
Abstract 

The ability to learn another’s moral beliefs is neces-
sary for all social agents. It allows us to predict their 
behavior and is a prerequisite to correcting their be-
liefs if they are incorrect. To make AI systems more 
socially competent, a formal theory for learning in-
ternal normative beliefs is thus needed. However, to 
the best of our knowledge, a philosophically justi-
fied formal theory for this process does not yet exist. 
This paper begins the development of such a theory, 
focusing on learning from testimony. We make four 
main contributions. First, we provide a set of axioms 
that any such theory must satisfy. Second, we pro-
vide justification for belief functions, as opposed to 
traditional probability theory, for modeling norm 
learning. Third, we construct a novel learning func-
tion that satisfies these axioms. Fourth, we provide 
a complexity analysis of this formalism and proof 
that deontic rules are sound under its semantics. This 
paper thus serves as a theoretical contribution to-
wards modeling learning norms from testimony, 
paving the road towards more social AI systems. 

1 Introduction 

It is widely accepted that our AI systems need to know what 
we humans value to effectively participate in our society. Re-
search on modeling such evaluative phenomena is relatively 
new, but helpful analogies have been made to philosophical 
research in descriptive ethics [Jiang, L. et al., 2021; Olson, 
T., 2024]. The descriptive ethicist asks, “what does this pop-
ulation believe is good/bad/neutral?” To answer this, they 
gather relevant evidence and infer the population’s normative 
beliefs. We work within this analogy here to construct a the-
oretically grounded formalism for norm learning.  

We specifically consider learning from normative testi-
mony, i.e., natural language expressions such as “you should 
help others”. Independent of whether one is an optimist or 
pessimist about normative testimony [Hills, A., 2009] , these 
acts relay the norms of a speaker (i.e., their evaluative judg-
ments) to a hearer. Such knowledge allows the hearer to bet-
ter predict the speaker’s behavior and, in cases where they 
disagree, make attempts to correct their beliefs. Therefore, 

having a strong formalism for learning from normative testi-
mony is necessary to build socially competent AI systems. 
However, existing approaches have been mostly empirical, 
concerned with learning external responses (e.g., praise) [Ha-
mid, N. H. A., et al., 2015; Sarathy, V. et al., 2017] rather 
than internal beliefs, and/or do not consider vital features like 
deontic ambiguity and speaker reliability (though An-
drighetto, G. et al. [2010] do briefly discuss reliability). 

This paper makes such a theoretical contribution and pro-
vides a philosophically justified formalism for learning a 
populations’ normative beliefs from their normative testi-
mony, considering both deontic ambiguity and speaker relia-
bility. This work may be categorized as a novel approach to 
norm synthesis via group consensus [Kadir, M. R. A. and 
Selamat, A., 2018]. We start with a running example to build 
intuition around the process of learning from normative testi-
mony. We then describe our representation scheme for nor-
mative beliefs and testimony. We then define a set of intuitive 
axioms of norm learning. Next, we construct our formal the-
ory of norm learning, including philosophical justification 
and proof that it satisfies each axiom. Lastly, we theoretically 
evaluate its complexity and deontic consistency. We con-
clude with a discussion of related and future work. 

2 Learning from Normative Testimony 

Imagine you are visiting your friend Mary who just moved to 
a remote island, one which you have never visited. Let’s call 
this society the Flarps. When you meet up with Mary at the 
Flarp library she leans over to you and whispers, “just so you 
know, you don’t have to wear shoes in public.” Nevertheless, 
you leave them on. Later that day at Mary’s favorite coffee 
shop you witness the barista, Demarcus, get scolded by his 
boss. He then turns and yells at a customer, “put on your 
shoes!” And as you go about your day, you receive more nor-
mative testimony about wearing shoes in public. 
 Back at Mary’s place and in for the night, you realize that 
you are quite certain that shoes are not required here, but you 
are unsure whether they are prohibited or just optional. 
Though Demarcus disagreed, he was under a bit of pressure, 
and many others said you could take them off. You have thus 
collected a set of normative testimony, fused this evidence in 
some fashion, and concluded the population’s normative be-
lief. This is the evidential process of descriptive ethics. 
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 Many interesting questions arise about this process. Should 
the order in which you fuse the normative testimony matter? 
Should we weigh one more than another? We explore such 
questions here as we attempt to formalize norm learning. We 
start by detailing our formal representation scheme. 

2.1 Formalizing Normative Concepts 

Our language for representing deontic statuses is the Three-
Fold Classification (TTC) of Deontic Logic [McNamara, P., 
1996]. This consists of three mutually exclusive deontic sta-
tuses: {Obligatory, Impermissible, and Optional}, taken as 
“must be done”, “must not be done”, and “neither must nor 
must not be done” respectively. We also consider the weaker 
deontic concepts of Permissible as {Obligatory, Optional}, 
Omissible as {Optional, Impermissible}, and NonOptional as 
{Obligatory, Impermissible}. 

We consider a norm as an internal normative belief. We 
modify existing formal representations for such mental atti-
tudes [Olson, T. & Forbus, K., 2023; 2021; Santos, J. S. et al., 
2017] to represent a set of agents, rather than individuals: 

Definition 1 (Normative Belief). A normative belief is a four-
tuple ⟨𝐴, 𝐵, 𝐶,𝐷⟩ where: 
• 𝐴 is a set of agents e.g., {Mary, Demarcus}; 
• 𝐵 represents the behavior (e.g., WearingShoes); 
• 𝐶 represents the context (e.g., InPublic); 
• 𝐷 ∈ TTC is a deontic status (e.g., Omissible). 

This can be read as “in context 𝐶, the agent(s) 𝐴 evaluate(s) 
behavior 𝐵 as 𝐷.” Next, we define normative testimony. 

Definition 2 (Normative Testimony). An instance of norma-
tive testimony is a five-tuple ⟨𝑆, 𝐵, 𝐶,𝐷, 𝑇⟩ where: 
• 𝑆 is the speaker (e.g., Mary); 
• 𝐵 represents the behavior (e.g., WearingShoes); 
• 𝐶 represents the context (e.g., InPublic); 
• 𝐷 ∈ TTC is a deontic status (e.g., Omissible); 
• 𝑇 is the context of the testimony (e.g., AtLibrary). 

Given these structures, learning a population’s normative 
beliefs can be formally viewed with a function that aggre-
gates a set of normative testimony to yield a normative belief: 
𝐹({⟨S1, B, C, D1, T1⟩,… ⟨Sn, B, C, Dn, Tn⟩}) → ⟨A, B, C, D⟩, 
where each agent Sn ∈ A.  

Our main contribution here is formally characterizing this 
norm learning function 𝐹. We do so in a mathematical fash-
ion and start with the axioms.  

2.2 Norm Learning Axioms 

We can decompose our aggregation function 𝐹 into a recur-
sion with a binary fusion operator as below. Where 𝑥 and 𝑦 
are relevant sets of normative testimony, 

𝐹(𝑥) = 𝑥, 𝑓𝑜𝑟 𝑎 𝑠𝑖𝑛𝑔𝑙𝑒𝑡𝑜𝑛 𝑥; 
𝐹(𝑥 ∪ 𝑦) = 𝐹(𝑥) ⊚ 𝐹(𝑦). 

The binary function ⊚ essentially takes in two normative tes-
timony and fuses them in some fashion to yield a combined 
normative belief. Considering our Flarps example, we present 
five intuitive axioms governing this function. 

Axiom 1 (Conjunctive Pooling). Fusing normative testimony 
considers the agreement in opinions: 𝑥 ⊚ 𝑦 ≅ 𝑥 ∩ 𝑦. 

When merging normative testimony to learn a population’s 
beliefs we must consider the agreement between the claims 
of its individuals. The disagreement between Mary and De-
marcus would make us less confident that the Flarps believe 
wearing shoes in public is omissible or obligatory individu-
ally. But if they agreed, then they would strengthen each 
other’s claims. Thus, ⊚ should be viewed as a conjunctive 
pooling operation [Dubois, D., & Prade, H., 1992]. 

Axiom 2 (Commutative). The result of fusing two normative 
testimony is the same, regardless of order: 𝑥 ⊚ 𝑦 = 𝑦⊚ 𝑥. 

A temporal ordering of events is created while considering 
Mary and Demarcus’s normative testimony. But we argue 
that, once the evidence is evaluated by the learner (inter-
preted, assessed for reliability, etc.), the order in which it is 
fused should not fundamentally matter. For example, all else 
being equal, encountering Demarcus before meeting up with 
Mary should yield the same normative belief of the Flarps. 

Axiom 3 (Associative). The result of repeatedly fusing nor-
mative testimony is the same regardless of how the body of 
evidence is partitioned: (𝑥 ⊚ 𝑦)⊚ 𝑧 = 𝑥 ⊚ (𝑦⊚ 𝑧). 

Norm learning is an online process and thus fusing a body 
of normative testimony should be associative (once the evi-
dence is evaluated). This implies that fundamentally batch 
processes (e.g., LLMs like Delphi [Jiang, L. et al., 2021]) will 
not suffice for building true artificial social agents. 

Axiom 4 (Idempotent). Fusing an instance of normative tes-
timony with itself has no effect:  𝑥 ⊚ 𝑥 = 𝑥. 

Repeatedly considering the same instance of normative 
testimony should not have any effect on our certainty in the 
corresponding normative belief. For instance, ruminating on 
Mary’s testimony should not make us more certain that the 
Flarps believe wearing shoes in public is omissible.  

Axiom 5 (Non-Dictatorial). Fusing two instances of norma-

tive testimony should preserve the opinion of both speakers 

(a formal definition is provided in later sections). 

 When merging evidence from different sources, the hearer 
should not ignore any set of speakers. Because we wish to 
know what the Flarps as a whole believe, Mary’s normative 
testimony should not completely override Demarcus’s nor 
any other of the citizens. Thus, ⊚ should be non-dictatorial 
[Dalla Pozza, G. et al., 2011]. We note that this axiom does 
interact with conjunctive pooling, as the intersection ignores 
disagreement. We discuss how to handle this in later sections. 

3 Normative Testimony as Evidence 

With these axioms in place, we now construct our evidence 
fusion operator. We start by considering how to formally rep-
resent normative testimony as evidence. 

The simplest option would be to view normative testimony 
as a frequentist would and consider the distribution of the ex-
plicit statements. If every single Flarp that day said, “you 
must wear shoes in public”, then we would simply claim that 
the Flarps believe it is obligatory. Such a view seems to re-
duce normative testimony to the speaker’s normative belief. 
However, this is clearly not the case as we can lie with our 



normative testimony. Demarcus’s normative testimony 
seemed to arise purely due to his boss. A remorseless meat-
eater might say, “eating animals is wrong” only because they 
are with vegans. 

Our semantics for normative testimony instead seem to be 
that an instance of normative testimony probabilistically 
bears on the corresponding belief. Presumably, all of the fea-
tures—the speaker’s bodily expressions, context of the dis-
course—come into play when determining this measure of 
reliability. E.g., if Demarcus’s boss was not around, then his 
normative testimony would hold much more weight. We thus 
need to represent such reliability measures in our function 
like so: where 𝑃𝑛 ∈ [0,1] is the reliability of the testimony, 
𝐹({𝑃1(⟨S1, B, C, D1, T1⟩), … 𝑃𝑛(⟨Sn, B, C,Dn, Tn⟩)}) →
⟨A, B, C, D⟩. 
 It seems intuitive that these probabilities are at least deter-
mined by the freedom of expression of the discourse context. 
However, it is unclear how to ground such measures. How do 
we determine when others are telling the truth about their in-
ternal mental states? We cannot perceive minds like we can 
perceive dice rolls. We examine this question next. 

3.1 Probability in Normative Testimony  

We could ground our reliability measures in behavior and re-
duce normative testimony to the overt performance of de-
mand actions. This would then be confirmable via perception 
in the same way that regular testimony is. For example, you 
could determine Mary’s reliability by observing if she praises 
or condemns people who wear shoes. However, our norma-
tive beliefs are what we should really wish to teach our AI 
systems. And our beliefs and overt behavior are not always 
consistent [Borg J.S. et al., 2006; Buckholtz, J.W. et al., 2015; 
Gold, N. et al., 2015]. An agent may believe an action is im-
permissible and still not scold others for it (and vice versa). 

So, if we stick with our intended cognitivist interpretation 
of normative testimony as assigning some degree of support 
for the claim “I believe this action is good/bad/neutral”, then 
must the hearer verify this claim in some way? If so, how? 
 We argue that such probability measures for reliability can 
be grounded in meta-cognition and theory of mind. Under 
this interpretation, the higher the probability assigned to a 
speaker's reliability, the more the hearer correctly relays their 
own normative beliefs when in the speaker’s position. Thus, 
each of us have probability measures for “how often I, the 
hearer, say my true normative beliefs in situations like this.” 
We then assume “other people are like me” and project these 
probabilities as the reliability of the speaker (for a similar hy-
pothesis, see Meltzoff [2007] and for a computational model 
of theory of mind, see Rabkina et al. [2017]). We formally 
define our hypothesis below. 

Hypothesis 1 (As Reliable as Me). Given a discourse context 
T, hearer H takes the chance that speaker S’s normative tes-
timony ⟨𝑆, 𝐵1, 𝐶1,𝐷1, 𝑇⟩ relays their internal normative belief 
⟨{𝑆}, 𝐵1 , 𝐶1, 𝐷1⟩, as the chance that their own normative tes-
timony in context T ⟨𝐻, 𝐵2 , 𝐶2,𝐷2, 𝑇⟩, would relay their own 
normative belief ⟨{𝐻}, 𝐵2 , 𝐶2, 𝐷2⟩. 

By this hypothesis, our reliability measures for Mary and 
Demarcus’ testimony are determined by how often we, the 

hearer, would be truthful about our normative beliefs in the 
Flarp library and when scolded by a boss respectively. With 
this philosophical grounding for such probabilities, we move 
on to continue formalizing our norm learning function. 

4 Normative Testimony and Belief Functions 

At this point our norm learning function 𝐹 takes in probabil-
ities on normative testimony and computes normative beliefs, 
likely with some measure of certainty. Such a framework of 
course aligns with a Bayesian approach. However, such a 
view requires data sources we do not have. How could we 
ever get prior and conditional probabilities for normative be-
liefs? Again, we cannot perceive people’s mental states like 
we can observe dice rolls. We argue that epistemics do not fit 
into such a chance picture, and thus Bayesian semantics do 
not fit here either. 

Instead, we argue for a relaxation of subjective probability 
theory, specifically belief functions [Shafer, G., 1976]. Belief 
functions emerge when we cannot fit our question into tradi-
tional probability theory, but we can justify probabilities for 
a related question. We then extend these subjective probabil-
ities to get degrees of belief for the question we are truly in-
terested in. And this framing fits quite nicely here. While we 
may only have probabilities for how reliable an agent’s nor-
mative testimony may be, this is of course related to the ques-
tion of what their normative beliefs actually are. 

To illustrate, under this interpretation we would first con-
sider the chance that Mary is providing truthful normative 
testimony in the Flarp library. Denote this as 𝑠. Again, 𝑠 is 
determined by reflecting on the self and determining how 
truthful we, the hearer, would be in this context. This then 
serves as a premise along a chain of reasoning to the Flarp’s 
normative belief. Thus, we get the syllogism below (inspired 
by Shafer’s [1981] example due to J.H. Lambert).  
• P1: A belief of an agent is a belief of their group. 
• P2: Mary is a Flarp. 
• P3: Mary believes wearing shoes in public is omissible. 
• C: Flarps believe wearing shoes in public is omissible. 

We, the hearer, assign probability 𝑠 to premise three above. 
Therefore, our argument that “Flarps believe wearing shoes 
in public is omissible” is sound with chance 𝑠 and unsound 
with chance 1 − 𝑠. We argue that these are suitable semantics 
for normative testimony because while epistemics cannot fit 
into a chance picture, truth-telling can. 
 
4.1 Background on Dempster-Shafer Theory 
Here we specifically build upon Dempster-Shafer’s theory of 
belief functions. AI researchers have applied this mathemati-
cal theory of evidence for sensor fusion [Premaratne, K. et 
al., 2009], learning indirect speech acts [Wen, R. et al., 2020], 
and more empirical norm learning work [Olson, T. and For-
bus, K., 2021; 2023; Sarathy, V. et al., 2017]. We define the 
concepts of DS theory below. 

Definition 3 (Frame of Discernment). DS theory considers 
an exhaustive set called the frame of discernment (FOD), de-
noted as Θ, of elements that are mutually exclusive. We can 
interpret each element of Θ as an answer to our question. 



Definition 4 (Mass Assignment). A mass assignment, or basic 

belief assignment (BBA), is a function, denoted as 𝑚, that 

maps each subset of Θ to a real number in [0,1], such that 

𝑚(∅) = 0 and ∑ 𝑚(𝐴) = 1𝐴∈2𝛩 . A mass assignment repre-

sents a judgment of the degree to which the evidence supports 

the set of propositions. Mass is assigned to non-singleton sets 

in cases of ambiguity or ignorance. 

Definition 5 (Focal Element). The focal elements of a mass 
assignment are those sets with non-zero mass.  

Definition 6 (Belief Function). Given set A, the belief func-
tion of 𝐴 = 𝐵𝑒𝑙(𝐴) = ∑ 𝑚(𝐵)𝐵|𝐵⊆𝐴 .  

Definition 7 (Plausibility Function). Given set A, the plausi-
bility of 𝐴 = 𝑃𝑙(𝐴) = ∑ 𝑚(𝐵)𝐵|𝐵∩ 𝐴≠∅ . We can also compute 
this from belief as: 𝑃𝑙(𝐴) = 1 − 𝐵𝑒𝑙(𝐴𝐶). 

5 Formalizing Norm Learning 

Our approach to representing normative testimony as evi-
dence in DS theory involves: 1) given the frame of discern-
ment, convert normative testimony into an answer on this 
frame and 2) given a reliability measure, assign belief 
measures to this evidence, yielding a corresponding mass as-
signment. We define concepts relevant to this process below. 

Definition 8 (Deontic Frame of Discernment). A deontic 

frame of discernment 𝛩𝑎,𝑏,𝑐  is the set of possible normative 

beliefs for a set of agents, a behavior, and a context: 

{⟨𝑎, 𝑏, 𝑐, 𝑑⟩| 𝑑 ∈ 𝑇𝑇𝐶}.  

We use a few abbreviated notations for a frame. First, un-

less necessary, we omit certain features and write Θ. We de-

note specific subsets of a frame with a functional notation: 

Θ(𝐷)  = {⟨a, b, c, d⟩| 𝑑 ∈ 𝐷} where 𝐷 ⊆ 𝑇𝑇𝐶. We also ab-

breviate non-singleton subsets with corresponding weaker 

deontic status e.g., Θ({𝑂𝑝𝑡, 𝐼𝑚𝑝}) = Θ({𝑂𝑚𝑖𝑠𝑠𝑖𝑏𝑙𝑒}). 

Definition 9 (Deontic Mass Assignment). A deontic mass as-

signment is a mass assignment on the subsets of a deontic 

frame. Formally, a deontic mass assignment is a mass assign-

ment 𝑚{𝐴…𝑍}: 2
𝛩 → [0,1] where 𝛩 is a deontic frame of dis-

cernment and 𝐴…𝑍 are instances of normative testimony. 

Definition 10 (Body of Evidence). Given deontic frame 𝛩, its 

body of evidence (BoE) is 𝐵𝑜𝐸(𝛩) = {𝑚𝑋| 𝑚𝑋 is a deontic 

mass assignment on 2𝛩}. 

 The ability to assign mass to subsets in DS theory, rather 

than just propositions, is powerful for norm learning as it nat-

urally handles deontically ambiguous claims like Mary’s. In 

this case, we assign mass to Θ𝐴,𝐵,𝐶({𝑂𝑚𝑖𝑠𝑠𝑖𝑏𝑙𝑒}), without 

needing to decide how to distribute the mass to each disjunct.  

We have formalized normative testimony as evidence. We 

now discuss how to aggregate this evidence to learn from 

multiple sources i.e., we finally define our novel function 𝐹. 

Again, this involves chaining our binary fusion operator ⊚ 

over the body of evidence and we have argued that this oper-

ator must satisfy five axioms. Thankfully, Dempster has pro-

vided us with a binary operator that comes quite close. 

Definition 11 (Dempster’s Rule of Combination). Demp-

ster’s rule of combination (Dempster, 1967) computes the 

sum of the mass product intersections. It is defined as: 
 𝑚1⊕𝑚2(𝑐) = ∑ 𝑚1(𝑎)𝑚2(𝑏)𝑎∩𝑏=𝑐 /(1 − 𝐾) ∀𝑐 ⊆ 𝛩  
where 𝑚1 and 𝑚2 are two independent mass assignments on 
the same frame 𝛩, and conflict measure 𝐾 is computed as: 
𝐾 = ∑ 𝑚1(𝑎)𝑚2(𝑏)𝑎∩𝑏=∅ . We use the following set notation 
for a fused assignment:  𝑚𝑋∪𝑌 (𝑐)  ≡  𝑚𝑋⊕𝑚𝑌(𝑐). 

5.1 Example: The Norms of the Flarps 

To illustrate Dempster’s rule in our formalism, we revisit the 
Flarps. We wish to know how they evaluate wearing shoes in 
public. Thus, we are computing 𝐹(𝐵𝑜𝐸(Θ)) where Θ = 
{⟨Flarps,WearingShoes, InPublic, Obligatory⟩, 
⟨Flarps,WearingShoes, InPublic, Optional⟩, 
⟨Flarps,WearingShoes, InPublic, Impermissible⟩}. 

Because Mary is a Flarp, her normative testimony 𝑒1, as-
signs evidence on this frame, abbreviated as Θ. Assessed with 
a 0.9 degree of reliability, 𝑒1 produces the deontic mass as-
signment: 𝑚{𝑒1}(Θ({𝑂𝑚𝑖𝑠𝑠𝑖𝑏𝑙𝑒})) = 0.9,𝑚{𝑒1}(Θ) = 0.1. 

We have another relevant piece of evidence, 𝑒2, when De-

marcus yelled, “put on shoes!” Given the perceived pressure 

from his boss, we evaluated this as being much less reliable: 

𝑚{𝑒2}(Θ({𝑂𝑏𝑙})) = 0.3,𝑚{𝑒2}(Θ) = 0.7. 

To determine the Flarps’ normative belief, we then fuse 

these two pieces of evidence with Dempster’s rule. This re-

sults in the mass product intersections shown in Table 1. Be-

cause Mary and Demarcus disagreed, there is mass assigned 

to the empty set. This is normalized out via 𝐾 = 0.27, result-

ing in the fused mass assignment described below.  
“Flarps believe wearing shoes in public is omissible” 
= 𝑚{𝑒1,𝑒2}(Θ({𝑂𝑚})) = 0.63/(1 − 0.27) = 0.8631; 
“Flarps believe wearing shoes in public is obligatory”  
= 𝑚{𝑒1,𝑒2}(Θ({𝑂𝑏𝑙})) = 0.03/(1 − 0.27) = 0.0412; 
“Flarps believe it is of some deontic status” (ignorance) 
= 𝑚{𝑒1,𝑒2}(Θ) = 0.07/(1 − 0.27) = 0.0957. 

Because Mary’s testimony was taken as much more relia-
ble than Demarcus’s, the model is still quite certain that the 
Flarps believe wearing shoes in public is omissible:  
𝐵𝑒𝑙{𝑒1,𝑒2}(Θ({𝑂𝑚})) = 𝑚{𝑒1,𝑒2}(Θ({𝑂𝑚})) = 0.8631; 
𝑃𝑙{𝑒1,𝑒2}(Θ({𝑂𝑚})) = 𝑚{𝑒1,𝑒2}(Θ({𝑂𝑚})) +𝑚{𝑒1,𝑒2}(Θ) =
0.8631 + 0.0957 = 0.9588. 
 This example illustrates how norms are synthesized con-
sidering both deontic ambiguity and speaker reliability. Next 
we examine Dempster’s rule with respect to our axioms. 

  𝑚{𝑒1}(Θ({𝑂𝑚}))

= 0.9 

𝑚{𝑒1}(Θ)

= 0.1 

𝑚{𝑒2}(Θ({𝑂𝑏𝑙}))

= 0.3 

∅=0.27 𝛩({Obl})=0.03 

𝑚{𝑒2}(Θ) = 0.7 𝛩({Om})=0.63 𝛩=0.07 

 
Table 1: Mary and Demarcus’s Fused Mass Assignment (focal 

elements italicized and conflict underlined) 

 



5.2 A Modified Fusion Rule 

Dempster’s rule satisfies most of our axioms. It is a conjunc-
tive pooling operation, and it is both commutative and asso-
ciative [Sentz, K. & Ferson, S., 2002]. However, as noted pre-
viously, being a conjunctive pooling operation, Dempster’s 
rule is dictatorial in cases where one mass assignment is de-
finitive, and another non-agreeing mass assignment is uncer-
tain. It is also not idempotent by default. Here we provide a 
modified fusion rule that satisfies these two conditions. We 
first provide a formal definition for non-dictatorial. 

Definition 12 (Non-Dictatorial). We say that a fusion rule Ṙ 

is non-dictatorial when: (∀𝑚1,𝑚2, 𝑓) 𝑚1Ṙ𝑚2(𝑓) > 0, 

where 𝑚1 and 𝑚2 are mass assignments on the same frame 

and 𝑓 ∈ focal elements of 𝑚1.  

To illustrate that Dempster’s rule is dictatorial, imagine 
Mary’s testimony was taken to be definitive as  
𝑚{𝑒1}(Θ({𝑂𝑚})) = 1.0. Because Demarcus’s testimony 
does not agree (the intersection of {𝑂𝑏𝑙} and {𝑂𝑚} is the 
empty set), it would be ignored. To avoid such a dictatorship, 
we must instead define our mass assignments correctly by as-
signing a non-zero mass to the frame. That is, a hearer must 
always leave a small portion of doubt in a speaker’s claim. 
This is formalized with the following function, denoted with 
an overline. Where the amount of doubt 𝜀 ∈ (0,1) (default of 
0.1), 𝑚 is a deontic mass assignment on frame 𝛩, 𝑑 ⊆ 𝛩, 

 �̅�(𝑑) = {

𝑚(𝑑), 𝑚(𝛩) > 0
𝜀, 𝑑 = 𝛩 ˄ 𝑚(𝛩) = 0          

𝑚(𝑑) × (1 − 𝜀), 𝑑 ⊂ 𝛩 ˄ 𝑚(𝛩) = 0.
  (1) 

Before fusion, a deontic mass assignment must now first 
be processed by this function. Not only does this ensure there 
can be no dictator, but it also fixes counterintuitive cases that 
result from normalization like that provided by Zadeh [1984]. 

We then use set-theoretic operations to ensure fusion is 

idempotent. Given two deontic mass assignments, if one has 

already been fused with the other (conditions 1 and 2 in equa-

tion 2), then the mass assignment with the most accumulated 

evidence is returned. If the two are disjoint (condition 3), then 

they are fused with Dempster’s rule. However, if they inter-

sect but one does not subsume the other (condition 4), then 

fusion is undefined. With these modifications, our updated 

fusion rule ⊚ (or in short form with the set union “∪”) is 

formalized below. Given two deontic mass assignments 𝑚𝑋, 

𝑚𝑌 on deontic frame Θ, 

𝑚𝑋(𝑐) ⊚𝑚𝑌(𝑐) ≡ 𝑚𝑋∪𝑌(𝑐) =

{
 

 
�̅�𝑋(𝑐), 𝑌 ⊆  𝑋

�̅�𝑌(𝑐), 𝑋 ⊂  𝑌
�̅�𝑋(𝑐) ⊕ �̅�𝑌(𝑐), 𝑋 ∩  𝑌 = ∅

𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑, 𝑋 ∩  𝑌 ≠ ∅ ˄ 𝑌 ⊈ 𝑋 ˄ 𝑋 ⊄ 𝑌  

    (2) 

∀𝑐 ⊆ Θ. 
 

Our fusion rule ⊚ is non-dictatorial, in short, because each 

deontic mass assignment now has a non-zero mass assigned 

to the entire frame, and thus all focal elements have a non-

zero mass product intersection when fused, as the intersection 

of a focal element and the entire frame is itself.  It is idempo-

tent because of conditions 1 and 2 of equation 2. 

This fusion rule now satisfies all of our norm learning axi-

oms. It is a conjunctive pooling operation (axiom 1) and is 

commutative (axiom 2), associative (axiom 3), idempotent 

(axiom 4), and non-dictatorial (axiom 5). We have thus axio-

matically constructed our norm learning function 𝐹, defined 

below. Where 𝑥 and 𝑦 are subsets of a deontic frame’s BoE, 

𝐹(𝑥) = 𝑥, 𝑓𝑜𝑟 𝑎 𝑠𝑖𝑛𝑔𝑙𝑒𝑡𝑜𝑛 𝑥;                     (3) 
𝐹(𝑥 ∪ 𝑦) = 𝐹(𝑥) ⊚ 𝐹(𝑦). 

 We move on to discuss truth-conditions within our seman-
tics and introduce a final axiom along with proof that our for-
malism satisfies it. 

5.3 The Semantics of Normative Belief 

While it is useful to have degrees of belief, when acting or 
predicting based on learned norms, a definitive claim needs 
to be made. For example, if we wish to not upset anyone, then 
to decide whether or not to wear shoes in Flarpville we must 
convert our degree of belief to a definitive norm of the Flarps. 
We thus need to define when a normative belief is true.  

Intuitively, a normative belief is true when its body of ev-
idence sufficiently supports it. We formally define this below 
as the mean of belief and plausibility (estimating the true sup-
port) being greater than or equal to 0.9. We arbitrarily chose 
this high threshold, but one can imagine defining a personal-
ity spectrum from gullible (→ 0.0) to skeptical (→ 1.0).  

Given a normative belief 𝒩 = ⟨𝑎, 𝑏, 𝑐, 𝑑⟩ with deontic 
frame Θ, and 𝐵𝑒𝑙 and 𝑃𝑙 functions stemming from the fused 
mass assignment 𝐹(𝐵𝑜𝐸(Θ)), we compute the truth of 𝒩 as: 

{
𝑇𝑟𝑢𝑒, (𝐵𝑒𝑙(Θ({𝑑})) + 𝑃𝑙(Θ({𝑑})))/2 ≥ 0.9

𝐹𝑎𝑙𝑠𝑒, (𝐵𝑒𝑙(Θ({𝑑})) + 𝑃𝑙(Θ({𝑑})))/2 < 0.9.
             (4) 

For example, based on its body of evidence, the normative 
belief ⟨Flarps,WearingShoes, InPublic,Omissible⟩ is true, 
as the center of its belief and plausibility is greater than this 
threshold: (0.8631 + 0.9588)/2 ≥ 0.9. 

Under these semantics, inferences between deontic sta-
tuses should be sound. That is, our truth function above 
should not produce two deontically inconsistent normative 
beliefs (e.g., Mary can’t believe wearing shoes in public is 
both omissible and obligatory). Disagreement should instead 
be represented with underlying uncertainty measures. This 
idea yields our sixth and final axiom of deontic consistency. 

Axiom 6 (Deontically Consistent). Given deontically incon-
sistent statuses 𝐷 and 𝐸, the normative beliefs ⟨𝐴, 𝐵, 𝐶,𝐷⟩ 
and ⟨𝐴, 𝐵, 𝐶, 𝐸⟩ should not both be true. 

Next, we analyze the complexity of computing normative 
beliefs and prove that it is deontically consistent. 

6 Theoretical Evaluation 

Querying for the truth of a normative belief involves gather-
ing its BoE by A) looping through all evidence and for each, 



B) comparing its agents, behavior, and context with those 
queried for. Then, C) fusing evidence with 𝐹(𝐵𝑜𝐸). Lastly, 
D) computing belief and plausibility values. The runtime of 
this algorithm is thus: [𝒪(A) × 𝒪(B)] + 𝒪(C) + 𝒪(D). For 
analyzing this complexity, consider the parameters 𝑛 as the 
magnitude of all evidence, 𝑚 as the magnitude of the relevant 
BoE, 𝑑 as the magnitude of our deontic frame. 

Theoretically, 𝑛 and 𝑚 are unbounded (though practically 
limited by the lifetime of the organism). Thus, 𝒪(A) = 𝒪(n). 
The complexity of comparing a mass assignment’s agents, 
behavior, and context with those queried for is bounded and 
thus 𝒪(B) = 𝒪(1). Therefore, the runtime of distilling the 
body of evidence is [𝒪(A) × 𝒪(B)] = 𝒪(n) × 𝒪(1) = 𝒪(n). 
As the deontic frame is bounded by the size of TTC at 𝑑 = 3, 
the complexity of fusing two deontic mass assignments is 
bounded by some constant 𝑐. Thus, our pair-wise fusion op-
eration 𝐹(𝐵𝑜𝐸) (step C) involves 𝑐 × (𝑚− 1) operations. 
Therefore, 𝒪(C) = 𝒪(𝑚). Step D merely involves a summa-
tion over a finite set and thus, 𝒪(D) = 𝒪(1).  

Considering these bounds, computing the truth value of a 
normative belief (equation 4) has a linear time complexity of: 
[𝒪(A) × 𝒪(1)] + 𝒪(C) + 𝒪(1) = 𝒪(n) + 𝒪(m), where 𝑛 is 
the total amount of normative testimony and 𝑚 is the amount 
of normative testimony relevant to our query. 

Next, we show that by utilizing DS theory our semantics 
are deontically consistent. We also show how this can slightly 
reduce the runtime of computing truth values. 

6.1 Deontic Consistency of Normative Belief 

To save space, for a normative belief ⟨𝐴, 𝐵, 𝐶,𝐷⟩ we leave 
𝐴,𝐵, and 𝐶 implicit and abbreviate the belief as 𝐵(𝐷). We 
abbreviate the subset of its deontic frame as Θ({𝐷}). 

We first prove that if the threshold for 𝐵(𝐷) is defined 
above 0.5, then no two non-intersecting subsets of its deontic 
frame can both be believed. We note that this also holds in 
the other direction but omit the proof to save space. 

Theorem 1 (With a truth value threshold > 0.5, two incon-
sistent normative beliefs cannot both be true). Let 𝐵(𝐷) be 
true if and only if  𝐵𝑒𝑙(𝛩({𝐷})) + 𝑃𝑙(𝛩({𝐷}))/2 > 𝛼. If 
𝛼 ≥ 0.5, then given 𝐵(𝐷) is true for deontic frame 𝛩, 
∄𝛩({𝐸}) s.t. 𝛩({𝐸}) ∩ 𝛩({𝐷}) = ∅ and 𝐵(𝐸) is true. 

Proof. Let α ≥ 0.5. Let 𝐵(𝑋) be true if and only if 
𝐵𝑒𝑙(Θ({𝑋})) + 𝑃𝑙(𝛩({𝑋}))/2 > α, or when 𝐵𝑒𝑙(Θ({𝑋})) +
𝑃𝑙(Θ({𝑋})) > 2α. Let Θ({𝐷}), Θ({𝐸}) ⊆  Θ s.t. Θ({𝐷}) ∩
Θ({𝐸}) = ∅ . Assume 𝐵(𝐷) and 𝐵(𝐸) are true. Because 
𝐵(𝐷) is true, rewriting plausibility in the ordinal relation, we 
get: 𝐵𝑒𝑙(Θ({𝐷})) + [1 –  𝐵𝑒𝑙(Θ({𝐷})𝐶]) > 2α ≥  1. So, 
𝐵𝑒𝑙(Θ({𝐷}))  >  𝐵𝑒𝑙(Θ({𝐷})𝐶). Similarly, 𝐵𝑒𝑙(Θ({𝐸}))  >
 𝐵𝑒𝑙(Θ({𝐸})𝐶). Because Θ({𝐷}) ∩ Θ({𝐸}) = ∅  , Θ({𝐷}) ⊆
Θ({𝐸})𝐶 and Θ({𝐸}) ⊆ Θ({𝐷})𝐶. By definition of the belief 
function and transitivity of subsets, 𝐵𝑒𝑙(Θ({𝐷})) ≤
𝐵𝑒𝑙(Θ({𝐸})𝐶). Similarly, 𝐵𝑒𝑙(Θ({𝐸})) ≤ 𝐵𝑒𝑙(Θ({𝐷})𝐶). 
Lemma 1.1 follows. 

Lemma 1.1 For any 𝑋 ⊆ 𝑌 ⊆ 𝛩 , 𝐵𝑒𝑙(𝑋) ≤ 𝐵𝑒𝑙(𝑌). 

We now have the following ordinal relations: 𝐵𝑒𝑙(Θ({𝐷})) >
𝐵𝑒𝑙(Θ({𝐷})𝐶) ≥ 𝐵𝑒𝑙(Θ({𝐸})) and 𝐵𝑒𝑙(Θ({𝐸})) >
𝐵𝑒𝑙(Θ({𝐸})𝐶) ≥ 𝐵𝑒𝑙(Θ({𝐷})). Thus, both 𝐵𝑒𝑙(Θ({𝐷})) >

𝐵𝑒𝑙(Θ({𝐸})) and 𝐵𝑒𝑙(Θ({𝐸})) > 𝐵𝑒𝑙(Θ({𝐷})), which is a 
contradiction. Thus, 𝐵(𝐷) and 𝐵(𝐸) cannot both be true.  □ 

To illustrate, theorem 1 holds that with a threshold of truth 
above 0.5, two normative beliefs like “Flarps believe wearing 
shoes in public is obligatory” and “Flarps believe wearing 
shoes in public is impermissible” cannot both be true.  

Utilizing theorem 1, we now prove that certain relations of 
deontic logic are sound. For each theorem below, let the truth 
of a normative belief 𝐵(𝐷) be defined as previously (equation 
4) with a threshold of 0.9. 

Theorem 2. The following syntactic entailments between nor-
mative beliefs in contrary deontic statuses are sound:  

𝐵(𝑂𝐵𝐿) ⊢ ¬𝐵(𝐼𝑀𝑃) 
𝐵(𝑂𝐵𝐿) ⊢ ¬𝐵(𝑂𝑃𝑇) 
𝐵(𝐼𝑀𝑃) ⊢ ¬𝐵(𝑂𝑃𝑇). 

Proof. Let 𝐵(𝑂𝐵𝐿) be true. Because Θ({𝑂𝑃𝑇}) ∩
Θ({𝑂𝐵𝐿}) = ∅, Θ({𝐼𝑀𝑃}) ∩ Θ({𝑂𝐵𝐿}) = ∅, and our thresh-
old 0.9 > 0.5, by theorem 1, ¬𝐵(𝑂𝑃𝑇) and ¬𝐵(𝐼𝑀𝑃) are 
true. Without loss of generality, the same inference holds be-
tween all core deontic statuses.            □ 

Theorem 3. The following syntactic entailments between nor-
mative beliefs in contradictory deontic statuses are sound: 

𝐵(𝑂𝐵𝐿) ⊢ ¬𝐵(𝑂𝑀) 
𝐵(𝑂𝑃𝑇) ⊢ ¬𝐵(𝑁𝑂𝑁𝑂𝑃𝑇) 
𝐵(𝐼𝑀𝑃) ⊢ ¬𝐵(𝑃𝐸𝑅𝑀). 

Proof. Let 𝐵(𝑂𝐵𝐿) be true. By definition, Θ({𝑂𝑀}) =
Θ({𝑂𝑃𝑇, 𝐼𝑀𝑃}) and thus Θ({𝑂𝑀}) ∩ Θ({𝑂𝐵𝐿}) = ∅. It fol-
lows from theorem 1 that ¬𝐵(𝑂𝑀) is true. Without loss of 
generality, the same relation holds from 𝐼𝑀𝑃 to 𝑃𝐸𝑅𝑀, and 
𝑂𝑃𝑇 to 𝑁𝑂𝑁𝑂𝑃𝑇.  □ 

Theorem 4. The following syntactic entailments between sub-
sumed normative beliefs are sound: 

𝐵(𝑂𝐵𝐿) ⊢ 𝐵(𝑃𝐸𝑅𝑀)  
𝐵(𝑂𝐵𝐿) ⊢ 𝐵(𝑁𝑂𝑁𝑂𝑃𝑇) 
𝐵(𝐼𝑀𝑃) ⊢ 𝐵(𝑂𝑀) 
𝐵(𝐼𝑀𝑃) ⊢ 𝐵(𝑁𝑂𝑁𝑂𝑃𝑇) 
𝐵(𝑂𝑃𝑇) ⊢ 𝐵(𝑃𝐸𝑅𝑀) 
𝐵(𝑂𝑃𝑇) ⊢ 𝐵(𝑂𝑀). 

To aid in proving theorem 4, we first prove theorem 5. 

Theorem 5 (If normative belief with deontic status D is true, 
then given E subsumes D, normative belief with deontic status 
E is true). Where Θ({𝐷}) ⊆ Θ({𝐸}), if 𝐵(𝐷), then 𝐵(𝐸). 

Proof. Let 𝐵(𝐷) be true, where Θ({𝐷}) ⊆ Θ({𝐸}). By lemma 
1.1, 𝐵𝑒𝑙(Θ({𝐷})) ≤ 𝐵𝑒𝑙(Θ({𝐸})). Because Θ({𝐷}) ⊆
Θ({𝐸}), all sets that intersect with Θ({𝐷}) also intersect 
with Θ({𝐸}). Lemma 5.1 follows. 

Lemma 5.1. For any 𝑋 ⊆ 𝑌 ⊆ 𝛩, 𝑃𝑙(𝑋) ≤ 𝑃𝑙(𝑌). 

By lemma 5.1, 𝑃𝑙(Θ({𝐸})) ≥ 𝑃𝑙(Θ({𝐷})). Because 𝐵(𝐷) is 
true, 𝐵𝑒𝑙(Θ({𝐷})) + 𝑃𝑙(Θ({𝐷}))/2 ≥ 0.9. Thus, 
𝐵𝑒𝑙(Θ({𝐸})) + 𝑃𝑙(Θ({𝐸}))/2 ≥ 0.9 as well. Therefore, 
𝐵(𝐸) is true.  □ 

We now utilize theorem 5 to prove theorem 4. 

Proof. Let 𝐵(𝑂𝐵𝐿) be true. As defined, Θ({𝑂𝐵𝐿}) ⊆
Θ({𝑃𝐸𝑅𝑀}),Θ({𝑁𝑂𝑁𝑂𝑃𝑇}). Thus, by theorem 5, 



𝐵(𝑃𝐸𝑅𝑀) and 𝐵(𝑁𝑂𝑁𝑂𝑃𝑇) are also true. Without loss of 
generality, the same inference holds from belief in all deontic 
statuses to deontic statuses that subsume them.  □ 

We have shown that certain syntactic inferences of stand-
ard deontic logic are sound given our semantics. This means 
that no two inconsistent normative beliefs can be learned and 
thus our formal theory is deontically consistent (satisfies ax-
iom 6). This is practically useful as it ensures consistency 
when using learned beliefs to predict behavior. This also 
means that unless there is new evidence, we can simply prove 
normative beliefs rather than computing their truth value, re-
ducing complexity. For instance, if it is true that “𝑋 is viewed 
as obligatory”, then we can prove “𝑋 is viewed as permissi-
ble” via theorem 4, rather than calculating its truth value. 

Note that we omit inheritance principles OB-RM (as de-
scribed by Ross [1941]) or, in conditional form, CPI [Olson, 
T. and Forbus, K., 2023], from this calculus as they are un-
sound. To illustrate, consider a population that believes harm-
ing an agent is impermissible and that war entails harm. Thus, 
via inheritance it could be proven that the population also be-
lieves that war is impermissible. However, one can clearly 
imagine a model in which this is not true. We humans are not 
always consistent across such entailments and thus such in-
heritance principles should be unsound in epistemic formal-
isms. However, because they aim at ideal practical reasoning, 
such rules could be used to point out and then correct the non-
rational normative beliefs of a population. 

7 Related Work 

The work presented here differs from existing norm learn-
ing/synthesis approaches that are grounded in external fac-
tors. That a sufficient number of individuals demand compli-
ance with a norm, that it comes from an authority, has nega-
tive consequences, and so on (as in [Sarathy, V. et al., 2017] 
and [Hamid, N. H. A., et al., 2015]), are empirical conditions 
that can easily be verified via scientific method. However, 
verifying internal mental states is not as simple (As Reliable 
as Me hypothesis). This idea has been of particular interest in 
law, with respect to expert testimony on mental states and in-
sanity defenses [Levy, K. M., 2019; Slobogin, C., 2008]. Re-
cent neural approaches [Freitas dos Santos, T. et al., 2023; 
Jiang et al., 2021] differ for similar reasons. Also, though they 
can perform quite well empirically on tasks, being black 
boxes, their formal properties are difficult to examine. 

In  previous work [Olson and Forbus, 2021] we presented 
a norm learning implementation that also utilized DS theory. 
However, we left a lot of theoretical work undone. By work-
ing from axioms and formal definitions here, we have made 
fundamental improvements including a new fusion rule and a 
sound deontic calculus. But the biggest difference again lies 
in our probability semantics. Previously, probabilities repre-
sented “moral trust”. However, such a model could not learn 
the norms of an immoral population, as their trust measures 
would be too low. If the goal is to learn prescriptive ethics 
(moral truths), then this is quite valuable. But here we are 
concerned with descriptive ethics. We wish to learn norms 
whether or not they are morally correct. We note that this 
should not be used prescriptively to guide the actions of AI 

systems without explicit moral guardrails (e.g., Olson and 
Forbus [2023]). Instead, this can be used descriptively to pre-
dict behavior and correct immoral beliefs. 

8 Conclusion and Future Work 

While it is recognized that the ability to learn the normative 
beliefs of others is necessary for social competence, there ex-
ists few formal models of this process. Those approaches that 
do exist learn only external demand responses (e.g., praise), 
have been mostly empirical, and/or have ignored the uncer-
tainty of internal mental states. This paper thus makes a the-
oretical contribution by providing a philosophically justified 
formalism for learning internal normative beliefs from nor-
mative testimony. We have provided a set of axioms for this 
process. We have provided an interpretation of probability 
measures as being grounded in the hearer’s mental model. 
We have built an improved binary fusion operator and shown 
that it satisfies the axioms. Lastly, we have provided a com-
plexity analysis of the norm learning algorithm and a sound 
deontic calculus for reasoning about learned norms. 

We admit that hypothesis 1 introduces a sincere “cold start 
problem”, as artificial agents lacking such knowledge cannot 
estimate reliability measures. This may be solvable by start-
ing agents with needs and desires similar to ours, but this re-
mains an open research question. 
 Though our work here is theoretical, it is also of practical 
use. As we have discussed, this could be implemented to learn 
norms of a population to then predict their behavior or change 
their beliefs. This will be an important capability for future 
artificial social agents. This could also be implemented for 
learning and comparing beliefs of subpopulations (e.g., left 
vs right wing ideals) considering reliability. In such applica-
tions, the reliability of each opinion depends on the context 
in which it is provided (hence the appeal of secret ballots).  

In future work we plan to examine the potential for preju-
dice in our model, as it currently clumps agents who have not 
provided evidence in with others that have. To remove this 
feature, the algorithm would ensure each agent in the query 
has provided normative testimony. We also plan to explore 
strengthening the independence requirement and only con-
sider each agent’s most recent normative testimony. This 
would make the model fairer as a single agent could no longer 
flood it with evidence. 
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