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Abstract

The goal of Intelligent Computer-Aided Engineering (ICAE) is to
construct computer programs which capture a significant fraction of an
engineer's knowledge . Today ICAE systems are a goal, not a reality.
This paper attempts to refine that goal and suggest how to get there.
We begin by examining several scenarios of what ICAE systems could
be like . Next we describe why ICAE won't directly evolve from current
applications of expert system technology to engineering problems . We
focus on qualitative physics as a critical area where progress is needed,
both in terms of representations and styles of reasoning.
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1 Introduction

Applications of Artificial Intelligence can provide challenges that drive the
field forward. One example is intelligent computer-aided instruction (ICAI)
[64] . ICAI research has spawned many important studies of cognition and
learning, leading to intellectual advances as well as providing the potential
for revolutionizing education.

I believe the application of Artificial Intelligence to engineering problems
will play a similar role . Engineering is a particularly good domain for Artifi-
cial Intelligence for several reasons:

• The results are testable . Engineering domains typically have a well-
tested theoretical basis, with a great deal of codified field experience
and empirical knowledge to buttress theory . Such domains provide a
solid basis for comparing program predictions and performance.

• There is a broad range of competence, and several kinds of knowledge

are involved. While much can be learned in simple domains, some issues
only arise when a large body of different types of knowledge must be
acquired and smoothly integrated.

• Its roots lie in commonsense reasoning . The formal techniques of engi-
neering are grounded in our commonsense models of the world . Thus
understanding the tacit knowledge of engineers is likely to shed light
on our common sense theories of space, time, and quantity.

Conversely, AI is a particularly good technology for engineering . Engi-
neers are tackling projects of increasing complexity and cost, and can use
all the help they can get . The constraints are getting more complex : There
are new materials and processes to exploit, and stricter regulations and legal
requirements to satisfy. Making products more quickly and efficiently is even
more important in these times of increasing economic competition . Engineer-
ing applications give AI an important opportunity to repay the investment
society is making in it.

Among the first to see that engineering is a valuable domain for Artificial
Intelligence was Gerald Sussman, who made these same arguments over a
decade ago. The work of his (now defunct) Engineering Problem Solving
group at MIT illustrated the point well . Several important AI ideas grew
directly out of that group 's attempts to automate aspects of engineering
reasoning, including truth-maintenance systems [19,57], dependency-directed
backtracking [66], constraint languages [14,70,67], and qualitative physics
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[13,23] . Some of this work has already directly led to useful applications
[22] . Today many groups in this country are exploring various applications
of AI to engineering, including academia (MIT, University of Massachusetts
at Amherst, Ohio State University, and University of Illinois), government
(NASA), and industry (Xerox PARC, Schlumberger, Westinghouse, United
Technologies) . Engineering applications are the focus of a number of Alvey
and Esprit projects in Europe, as well as several AI projects in Japan . A
complete listing is impossible, so I won't even try.

The goal of this paper is to say what intelligent computer-aided engi-
neering can and should be . First, I describe what I mean by intelligent
computer-aided engineering (henceforth ICAE) . Several highly speculative
scenarios are introduced for concreteness . Next I'll explain why current ex-
pert systems technology is not a very good example of ICAE technology, and
point out some of its limitations . Since I believe that qualitative physics will
be central to ICAE, I next outline the issues and open problems in that area
which must be addressed for such applications . My hope in writing this paper
is to encourage more research in this area.

2 What ICAE systems could be like

The goal of Intelligent Computer-Aided Engineering is to construct computer
programs that capture and use a significant fraction of the knowledge of en-
gineers, both formal and tacit . By making programs that understand things
the way engineers do, we can make programs that can communicate more
easily with human engineers as junior partners . More importantly, if we can
capture the ways the best human engineers reason, we can make engineering
tools that spread this expertise among a broader community (as suggested
for VLSI in [68]).

There have already been signficant AI applications in engineering (see for
example [65]), but while they are important first steps, they are not even
close to the capabilities I believe we can eventually achieve . The best way to
illustrate the difference is with several scenarios illustrating the capabilities
I mean. Please note carefully : the programs described in the following three
sections exist only in the imagination . But I believe they are possible, if we
are willing to put in the necessary effort.

2 .1 ICAE in design

Scenario One : Suppose we wish to design a wrist watch . Furthermore, we
might imagine we are designing it for someone eccentric enough to wish to
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own a mechanical watch . We begin by consulting our able computer assistant.
The program informs us that any clock must have an oscillator, a power
source, a drive train, and a display. It also provides several initial suggestions
about how to implement each functional component, from a catalog of typical
designs.

Thrilled at the prospect of designing an "original antique", we ignore the
computer's initial suggestions and instead begin with a recoil escapement,
using a pendulum as the oscillator . But before any specific parameters have
been chosen, our assistant warns us that this choice is unsuitable . It explains
that a pendulum requires a constant orientation to work because it depends
on gravity, while a wrist watch must be able to function at any orientation.
Chastised, we retract our choice and accept the computer's suggestion (after
all, it has been quite a while since we last designed a mechanical watch!).

As we begin to make choices for the ways to implement the required
functions, the computer checks for further inconsistencies . Whenever some
choice forces others, this fact is noted. At any stage we can ask just why the
computer suggested certain choices, or even ask it to remind us why we made
other choices.

As soon enough information is specified, the system performs a qualitative
simulation to find out how the designed artifact can behave . For many arti-
facts this qualitative simulation can be performed much earlier in the design
process than any numerical simulation . (For a wrist watch or other mechan-
ical system, we will need to choose the shapes of the components .) The
envisionment performed by the computer reveals that the desired behavior
of the watch is indeed is one of the possible behaviors predicted . However,
a comparative analysis shows that if the temperature of the environment
changes, the period of the oscillator will change . In particular, the period
increases monotonically with temperature — as temperature increases the di-
ameter of the balance wheel rises, slowing the movement, and as temperature
falls, the diameter will decrease, causing the watch to gain time . A design
change is made to reduce this source of error . Instead of making the wheel
out of steel, a brass outer rim is added, and two gaps are cut in the circumfer-
ence. Since brass expands faster than steel, the two rim pieces swing inward
as temperature rises, thus maintaining the distribution of weight [40].

Scenario Two: Alternately, suppose we are designing a thermal control
system for a Space Station [53,54,55] . We might choose to use ammonia as
our working fluid, and use the same heat exchangers for heating and cooling
to save total system weight . An important criteria for designing spacecraft
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systems is "fail operational first, and fail safe next ."' By representing what
can occur with all combinations of system configurations, set points, loads,
and failure modes, the computer shows all the dangerous states the system
might be placed in by operator error or malfunctions . Knowing the space
of potential problems enables the designer to modify the system to minimize
their impact . For example, the design can be changed to minimize the effects
of operator error and provide more options for temporary reconfiguration to
aid failure management.

Once the design is finalized, the computer generates detailed manuals of
procedures for initializing, operating, and maintaining the thermal control
system . It also generates a set of rule-based expert systems for monitoring
the system's operation, fault diagnosis, and failure management.

2 .2 ICAE in plant operation

Scenario Three : As process plants grow more complex the cognitive load
on the operator grows . An ICAE plant monitor could relieve this load, by
summarizing the state of the system in easily understandable, qualitative
terms. The monitor responds to operator queries using a combination of
natural language and graphics . When something goes wrong, the monitor
should be able to make suggestions about the source of the problem . More
importantly, the human operator should be able to tell the monitor what
he/she thinks is wrong . The monitor then helps refine this hypothesis, by
serving as a "devil's advocate" or "Doubting Thomas" 2 , critically evaluating
the person's theory and offering tests and measurements that might confirm
or disprove it.

The monitor becomes the "computational infrastructure" of the plant . It
sifts through data about breakdowns and repair times in order to predict
when systems are likely to fail, and to figure out how maintenance schedules
might be improved. It shares its findings with the monitors in other plants,
spreading innovative techniques and cautionary tales of things that can go
wrong.

Suppose a radical re-configuration of the plant is needed, either because
the product is being changed or a more economical process has been devel-
oped . Instead of being thrown away, the monitor becomes an active par-
ticipant in the re-structuring . Using its knowledge of the plant, it suggests
various ways that existing stock can be used to carry out the new plan . Once
a new configuration has been decided upon, the monitor automatically com-

'Jane Malin, Personal Communication, November, 1987.
'This name was suggested by Mike Williams of IntelliCorp.
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piles the appropriate sensory and control programs for its slave computers
which handle the brunt of real-time processing.

2 .3 ICAE in computer-based training

The complexity of modern engineered systems can be staggering . Train-
ing people to operate and maintain such systems is a difficult problem, es-
pecially since the trainees often lack higher education [2,69,44,78] . Intelli-
gent Computer-Aided Instruction promises to provide high-quality tutoring
at much lower costs than using human tutors . But so far it has been hard
to deliver on this promise ; only a handful of such programs have been de-
veloped, and few have seen wide application [72] . Part of the problem has
been that, until recently, the available computing technology has been woe-
fully inadequate . Even today, many desirable capabilities simply cannot be
supported. But most of the trouble is that it is extremely difficult to develop
ICAI programs . Years of knowledge elicitation and many cycles of program-
ming are typical . To achieve a high impact on education, we must automate
the production of intelligent tutoring systems.

It seems unlikely that a program reasoning directly from first principles
will be able to generate fluent real-time explanations of complex systems.
People rarely do: Consider an expert in, say, automatic combustion controls
in Navy propulsion plants . The expert may have mainly served on ships that
use a particular brand of pneumatic component (e .g ., Bailey) . When asked
to explain an automatic combustion control system made from components
from another manufacturer (e .g., Hagen), he often gets stuck, even though
functionally the systems are identical . After studying the Hagen system for a
while, however, the expert can explain the new system almost as well as the
ones he is familiar with . It seems there are "compiled" explanations which
the expert can bring to bear on familiar systems, or systems built out of
familiar components . Given an unfamiliar system, the expert requires time
to extend his understanding to include the new kinds of devices.

Scenario Four : Suppose you wish to build a computer-based trainer for
a newly-designed power plant. Imagine a tutor compiler that worked as fol-
lows. In an interactive dialog with the compiler, you provide a structural
description of the system to be explained, the typical student's prior knowl-
edge, their likely mental models [38], and what class of questions the tutor
must be capable of answering . Notice that we are specifying the tutor much
more abstractly than current CAI "authoring systems" allow — we are not
specifying specific questions and specific answers . We might wish to specify
a lesson plan, but in more general terms — "Make sure they understand the
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difference between heat and temperature" . You also specify the hardware
environment the tutor will be operating in – what kind of computer, displays
and input devices.

At the end of the interactive session, the Tutor Compiler tells you when
to come back and pick up your tutoring program, or roughly how long it will
be before it can tell you whether or not it is possible on the hardware you
specified. It then sets to work, generating a special-purpose tutor for the
desired system that will run efficiently on the specified hardware 3 . The tutor
it generates may be quite dumb, consisting of nothing but canned graphics
and text, depending on the hardware involved . While human beings can
write such programs, they take months (or years) to do so, and often need
many cycles of debugging – generating canned lessons is boring! The tutor
compiler won't get bored, although it will probably take a long time by the
standards we are used to – hours, days, or perhaps even weeks . If the tutor
is to be widely used, or the system being taught is sufficiently critical, even
months of computer time is a reasonable price for increased reliability.

2 .4 Decomposing ICAE

Let's look back over these utopian scenarios and identify some of the knowl-
edge and skills involved.

Broad domain models : An ICAE program must know about a broad range
of physical domains to reason about real systems . Engineers reason about
liquids, gases, chemical reactions, mechanics, elasticity, electricity, and many
other "domains" . Many engineered systems require reasoning with several
domains at once.

Layered domain models : Qualitative knowledge is essential for ICAE, but
it must be integrated with quantitative knowledge, in the form of equations,
empirical relationships, and numerical bounds.

Routine design: An ICAE design system will have a catalog of standard
designs, in order to quickly solve routine design problems . These problems
include making a small variation in a standard product to meet a special
need, and performing subtasks in a larger, creative design task[18].

Functional descriptions : An ICAE system will need a vocabulary of func-
tional descriptions, in order to analyze existing artifacts, hierarchically design
new artifacts, and to communicate better with engineers during the initial

'Anderson's group has in fact proposed building a system which, while less ambitious,
is similar in spirit to the Tutor Compiler proposed above [1] . Their goal is to run their
existing tutors on cheaper hardware, not to automatically generate completely new tutoring
programs .
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phases of a design. Examples of such concepts include filter, regulator, oscil-
lator, sensor, and actuator [27].

Qualitative simulation: Existing CAE systems often provide numerical

simulation facilities for checking designs . However, a numerical simulation

is useless in the early stages of design because too little is known . In the

later stages numerical simulation can be used, but any serious problems un-

covered then are often fixed only at greatly increased expense, both in terms

of designer time and computer time . Aside from the ability to catch blun-

ders early, knowing early in the design process what undesirable behaviors

might be exhibited can allow the posting of constraints on other choices in

the design, in order to prevent such possibilities from occurring.

Procedure generation : Designing a new artifact often results in a second,

neglected design problem: developing the procedures required to operate and

maintain the artifact . We can imagine a procedure compiler which automat-

ically identifies what kinds of procedures are needed, and generates them

as appropriate . Creating procedures requires knowing which aspects of the

artifact can be manipulated by the operator, what kinds of conditions are

likely to occur, and what conditions constitute unsafe operation . The more

the procedure compiler knows about the mental models operators will use to

understand the artifact, the better will be the procedures it can construct.

If the procedure compiler can be brought into play early enough, operational

criteria can influence the design process in order to create systems that are

safer and easier to use.

Failure analysis and fault-tree generation : By including fault models in

the qualitative physics used to analyze the design, possible failure modes of

the system can be predicted in advance . These identified potential failures

could be used in several ways . Fault trees could be generated for calculating

the probability of various failure modes . Simple rule-based expert systems

could be automatically generated to help monitor, operate, and maintain the

system, thus bypassing the traditional knowledge engineering bottleneck [62].

Communication skills : People will still be in the loop, and ICAE systems

must communicate effectively with them . This requires advances in natu-

ral language understanding and generation . Also, it requires advances in

direct-manipulation interfaces[45] . And finally, it requires an understanding

of typical mental models, so the program can couch explanations in under-

standable terms.

Computer Individuals : Nilsson has advocated the development of AI pro-

grams that are never turned off, as a way of studying what might be termed

"computational ecology" . Such architectures will be necessary for ICAE sys-

tems that act as the "institutional memory" of a factory over its operating
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lifetime.

3 The road to ICAE
Despite exciting recent progress in Artificial Intelligence, we are still far from
building programs that can perform at the level described above . No com-
bination of current technology will suffice ; we need fundamental advances in
the state of the art . This section examines why.

3 .1 Why not rule-based expert systems?

Rule-based expert systems have comprised the bulk of AI applications to
date. This technology moved from the laboratory in the mid to late 70's,
and through the microelectronics revolution has seen widespread industrial
application. However, this technology also has well-known limitations, as
Davis [10] and others have pointed out . These problems include:

1. Narrowness . Traditional rule-based systems have no common sense.
They do not contain a range of solution techniques, using simpler ones
to solve simple problems with less work and applying more complicated
techniques only when necessary . As de Kleer puts it, "An intelligent
problem solver has to be able to answer stupid questions ."

2. Uncertain coverage . Simple rule-based systems are typically generated
from particular examples (either by hand-crafting or inductively) . Con-
sequently, it is hard to determine just how completely they cover the
domain in question.

3. Brittleness. The performance of human experts degrades gracefully in
the presence of incomplete or erroneous information . Human experts
can tell when they are lost . Neither fact is true for standard rule-based
expert systems.

Much of today's AI research is aimed at overcoming these limitations.
Despite such drawbacks, this technology has proven quite useful . In part this
success has been because the classical rule-based expert systems were the first
widespread application of symbolic computing . Even in engineering, where
numerical computing is essential, numbers alone are no subsitute for symbolic
representations . Narrowing the gap between the user's way of thinking and
the computer's language resulted in an explosion of enthusiasm . What if we
can narrow that gap even more?
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The deepest problem with current fielded expert systems technology is
that they intermingle domain knowledge with control knowledge about the
particular kind of task. Certainly partitioning the program into "knowledge
base" and "inference engine" enforces modularity better than simply writ-
ing procedures . However, the authors of rules know they are writing the
knowledge base for a particular task, and that fact affects the contents of
the knowledge base. For example, DENDRAL's predictive rules for mass spec-
troscopy had to be re-written to be used for interpretation ([3], p 462) . When
re-examining MYCIN 's knowledge base from the perspective of tutoring rather
than diagnosis, Clancy discovered that many control decisions for diagnosis
were encoded in the structure of the rules [3] . This is not to say that such
modularity cannot in principle be imposed with today's expert system shells.
Many expert system tools (e .g., KEE, ART, and others) include frame sys-
tems and other constructs for such purposes . But I suspect from talking with
users of these systems that this distinction is more honored in the breech – it
is just too convenient to build in only the distinctions you need for the task.
Indeed, this is exactly the right strategy to build today's expert systems . But
I do not believe it is the right strategy for tomorrow's.

The intermingling of content and intent makes the knowledge acquisition
problem harder than it needs to be . Suppose we want to build a set of ICAE
tools that can be used for any engineering problem . Engineering involves a
large number of domains, and several different styles of reasoning . Encoding
this knowledge in today's expert systems technology would require represent-
ing the knowledge separately for each domain and each kind of reasoning . If
there are N domains and M styles of reasoning, we have N * M research
problems.

3 .2 A methodology for ICAE

Consider a more modular strategy. If one can develop problem-independent
representations for domain knowledge, and domain-independent theories of
the kinds of reasoning involved, then one has only N + M research problems.
True, these N + M problems might be harder than the individual N * M

problems . But there is already evidence that this is not necessarily the case.
Theories of diagnosis [17], measurement interpretation [30], and comparative
analysis [75] are successful examples of domain-independent styles of reason-
ing. (By successful, I do not mean these problems have been solved once and
for all, as Section 4.2 makes clear.) And the domain models developed in
qualitative physics research [16,28,46,76] tend to be independent of the style
of reasoning used .
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It is worth dwelling on the notion of a domain model from qualitative
physics a bit, since it is often misunderstood . When someone decides to
develop a qualitative model, there is generally some system or phenomenon
being modeled, and some purpose in mind for that model . I call the system or
situation being modeled the scenario, and its qualitative model the scenario

model . The modeling process consists of building that scenario model, from
something . How does this process work?

Building a specific model for a specific purpose is the simplest path, anal-
ogous to the way expert system applications are built today . There is abun-
dant evidence that the results of this path are useful . But having built one
special-purpose model may not provide much help in tackling the next sce-
nario model . For long-range progress, a better path is to start with a domain
model which describes a class of related phenomena or systems . Ideally, any
scenario models required can be built by composing descriptions from the
domain model. Developing a domain model requires more work than devel-
oping a model for any specific scenario . The payoffs are that (1) generating
a scenario model becomes easy, for some range of scenarios, and (2) ad hoc
models are harder to generate, since the constructs of the domain are used
in a modular fashion by a variety of examples.

Theories of qualitative physics differ in how they organize domain mod-
els. Qualitative process (QP) theory [25,28] organizes domain models around
processes, which can be automatically instantiated to form scenario models.
Device-centered ontologies [16,76] provide catalogs of devices, which can be
composed to build scenario models . (Kuiper's QSIM [47] does not provide any
abstraction or organizing structure for domain models itself, but one could
imagine using it with either ontology.)

It is important to note that there is nothing inherently "qualitative" in
this notion of domain model per se. Domain models could contain arbitrary
symbolic or quantitative knowledge, for example . What is important is that
(a) the domain model can be used to build scenario models that span a well-
defined variety of systems or phenomena and (b) the constructs of the domain
model must support several styles of reasoning. For example, a knowledge
base for engineering thermodynamics should enable the construction of mod-
els for broad classes of refrigerators, power plants, propulsion plants, and
so forth . It should support making predictions, interpreting measurements,
troubleshooting, and design.

There are significant advantages to this strategy, beyond reducing the
amount of research required . Separating the development of the domain
models from the styles of reasoning clarifies both . It is easier to see just what
phenomena a domain model covers when it is not entangled by considerations
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of how it is to be used. By freeing the description of a style of reasoning from
the language of a single domain, we can understand better what is required
to perform it and exactly when it will and will not work.

Qualitative physics is not the only area of AI which is converging on such
ideas, although arguably it has carried them farther than most . Many threads
in expert systems research point in the same directions . For instance, work
on model-based reasoning [2,69,44,11] overlaps signficantly with qualitative
physics, and uses more or less the same notion of domain model. Chan-
drasekaren's generic tasks are one codification of styles of reasoning [4,5].
The creation of expert systems shells specialized for particular kinds of tasks,
such as EMYCIN, is another . Lenat's CYC project [51] can be viewed as an
attempt to generate a high-level domain model for all of commonsense rea-
soning. Various expert system shells, such as IntelliCorp's KEE and Neuron
Data's NEXPERT are beginning to provide support for model-based reason-
ing. And no doubt there are others . What I wish to emphasize is that the
construction of large knowledge bases and codification of general styles of rea-
soning requires explicit research ; it will not arise as a side-effect of "adding
more rules" to the typical systems being applied today.

4 Qualitative physics in ICAE
Constructing powerful ICAE systems will require the confluence of several
computing ideas and technologies, including advances in symbolic algebra,
databases that represent design choices and their dependencies, heteroge-
neous processing systems for efficient execution of mixed symbolic and nu-
meric computations, and others . However, this paper focuses on one key
area: qualitative physics.

Qualitative physics is crucial because it helps capture the commonsense
understanding of the world which is the foundation of engineering knowledge.
What we know about the physical world is vast compared with what we learn
from textbooks in school . The formal knowledge codified in the engineering
curriculum must be embedded in this richer framework to achieve human-
like performance . Qualitative physics complements traditional techniques in
several ways:

• It can provide answers even with very little data.

• It provides organizational structure for more detailed forms of analysis.

• It provides a more natural language for communicating with human
engineers .
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These points have been amply made in the literature (such as [13,2,23,26],
so I will not elaborate them here 4 .

The qualitative physics enterprise began just over ten years ago, but only
in the last four or five years has it received intensive effort . While there
are some indications of successful applications at the current state of the art
(including [7,39,36], I believe the real potential lies ahead . The next sections
focus on the research that will be required to bring the field up to the quality
and scope of human engineering.

4 .1 Modeling Issues

We have only reconstructed a small portion of what people – both expert
engineers and people on the street – know about the physical world . We
have several notations for expressing time-dependent differential equations,
and can model simple dynamical systems . We can even model simple spatial
systems, although much less progress has been made on that front . I would
bet that most of qualitative physics lies ahead of us.

4 .1 .1 Extending the range of phenomena

There are many phenomena which can probably be formalized using existing
techniques, but which simply haven't been yet . For example, small-signal
and DC analyses of simple electronic circuits have been successfully solved,
but to my knowledge little has been done on AC or RF analyses . Frequency-
domain analysis remains unexplored. We can deal with essentially slow liquid
flows and some phase changes, but most of thermodynamics, fluid statics, and
fluid dynamics remain to be formalized . Little has been done on materials,
conservation laws, and energy (but see [28,8].

Most existing domain models in qualitative physics are small . How big will
the qualitative vocabulary of an ICAE system be? Finding the right metric
is difficult, but, following Hayes, a reasonable view for ballpark estimates is
to use "axiom-equivalents" . Our early QP models of liquids contain roughly
300 axioms 5 . Given our experience in expanding these models to cover more
phenomena, and thinking about the phenomena we still have not represented,

4 I ' ve surveyed the state of the art in qualitative physics in two recent papers incorporating
different perspectives ; [32] is more tutorial, providing some historical perspective and open
problems, while [33] reviews progress in related areas such as temporal reasoning and causal
reasoning as well as qualitative physics.

'The mapping from QP descriptions to axioms is many to one, hence these numbers are
approximate .
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it seems reasonable to think that perhaps an increase of between a factor of
3 and 10 would suffice . That would be between 1,000 and 10,000 axioms.

Now that is only one domain . Depending on how one carves up the
world, there are easily ten or twenty domains that would be of widespread
use in engineering . Even if only a small number of these (say, five) were
needed by any particular ICAE system, we are still faced with the prospect
of 50,000 axioms. And that is just the qualitative knowledge. There is still
knowledge associated with control, with quantitative knowledge (see below),
all the minutae of specific constants, random facts about the world such as
the reliability of suppliers, etc . ICAE systems will have serious memory
requirements!

The important point about the methodology of qualitative physics is that
the knowledge should accumulate . If we build ad hoc models for each new
system we are doomed. But if we build powerful domain models, analyzing
a new system simply consists of re-applying the concepts we have already
formalized and tested.

Ultimately, we would like to see standard libraries of qualitative models,
just as there are standard libraries of numerical analysis routines and conven-
tional approximations for complex equations . All the benefits of standard-
ization – certification, proofs of correctness, and so on – should eventually be
attainable for qualitative models . Many engineering fields already have es-
tablished conventions for determining what kinds of approximations to use6 ,
so the existence of qualitative model libraries will merely extend the spec-
trum of available representations . Developing the knowledge base for a new
ICAE system should become mainly a process of selecting the right off-the-
shelf vocabularies, rather than the laborious knowledge engineering protocol
of today 's expert systems.

4 .1 .2 Extension theories of quantity

For many engineering purposes purely qualitative answers are insufficient.
The qualitative analysis will serve as a guide to carrying out more detailed
analyses, such as algebraic manipulation (e . g. [13]) or numerical simula-
tion (e.g . [23,24] . Some excellent starts have been made . Simmons [63]
has developed utilities for integrating inequalities, intervals, relational arith-
metic, and constant elimination . Berelant and Kuipers [49] use quantitative
bounds on functions to constrain qualitative simulation . Several formaliza-
tions of order of magnitude reasoning [60,56,9] have been developed . The

'For example, both civil and nuclear engineering tend to base these decisions on safety
factors .
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tacit knowledge mathematicians bring to bear is also being studied [61,79].

4 .1 .3 Reasoning with multiple ontologies

A full understanding of complex systems, such as thermal and fluid systems,
often involves integrating results from more than one point of view . For
example, reasoning about the efficiency of a propulsion plant requires thinking
about how the properties of the fluid circulating in the system change as it
goes through different components . Essentially, one thinks about little pieces
of stuff, a collection of molecules taken together as an object whose properties
are to be reasoned about.

The problem with the "little pieces of stuff" viewpoint is that, by itself, it
is insufficient to figure out what is happening in the plant . Somehow the fact
that the liquid is circulating must be ascertained, a fact which is impossible
to establish without considering mass properties of the fluid in the various
containers . By contrast, the contained-liquid ontology introduced by Hayes
[42] is ideal for establishing this fact . Being able to switch from one ontology
to another appears to be essential for solving many problems concerning fluid
systems.

A special case of the "little pieces of stuff" view is handy in engineering
thermodynamics . The idea is to consider an infinitesimal piece of fluid, so
small that it never splits into two parts when flowing through a system,
but large enough to have macroscopic properties . An envisionment using
this molecular collection ontology can be computed from a description using
contained-stuffs. Any particular state in the contained-stuff envisionment
describes what processes are active, including flows of mass and heat . A
simple set of rules applied to these process descriptions suffices to produce a
new envisionment which describes how this abstract infinitesimal fluid piece
moves and what happens to it as it goes from place to place . This description
can be used to recognize thermodynamic cycles and heat pumps (see [6] for
details).

There are still other ways of individuating fluid stuffs that have yet to be
explored, such as macroscopic pieces of stuff . Right now we do not know how
many other cases of ontological shifts appear in engineering reasoning, nor
what other kinds of relationships between ontologies there might be.

4 .1 .4 Formalizing modeling assumptions

Engineers constantly use simplifying assumptions to manage complexity . For
example, when trying to figure out how a system containing a heat exchanger
works, engineers tend to assume that the fluid in the hot leg is hotter than
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the fluid in the cold leg . If the system is operating as intended, making this
assumption saves effort because the other two alternatives (i .e ., the temper-
atures being equal or the cold leg temperature being higher than the hot
leg temperature) need not be considered . If the system is not operating as
intended then the engineer's predictions will be wrong and the analysis must
be re-done to consider the other alternatives.

One distinguishing feature of QP theory is that it provides the ability to
formalize modeling assumptions . QP theory does this in two ways . First,
the conditions under which a description can be instantiated are formally
specified in the domain model . By contrast, the modeling work of choosing
which "device" should be used to model parts of a physical system is done
by the user in other theories of qualitative physics (i .e ., those of de Kleer &
Brown, Williams, etc .) . Second, the preconditions field of processes and time-
varying relationships provides an interface for information which normally lies
outside the realm of QP theory, such as geometric relationships.

However, almost all qualitative models developed to date are "flat"
they assume the input descriptions are in terms of the theoretical vocab-
ulary, and they make as few assumptions as possible about the operating
environment.

This is a good strategy for developing the basic representation of a domain,
and continuing such studies is crucial . But soon we must also learn how
to construct domain models that provide layers of varying approximations,
with explicit simplifying assumptions to record the dependence on them for
explanation and backtracking . We believe such layered models can provide
a way to gracefully extend more basic models to capture the competence of
human engineers.

There are several issues involved in constructing such models, including:

1. Mapping from real-world objects to abstract objects : A manifold can
typically be modeled as an abstract container . However, this approxi-
mation breaks down if the material in it is corrosive, if it is punctured,
or it is placed in thermal contact with some other working fluid.

2. Representing normal behavior : The behaviors of a well-designed system
are a small subset of the logically possible behaviors . Analysis is simpli-
fied when unlikely behaviors can be ignored . We believe many of these
descriptions can be succinctly represented by QP's individual views.

3. Representing faults : Faults represent violations of the mapping from
real-world objects to their intended abstractions . Some faults may be
represented by retracting assumptions of normal behavior (e . g. , equal
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temperatures in both legs of a heat exchanger) . Others, such as leaks,
may require making extra explicit assumptions.

We have begun exploring these issues, and have developed a set of conven-
tions for modeling assumptions that allows the construction of large, multi-
perspective, multi-grain qualitative models [20] . Our initial testbed has been
a high-level model of a Navy propulsion plant, and next we plan to test
these ideas on modeling thermal control systems for NASA . However, much
research remains.

4 .1 .5 Spatial reasoning

Motion has been analyzed for special cases (linear one-dimensional [28], slid-
ing in one dimension [13], free motion in two dimensions [23,24], and some
mechanisms [37,59,21] . However, despite its importance, little general progress
has been made on qualitative spatial reasoning.

We claim that, unlike dynamics, there is no useful general-purpose, purely
qualitative representation of space (the Poverty Conjecture, for details see
[34]), and thus all attempts to find one are doomed to failure . The MD/PV
model we propose instead starts with a quantitative, diagrammatic represen-
tation (the Metric Diagram) and computes an appropriate qualitative repre-
sentation from it (the Place Vocabulary) . We have demonstrated this model
for free motion of point masses in two dimensions [23,24], and reasoning about
mechanisms [34,21,59].

The MD/PV model has allowed us to achieve a milestone in qualitative
physics : In February of 1988, we successfully completed the first envision-
ment of a mechanical clock . The input description is a diagram specifying
the shapes of the parts and a description of which parts could potentially
touch . (The latter was provided only to reduce computing time ; the system
is capable of determining that two parts can never touch itself .) The output
envisionment includes the normal behavior of the clock, as well as a variety of
"stuck" states and odd behaviors . The analysis was carried out entirely from
first principles, i .e., no special-purpose knowledge about gears or escapements
was used . At this writing we are still analyzing the results and testing the
system on more examples.

The MD/PV model implies that progress in qualitative spatial reason-
ing is directly tied to better quantitative representations of shape and space.
Several such representations are being developed in vision and robotics (e .g .,
Lozano-Perez's configuration space formalism [52] and Ullman's visual rou-
tines [71]), and using these to construct qualitative representations appears
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quite promising. For example, [21] describes a theory and implemented sys-
tem that computes place vocabularies for a mechanical clock using configu-
ration space.

One way that spatial reasoning integrates with dynamics is the notion
of spatial derivatives . By this I mean the analysis of systems best described
by partial differential equations, with or without time . Examples include
the stresses on different parts of a bridge, the flow of wind over an airplane
wing, and the distribution of temperature during a heat flow across a metal
bar. Developing formal qualitative laws for partial derivatives will probably
be straightforward. The difficult part seems to be formalizing the strategies
that tell us how to divide the shape under analysis, and what directions to use
as our frames of reference . Is there a qualitative physics that can naturally
encompass field phenomena?

4 .2 Reasoning Issues

ICAE systems will require computational resources that seem prodigious by
today's standards . It would not surprise me to find that several orders of
magnitude of improvement in speed and memory capacity are required for
the utopian scenarios presented earlier . If we are lucky, current technological
trends will provide us with such power before too long . Happily, the situation
is not an all-or-nothing game ; much can be done even with today's computers
in the meanwhile . (However, we may be seeing an analog of Gresham's law
operating in AI computing : Manufacturers are focusing on low-cost, "delivery
vehicles" in hopes of short-term profit, rather than on developing machines to
support extending the state of the art . For instance, several vendors tell me
their marketing studies indicate that no one needs larger address spaces . In
the long run that cannot be true ; to build systems that know more, you must
put that knowledge somewhere .) Here we examine some styles of reasoning

that use qualitative models and point out several areas where advances are
needed.

4 .2 .1 Prediction

Since qualitative models quantize continuous parameters into a finite sym-
bolic vocabulary, in principle there are only a finite number of qualitative
states for any system . Thus one can generate all possible states of the sys-
tem, and all transitions between these states . Doing this is called envisioning,

and it is the best-explored qualitative simulation technique.
The envisionment of a system can serve as a knowledge base for a variety
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of programs . For example, a key step in measurement interpretation (i .e .,
reading gauges) is finding the qualitative states that could explain a particular
temporal segment of a system's behavior. If the envisionment for a system
is known, then potentially a set of lookup-tables could be precomputed that
drastically reduce the computational burden of this step (see [30] for details).

Exploring all alternatives is critical for many ICAE tasks . Some system
behaviors can correspond to uneconomical or undesirable states, and given
the knowledge that they might happen we can take steps to see that they
don't. A subset of potential behavior not considered by a careless operator or
pruned out by a heuristic might contain a potential catastrophe . Envisioning
is particularly important for developing new qualitative models . The reason
is that we want our models to predict all and only those behaviors which
some physical system might produce . People tend to be unsystematic in
testing models ; rarely do they set up "stupid" initial conditions and see what
happens . People tend to ignore low-probability states . Yet these precise situ-
ations could arise in an application, and bizarre behavioral results will cause
some unpleasant surprises . Unfortunately, the computational complexity of
envisioning will require developing new techniques for reasoning with larger
models . We discuss this issue in detail below.

Any path through an envisionment corresponds to a predicted possible
behavior of the physical system, or a potential history of that system (as in
[41,42] . However, Kuipers [47] has demonstrated an algorithm that generates
histories directly, rather than indirectly through an envisionment . This his-

tory generation algorithm is yet another kind of qualitative simulation, with
some very useful properties . The states in an envisionment are "generic", in
that numerical values are distinguished only with respect to global properties
of the domain . The states produces by Kuiper's QSIM program include newly
generated landmark values to represent the specific values of quantities at
particular times . As Kuipers points out, the landmark values produced in
history generation are essential for detailed analysis of specific behaviors.

Unfortunately, Kuipers has also shown that direct history generation, due
to its locality, can lead to spurious predictions about behavior . Worse yet, it
appears that such spurious predictions can even arise when generating histo-
ries indirectly from envisionments . More research is needed to determine and
appropriately encode path constraints, to constrain successive choices of land-
mark values and so avoid predicting physically impossible behaviors . Work
is proceeding on identifying such constraints (for example, [50]), but much
remains to be done. We conjecture that one useful way to constrain landmark
introduction is to integrate it with the more generic descriptions produced by
envisioners . For example, the envisionment could be used to easily identify

18



cycles of behavior (corresponding to oscillations), and landmark introduction
used to analyze the behavior in more detail.

4 .2 .2 Measurement interpretation

The ATMI measurement interpretation theory [30,31] produces explanations
of observations taken over time in terms of the states of a qualitative model.
It has been demonstrated on simple examples where the input measurements
were hand-processed. We have begun testing routines for automatic transla-
tion of data from numerical simulators . However, at least two critical issues
must be addressed before we will have an implementation capable of deal-
ing with "real" data . First, what are the best strategies for recovering from
errors induced by noisy data? We are beginning to explore this question ex-
perimentally by introducing noise into our simulators . Second, what are the
best ways to represent estimates of rates and durations for heuristic prun-
ing? For example, suppose two different states can explain a temperature
rise during a particular temporal segment . If one knew that the rate of rise
was larger than could be explained by one of the states, then we would have
a unique explanation for that segment.

4 .2 .3 Comparative analysis

Suppose we have just designed a control system and discovered that its re-
sponse time is too slow . What properties or parameters of the system could
we change to increase the response time, without degrading other perfor-
mance criteria? Answering this question requires an in-depth analysis of the
dependencies of the situation, and finding the effects of a small perturbation
of them. This kind of comparative analysis [74] is receiving increasing atten-
tion in qualitative physics . In [58], such an analysis is used to help debug
integrated circuit fabrication lines . The idea is to generate a history for the
system with equations linking the various changes that happen across time.
By performing a sensitivity analysis on the resulting system of equations an
appropriate change can be found.

The best work in this area is Weld's recent PhD thesis, which presented
a domain-independent theory of comparative analysis, explored both by for-
mal analysis and by implementation . He formalized the variety of differential
analysis suggested in [28] (finding and fixing rather signficant flaws), devel-
oped an entirely new kind of comparative analysis called exaggeration, and
analyzed the trade-offs between these two forms of analysis . Exaggeration
works by creating extreme cases . For instance, to ascertain how the weight
of a block in a simple spring-block system affects the period of oscillation,
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Weld's system considers what would happen if the mass were infinite . In that
case the period is infinite, hence increasing the mass will increase the period.
Weld's theory is bound to be an important tool in developing a variety of
ICAE systems.

4 .2 .4 Planning and Procedure generation

The view of engineered systems as isolated dynamical systems is inadequate:
Real systems usually have controls, which are often operated by human be-
ings . They are often subject to all manner of external effects, such as changing
loads and temperatures . Qualitative physics must be integrated with models
of agency and action to more completely predict the behavior of real systems.
By capturing the kinds of things agents can do to a system, we can represent
the effects of carrying out procedures and thus provide tools for automatic
procedure generation.

We are currently exploring several ways to integrate physics with plan-
ning . One way is to take the physics into the planner . John Hogge has
developed an operator compiler that takes QP domain models and produces
rules and operators suitable for a temporal planner [43] . Given a goal like
"Cause the water level in this container to increase", his planner can use the
knowledge of what it can do, combined with the "operators" representing
what the physical world will do derived from the QP model, to figure out
that it should place the container under a faucet and turn on the tap . We
are currently testing his planner on a variety of examples and domain models
to better understand its advantages and limitations.

Another way to think about planning is to move action into the physics.
An envisionment consists of all the different states possible given a fixed
configuration of objects . Consider augmenting the envisionment in two ways.
First, suppose instead of one fixed configuration, the input were a set of
configurations representing all the transformations that could be achieved by
an agent acting on these objects . Second, consider adding to the set of state
transitions the effects of an agent taking one of the possible actions in that
state. We call this description the Action-augmented envisionment (or AE).

AE's could be very useful for procedure generation. An AE explicitly
represents every possible execution sequence for all possible procedures . Thus
one can find the minimum number of actions that will lead to a disaster, for
example, and change a design to maximize this number.

How hard will AE's be to compute, relative to envisionments? That seems
to depend on the nature of the operator vocabulary . Some actions will pro-
duce new instances of processes (e .g., cutting a hole in a vat), and some won't
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(e .g., turning a valve off or on) . If the operator vocabulary contains nothing
that can create or destroy instances of processes, then the number of states in
the AE will be the same as the underlying envisionment . The only difference
will be additional transitions . (This may seem surprising, but it follows from
the fact that in this case either the operators are irrelevant, or they affect the
operation of processes by changing their preconditions . All different combi-
nations of preconditions are already represented in the envisionment .) Thus
AE's might be quite reasonable for designing procedures for a process plant.
Domains which look more like robot planning appear worse : the number of
initial configurations will typically skyrocket . Even if AE's turn out to be
infeasible to compute for all but the simplest systems, we suspect the frame-
work they provide will be useful for understanding and characterizing other
planning systems . Experiments with a prototype implementation have been
encouraging so far [35].

4 .2 .5 Scaling up

Earlier we argued that domain models which fully capture the tacit knowl-
edge of engineers will probably be orders of magnitude larger than our current
models . Given that our current models often strain the most powerful sym-
bolic workstations available, how can we possibly make qualitative physics an
important part of ICAE? The answer is not substantially different than given
for any other kind of AI problem : we must organize and use the knowledge
more cleverly.

We have had the luxury of simple envisioning for longer than we should
have expected. The envisionment can be viewed as a problem space for sev-
eral classes of problems, and few AI problems are simple enough to allow
the problem space to be explicitly generated . We should not give up envi-
sionments as theoretical tools, and even in developing our domain models we
should use envisioning as a means of exposing flaws that otherwise might re-
main hidden . But for practical ICAE we will have to use more sophisticated
computational schemes.

Consider the problem of constructing a total envisionment for a nuclear
power plant. A typical plant contains thousands of components, many of
which have more than one state . A straightforward combinatorial analysis 7
suggests that explicitly storing a total envisionment is infeasible for any mem-
ory technology we are likely to have in the foreseeable future . However, as
with any other computational problem, there are several techniques which
should offer relief from this combinatorial explosion by trading space for

7 Dan Dvorak, University of Texas at Austin, personal communication, November 1986
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time:
Decomposition: A standard way to stave off a combinatorial explosion is

to decompose it into small pieces, solve them, and combine the smaller so-
lutions as needed. The importance of this idea has already been recognized
in qualitative physics (e .g., the identification of the local evolution problem
in [28] and partial-state envisionment in [77]), but little work has been done
to realize it. The notion of p-component in QP theory defines an isolation
criteria for domain models ; if the boundaries of p-components do not change
then simulation within them can proceed independently . Extending this no-
tion to piece together descriptions of behavior across changes in p-component
boundaries potentially offers a compact representation for very complex sys-
tems.

Hierarchy: Another standard way to avoid combinatorial explosions is to
use the most abstract description that will suffice to solve a problem. By
starting out with an abstract description and resorting to a detailed descrip-
tion only when necessary, irrelevant problem-solving work can be avoided . It
seems likely that as qualitative models evolve they will become hierarchical,
and that the choice of what range of models to use in solving an engineering
problem will be determined by the required "safety factor", just as it is in
current engineering practice.

Some progress has been made on using hierarchy in domain models to
reduce the complexity of qualitative simulation . In [20] we describe an algo-
rithm for solving the problem of selecting the right grain-size and aspect of
a model in the context of intelligent tutoring systems . However, many open
problems remain, including successive refinement of qualitative simulations
and combining results from multiple perspectives.

Hiearchy can also be exploited at the level of behaviors . For instance,
Weld's work on aggregation [73] provides dynamic summarization of discrete
process or continuous process models . Kuipers' time-scale abstraction tech-
nique [48] allows the effects of "slow" components of behaviors to be ab-
stractly represented as functions, under certain assumptions.

Time/Space tradeoffs: How much of an envisionment is precomputed ver-
sus constructed "on the fly" will depend on the kind of problem we wish to
solve and the available hardware . In an ICAE design system, for instance, we
might explicitly construct a total envisionment for the most abstract levels
of description, but switch to dependency-directed search when performing a
safety analysis using more detailed models. In an execution monitor, where
speed is crucial, we might decompose the system into several state clusters,
within which the p-components remain constant . Total envisionments for the
p-components could then be computed and used to build lookup-tables for
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measurement interpretation using the ATMI theory.
While the abstract form of the solutions to scaling up seems clear, there

are of course many technical problems which must be solved in order to
accomplish it . I am convinced that right now we cannot even clearly state
what several of these problems are . Consequently, I suspect it will take several
Ph .D . theses and a number of Master's theses before we will have satisfactory
answers.

5 Conclusions

AI has already been successfully applied to engineering tasks . This paper
argues that these systems are only the beginning. Intelligent Computer-Aided
Engineering, as it arrives, has the potential for transforming the engineering
profession. ICAE research offers a rich source of examples and problems
to challenge AI techniques. Qualitative physics, which we have argued is
central to ICAE, in particular will benefit from considering such problems . By
understanding the complicated reasoning performed by engineers, we should
also better understand how our minds work.

Creating the kinds of large-scale knowledge bases we seek will take the
efforts of many people . In my group, we are focusing on building a knowledge
base for engineering thermodynamics which integrates both qualitative and
quantitative knowledge . Feigenbaum's group at the Stanford Knowledge Sys-
tems Laboratory is focusing on mechanics and electromechanical systems 8 .
We hope that others will join us in these efforts.

A warning: Progress will be slow. Human beings are very smart and
know much more than we know how to represent or reason with now or at
any time in the near future. Developing a full qualitative physics that can
capture the breadth of engineering expertise in a wide variety of domains is
not a five-year exercise, and probably not even a ten-year exercise . No single
"breakthrough" will herald the arrival of the kinds of systems I've speculated
about ; only a lot of dedicated slogging . To make progress we have to commit
ourselves over the long haul, but that is true of any worthwhile goal.

There will, of course, be incremental progress, and the successes of cur-
rent expert systems supplies us with a crucial lesson. Even small advances
in computing technology can yield important leverage for real-world applica-
tions. This is encouraging, since the full capabilities of ICAE as suggested
above appear to be far off . Nevertheless, I believe we will find the journey
very interesting.

'Ed Feigenbaum, personal communication, April, 1988
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