sufficiently close examples into probabilistic relational 
generalizations.   
 These models satisfy several of the desiderata identified 
by Langley (2022) motivating this symposium.  Analogical 
learning is incremental: Each new example provides new 
grist for solving future problems, and the analogical models 
constructed by SAGE can be used at any time.  Analogical 
learning can be used to guide encoding processes, e.g. 
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analogical word sense disambiguation in language (Barbella 
& Forbus, 2013) and in vision (Chen et al. 2020).  
Analogical learning is data-efficient, sometimes achieving 
state of the art performance with orders of magnitude fewer 
examples than statistical models (Liang & Forbus, 2015).  
Finally, analogical learning produces inspectable 
representations, relational descriptions that can be 
communicated to others, as well as potentially debugged 
within the cognitive architecture itself.  These properties 
help explain why analogy seems so ubiquitous in human 
cognition, the Swiss Army knife of learning if you will. 
 Two recent new directions provide additional evidence 
for the utility of analogy for providing human-like learning 
for AI systems, be they performance systems or cognitive 
models (or ideally both!).  The first is hierarchical analogical 
learning, the second is the role of analogical generalization 
in working memory.  We discuss each in turn. 

Hierarchical Analogical Learning 

Traditional analogical learning using SAGE has shown 
promise for visual recognition, including in hybrid systems 
that combine deep learning modules with qualitative visual 
relations computed by CogSketch (Chen & Forbus, 2021).  
But most accounts of conceptual knowledge, and some 
accounts of visual knowledge, involve hierarchical 
representations.  In recognizing sketches, for example, it 
seems natural to combine evidence from multiple levels of 
description, such as wheels and handlebars lending credence 
to the hypothesis that a sketch represents a bicycle. 
Consequently, we developed a new method, part-based 
hierarchical analogical learning (PHAL; Chen et al. 2023) 
which exploits the hierarchical visual representations 
automatically computed via CogSketch.  It uses SAGE at 
each level of representation, but tuned more broadly than 
usual (e.g. with the FAC output stage of MAC/FAC, used 
for classification, returning more results), and using the 
results at coarser levels of representation to filter which 

 



finer-grained models are used, then combining them all to 
perform its final judgement.  This method performs at the 
level of standard non-pretrained deep learning systems on 
the TU Berlin dataset and establishes a new state of the art 
for the Coloring Book Object dataset.  This latter dataset has 
only nine examples per concept, a harsh test of data-
efficiency. Even the best DL system is barely above chance, 
easily beaten by SAGE, and PHAL performs even better.  
The analogical techniques only need to see each example 
once, versus multiple epochs for DL systems, and do not 
require GPUs or TPUs.  Moreover, the results are 
inspectable (Figure 1). 
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Figure 1. Example of a SAGE part generalization, with a 
few of the facts and their probabilities shown. 

Analogical Generalization in Working 
Memory 

SAGE captures the role of analogical generalization in 
long-term memory, generalizations that form constituents 
of our persistent conceptual structure.  But there is also 
evidence that similar processes operate in working 
memory, potentially explaining the rapid learning 
occurring during experiments (e.g. Kotovsky & Gentner, 
1996; Hoyos et al. in press).  To explore these phenomena, 
we have developed SageWM (Kandaswamy et al. 2014) 
which uses SME to combine examples in working 
memory.  SageWM differs from SAGE in three important 
ways: (1) SME is used to across all items in a working 
memory generalization pool, (2) this is done sequentially, 
based on recency, and (3) there is a tight upper bound on 
the number of items in working memory generalization 
pools.  We have used SageWM to model concept learning 
(Kandaswamy et al. 2014), theory of mind learning 
(Rabkina et al. 2017), and infant visual learning (Chen et 
al. 2020).   
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