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Abstract 
An important purpose of science education is to help 
students acquire the ability to build appropriate model of 
systems. For facilitating such learning activity, model-
building learning environments (MBE) have been developed. 
Recent MBEs assist students in building conceptual models 
of systems and simulating their qualitative behavior. 
However, their feedback is insufficient when an erroneous 
model is built because they can’t explain how its behavior is 
unnatural nor how to correct it. Additionally, when the 
model includes inconsistent constraints, they can't create 
simulation itself. In this paper, we introduce a MBE which 
overcomes these problems using two techniques we 
developed: a robust simulator and semantics of constraints. 
The former analyzes the consistency of a model and relaxes 
some constraints if necessary. The latter is a systematic 
description of physical meanings of constraints in models 
and provides heuristics for explaining unnatural behaviors. 
A prototype was shown to be useful for learning physics in 
a preliminary test. 

 Introduction 
An important aspect of scientific expertise is the ability to 
build an appropriate model for a given task by identifying 
the structure and principle behind the phenomenon. In 
science education, therefore, students are often given tasks 
which require them to build models to predict/explain the 
behaviors of systems. Learning to formulate, test and 
revise models is crucial for understanding science and 
makes students active. Supporting students in articulating 
models and refining them through experience and 
reflection leads them to deeper, systematic understanding 
of science (Collins 1996). 

For facilitating such learning activity, educational 
systems called model-building learning environments 
(MBE) have been developed (Biswas, Schwartz and 
Bransford 2001; Bredeweg et al. 2009; Forbus et al. 2004; 
isee systems 1985-2012; Jackson et al. 1996). In MBEs, 
students are given a set of components and build their 
model by combining them. A GUI is usually provided 
which allows students to articulate knowledge using 
graphical representations. Each component corresponds to 

a basic term of some formal language. Models made by 
students are translated into formal expressions of the 
language, then their behaviors are calculated by a simulator 
to give feedback about the students. 

In early MBEs, mathematical expressions were used as 
the modeling language and numeric results were derived 
(Costanza and Voinov 2001). However, the abstract 
concepts represented by mathematical expressions are 
relatively inaccessible to students, such as middle school 
students. It is also difficult for them to interpret the results 
of numeric calculation. Additionally, mathematical 
expressions can't capture many crucial aspects of models, 
such as the conditions under which a model is applicable. 
In contrast, in recent MBEs, ontological primitives of 
qualitative reasoning are used as a modeling language, 
which makes it possible to capture conceptual aspects of 
models' behavior, such as causality (Bredeweg et al. 2009; 
Forbus et al. 2004). These environments allow young 
students to articulate knowledge using intuitive concepts. 
The usefulness of MBEs have been verified through 
experiments in elementary and science/engineering 
education. 

However, the feedback given by these systems is not 
always sufficient when students build erroneous models. 
They show the behavior calculated with erroneous models, 
but they can't explain how it is unnatural nor how to 
correct the error. Additionally, when models include 
inconsistent constraints, these systems can't create 
feedback by themselves. Helping students identify and 
correct errors in models is necessary because it is a 
difficult task for them (and sometimes even for teachers). 

We have proposed a framework for simulating the 
behavior of models, including students' erroneous ideas, 
and for providing appropriate feedback by judging its un-
naturalness. This is called 'Error-based Simulation (EBS).' 
(Hirashima et al. 1998; Horiguchi and Hirashima 2006) In 
the EBS framework, the educational implication of a 
behavior is judged by identifying what correct constraint it 
violates (i.e., how it differs from the correct behavior). 
Additionally, the calculability of a model is checked by 



nonmonotonic reasoning. If it isn't solvable (i.e., over-
constrained), the simulation (which is also called 'EBS') is 
created by relaxing the constraint(s) responsible for the 
inconsistency. Some educational systems based on this 
framework (called 'EBS-systems') have been developed 
and proved effective through laboratory and classroom 
experiments (Hirashima et al. 1998; Hirashima et al. 2009; 
Horiguchi and Hirashima 2006; Horiguchi et al. 2007). 

The purpose of our current research is to develop a MBE 
which can create appropriate feedback to students' 
erroneous models based on EBS framework, and to 
evaluate its effectiveness. Appropriate feedback means the 
system can simulate the behavior of any erroneous models, 
and explain how it is unnatural and how to correct the error. 
Since EBS-systems so far are implemented in domain- and 
problem-specific ways, they don't have general 
mechanisms for handling constraints nor creating 
explanations. In this paper, therefore, we propose a method 
for creating EBSs for any erroneous models written in a 
modeling language. As for the language, we adopt the 
primitives of qualitative reasoning. Additionally, in order 
to explain behavior which violates some constraint, the 
physical meaning of each constraint needs to be explicitly 
described. We therefore also propose a method for 
describing such knowledge systematically. Finally, we 
report the result of a preliminary experiment to evaluate 
the usefulness of our method. 

Problems to be Solved 
In order to simulate the behavior of an erroneous model 
and to explain its unnaturalness, two problems must be 
solved: 

(1a) Erroneous models are sometimes unsolvable, that is, 
no solution exists that satisfy all the constraints they 
include. In such a case, simulation can't be created. 

(2a) It is difficult to predict all possible errors students 
would make and to prepare the explanations for them. 

The EBS framework provides the following solutions 
(Hirashima et al. 1998; Horiguchi and Hirashima 2006). 

(1b) The calculability of a model is checked by 
nonmonotonic reasoning. If it isn't solvable (i.e., over-
constrained), the simulation is created by relaxing some 
constraint(s) responsible for the inconsistency. It shows 
some (correct) constraints must be violated according to 
a student’s erroneous idea. 

(2b) The unnaturalness of the behavior of an erroneous 
model is explained by identifying what correct constraint 
it violates (i.e., how it differs from the correct behavior). 

Example 1: A model is incalculable because of 
inconsistency 

For example, figure 1 shows a qualitative model which 
represents the relation between a species' population and its 
death rate (with the graphical language of our prototype 
called 'Evans'). It consists of constraints such as 'C1: the 
population is the negative integration (I-) of the death rate,' 
'C2: the population is not negative' and 'C3: the death rate 
is a positive constant.' This model is erroneous because the 
death rate is correctly not constant but in inverse 
proportion (P-) to the population. In fact, given zero as a 
initial value of the population, it has no possible next state 
because the population can't be negative. Usually 
simulators stop in such a case. 

In the EBS framework, on the other hand, simulation is 
continued by relaxing the constraint(s). For example, by 
relaxing C2, a quite unnatural phenomenon occurs in 
which the population becomes negative. It would strongly 
suggest that the model is erroneous by showing that if a 
student’s idea were correct, such impossible phenomenon 
would have to occur. Since what constraint is relaxed has a 
great influence on the unnaturalness, heuristics are 
necessary for choosing the constraint to be relaxed. The 
heuristics must be an explicit description of the physical 
meaning of each constraint. 

Example 2: A model is solvable but violates the correct 
constraint(s) 
On the other hand, figure 2 shows a qualitative model 
which represents the relation between the amounts of water 
in two containers and the flow rate of water through a pipe 
connecting them at their bottom. It consists of constraints 
such as 'C1: the pressure of water at the bottom of a 
container is in proportion (P+) to the amount of water in it,' 
'C2: the flow rate is in proportion to the difference of the 
pressures' and 'C3: the amount of water in a container is the 
integration (I+) of the flow rate.' This model is erroneous 
because one of the amounts of water must be the negative 
integration (I-) of the flow rate while the other is the 
positive integration (I+) (i.e., the water is moving from one 
container to the other). Though this model is solvable, 
simulating it results in a quite unnatural phenomenon in 
which the total amount of water isn't conserved because the 
amounts of water in both containers are increasing. Usually 
simulators can create simulation in this case. However, 
they can't explain what's happening. 

In the EBS framework, in such a case, an erroneous 
model is compared with the correct one to identify the 
constraint(s) included in the latter but violated in the 
former. In this example, the constraint 'the total amount of 
water is constant' is identified as being violated (this 
constraint isn't necessary for calculation but needs to be 
included redundantly in the correct model for explanation). 
The unnaturalness is explained based on the identification. 
Again, the explicit description of the physical meaning of 
each constraint is necessary. 



Figure. 1. Model of population (erroneous)  

Figure. 2. Model of two containers (erroneous) 

A simulator which has the ability in such constraint 
handling is called 'Robust Simulator (RSIM).' In our 
previous work, we developed a RSIM which can deal with 
the models represented with mathematical expressions 
(algebraic/differential equations and inequalities) by using 
a Truth Maintenance System (TMS) (Horiguchi and 
Hirashima 2006). In this research, based on the same idea, 
we have developed a new RSIM which can deal with the 
models represented with qualitative equations and 
inequalities. Its design and implementation are described in 
the next section. 

In order to provide heuristics for constraint-relaxation 
and to explain the behavior, on the other hand, it is 
necessary to describe the physical meaning of each 
constraint included in the correct model. A guideline for 
such description is desirable which works in various 
domains. For this purpose, we developed 'Semantics of 
Constraints (SOC)' which is a hierarchy of 'Constraint 
Classes (CC).' CCs are domain-independently identified 
based on the roles of constraints in models. SOC is 
described in the section after next. 

 Robust Simulator 
In this research, qualitative simulation is adopted to help 
students understand physical phenomena qualitatively, 
which is important in both elementary and 
science/engineering education. We therefore have 
developed a RSIM which can deal with qualitative 
differential equations and inequalities (QDEs). It is called 
'Qualitative RSIM (QRSIM).' QDEs are translated into a 
set of clauses and their consistency is analyzed by LTRE. 
LTRE, which is a Logic-based Truth Maintenance System 
(LTMS) coupled to a forward-chaining Rule Engine 
(Forbus and deKleer 1993), maintains the dependency 
network of constraints of QDEs and checks its consistency. 

QRSIM derives a qualitative behavior as follows: Given 
a set of QDEs and initial conditions, QRSIM determines 
the initial qualitative state by intra-state analysis based on 
LTMS. Then, a set of candidates for next state is created 
by inter-state analysis (also based on LTMS). Such intra- 
and inter-state analysis are repeated alternately until a state 
which satisfies a terminal condition is found. 

In case QDEs are erroneous, it is possible there is no 
candidate for the next state which is consistent. If all of the 
candidates are contradictory, unless no state is found which 
satisfies any terminal condition, QRSIM chooses one of 
them and relaxes its constraint to continue the simulation. 

 Semantics of Constraints 
A model built by a student is compared with the correct 
model written by an author of the teaching materials 
(called the 'scenario author'). The difference between them 
is identified as (1) extra, (2) lacking or (3) erroneous 
constraint(s) (that the former includes but the latter doesn't, 
that the latter includes but the former doesn't, that the latter 
includes and is erroneously written in the former, 
respectively). The constraint relaxed to make the model 
calculable is regarded as (2). As for (2) and (3), by refer-
ring to the physical meaning of the corresponding 
constraint in the correct model, the explanation of how the 
behavior of the erroneous model is unnatural is created. 

Therefore, the author must not only write the correct 
model but also annotate the constraints it includes with 
their educational implication. Educational implication 
means the physical meaning and importance of a constraint, 
which are used as heuristics for both constraint-relaxation 
and explanation-creation. Additionally, writing the correct 
model means the author must enumerate all the possible 
constraints it is subject to. For example, in figure 2, while 
the constraint 'the total amount of water is constant' isn't 
necessary for calculation, it needs to be redundantly 
described for explaining the behavior. The constraints 
which are too obvious and often omitted also needs to be 
explicitly described, such as 'the amount of water in each 



container is not a negative number' and 'it is not greater 
than the capacity of the container.' This is because, based 
on erroneous models, any unnatural phenomenon could 
occur which violates such implicit constraints, such as that 
the value of a constant might change, and that the value of 
a variable might be out of its domain. 

It is not easy for authors to enumerate and annotate such 
constraints because most of them are implicit modeling 
assumptions, and are usually not necessary for simulation. 
One possible way of helping authors is to give them a 
guideline for enumeration and annotation. That is, in each 
domain, there is a set of objects and relations which 
typically appear in a scenario. Each of them has a set of 
attributes which are typically considered in a model. 
Therefore, when authoring a scenario, suggesting such 
attributes and their default values and domains will be 
helpful. Additionally, there are different roles that 
constraints play in a model. For example, some constraints 
constrain the values of a set of attributes by a physical law, 
some constrain the domain of an attribute, and others give 
an initial value to an attribute. Identifying such roles helps 
in considering their physical meanings. 

Therefore, 'Semantics of Constraints (SOC)' is necessary 
which is a hierarchy of 'Constraint Classes (CC).' CCs are 
identified based on the roles of constraints in models of 
physical systems. It is desirable that the SOC is 
independent of domains and customized for each domain. 
It is customized to include domain-specific relationships 
between constraints, such as what configuration of 
objects/relations/attributes in a scenario suggests what 
other constraints exist. Storing the examples in domains for 
each CC will be helpful for such customization. 

We have developed the semantics by referring to the 
literature on qualitative reasoning (Weld and deKleer 
1990), model reformulation (Falkenhainer and Forbus 
1991) and engineering ontology (Mizoguchi 2002). Three 
major constraint classes are identified by considering the 
modeling process of physical systems, which are 'the 
constraint of physical phenomenon (PPC),' 'that of 
modeling assumption (MAC)' and 'that of boundary 
condition (BCC).' Given a physics problem (which consists 
of a situation and query), one assumes the structure and 
behavioral range of the physical system to build the model 
necessary and sufficient for solving the problem. Such 
constraints are called modeling assumptions (MAC). Some 
physical principles/laws which match the situation are 
instantiated to constrain the values of a set of attributes. 
These are the constraints of physical phenomenon (PPC). 
A set of boundary values of attributes are given to calculate 
the behavior of the model. These are the constraints of 
boundary condition (BCC). 

Each of these constraint classes corresponds to a layer in 
the hierarchy of ontology of physical systems. As shown in 
figure 3, the knowledge of physical systems is often 

viewed as multi-layered ontology, each layer of which 
defines the concepts/axioms of physical systems at a 
particular abstraction level (Mizoguchi 2002). Boundary 
condition classes correspond to the most concrete level, the 
scenario model, which gives constraints specific to the 
system considered. Physical phenomenon classes 
correspond to the physical process ontology layer, which 
gives constraints specified by physical phenomena. As 
shown later, modeling the assumption classes correspond 
to various layers depending on the function of each 
constraint. Such correspondences with ontology layers help 
in considering the physical meanings of constraint classes 
and their violations. 

In general, because a constraint in the lower layer gives 
more fundamental concept/axiom, constraint-violation in 
the lower layer could be recognized as more ‘un-natural.’ 
However, the scenario model is an exception. Since 
constraint-violation in this layer would be recognized as 
'unsatisfaction of the condition given in the scenario,' 
which would have a great impact on students. In the 
following two sections, we elaborate on the constraint 
classes PPC and MAC to clarify their physical meanings. 
After that, we illustrate how the impact is estimated 
according to this framework when a constraint is violated. 

Figure. 3. Hierarchy of physical system ontology 

Constraints of Physical Phenomenon 
Subclasses 
A physical system evolves through time, starting from an 
initial state. It is either changing dynamically, in a steady 
state or changes discontinuously. Therefore, we call the 
constraints in these state, 'the constraint of dynamic change 
(DYC),' 'that of steady state (SSC)' and 'that of 
discontinuous change (DCC),' respectively. Additionally, 
when a quantity is conserved through time, the constraint 
which represents that it’s amount is the same at arbitrary 
two time points is called 'the constraint of conservation law 
(CLC).' 
Violation 
Because intuitions about dynamic change, steady state and 
conservation develop in early ages and is held steadily 
(diSessa 1993), their violation would be easily understood 
as 'unnatural phenomena.' On the other hand, as for 



discontinuous change, since it is hard to predict what 
happens in a discontinuous change intuitively, we can 
estimate its violation would have less impact. Therefore, it 
has low priority in both constraint-relaxation and 
explanation-creation. 

Constraints of Modeling Assumption 
Subclasses 
Modeling assumptions are classified in two ways by 
different viewpoints: structural and functional. The former 
focuses on the structure of a system and its state. For 
example, 'the constraint of physical structure (PSC)' 
specifies what kind of objects, relations and attributes in a 
physical system are considered. On the other hand, 
'constraint of operating range (ORC)' specifies the range 
within which the model is valid. (Examples of these 
constraint classes are shown in table 1.) This classification 
is convenient for enumerating modeling assumptions 
because it often suggests the descriptive aspect of a system. 
The latter focuses on the function of an modeling 
assumption. 'The constraint of process consideration 
(PCC)' specifies what kind of physical processes are 
considered in modeling. In other words, by assuming such 
a constraint, one ignores a physical process by putting it 
out of the system or into a black box, regarding its effect as 
a boundary condition. Additionally, 'constraint of physical 
world (PWC)' maintains the fundamental laws of the 
physical world, such as 'rigid objects never overlap,' and 
'mass of an object is always greater than zero.' (Examples 
of these constraint classes are shown in table 2.) This 
classification is convenient for considering the meaning of 
a modeling assumptions because it suggests the mechanism 
of a system. 
Violation 
Depending on what functional subclass a modeling 
assumption belongs to, the impact of its violation is 
systematically derived. A constraint of PCC is sometimes 
regarded as a given condition. In such a case, its violation 
is recognized as 'unsatisfaction of the given condition' (as 
is that of BCC). It is also regarded as a precondition of a 
physical process. In such a case, its violation implies the 
violation of PPC and is understood as 'unnatural 
phenomena.' On the other hand, violation of PWC is easily 
understood as 'impossible phenomenon.' 

By using this framework, guidelines could be developed 
which help authors enumerate and annotate the constraints 
of the correct model. 
 
 
 
 
 

Table 1. Constraints of modeling assumptions (structural) 

 
Table 2. Constraints of modeling assumptions (functional) 

 Preliminary Test 
We have developed a prototype of MBE with the functions 
described above. Since it has a provisional GUI and no 
facility for scaffolding/coaching for model-building at 
present, we interviewed three teachers who teach basic 
physics at university about the usefulness of the system. 
Using three problems, including those of figure 1 and 2, 
the authors made the correct models and examples of 
erroneous models. Then the teachers are shown the 
simulations and explanations created by the system and 
asked if they would be useful for making students 
understand how the models were erroneous and should be 
corrected. For example, the explanation created for the 
model in figure 2 was: 'though the total amount of water 
must be constant, it unnaturally changes in the behavior of 
this (erroneous) model.' 

The answers of the teachers were generally positive. All 
of them agreed this system would be useful for teaching 
basic concepts of physics. They said: 

• Often students don't understand the physical meanings 
of constraints in modeling. So, for example, they change 
the boundary conditions in an ad hoc way (e.g., if '+' 
doesn't work, they try '-').  This is partly because when a 



model is unsolvable, they can't receive any feedback 
except the fact that it's no good. In such a case, this sys-
tem would help. 

• Since such concepts as normal force, tension and friction 
aren't intuitive, it would be helpful to show what role 
they play in normal behaviors. 

• In modeling large systems, it is helpful to examine what 
effect each constraint has on the whole behavior (i.e., 
what'll happen if it is/isn't). This system would be a 
convenient tool for this purpose. 

The teachers also pointed out students would have much 
difficulty in building a model in the form of such a 
network even if a sophisticated GUI was given. Therefore, 
as indicated by the prior work (Carney 2002; Liem, 
Linnebank and Bredeweg 2009), providing help and 
scaffolding/coaching is indispensable to make this 
prototype of practical use. Developing a curriculum in 
which students can learn the components step-by-step 
would be a promising way (Liem, Linnebank and 
Bredeweg 2009). 

Concluding Remarks 
In this paper, we presented a model-building learning 
environment (MBE) with adaptive feedback to erroneous 
models. It can control and explain the unnaturalness of the 
behavior of models by handling constraints based on their 
semantics. A preliminary test suggested it is a promising 
tool for teaching physics.  

As for feedback for students' erroneous models, 
DynaLearn also addresses this issue (Gracia et al. 2010). In 
DynaLearn, a student's model is compared with the correct 
model built by a teacher to detect the difference between 
them. Missing/superfluous elements in the student's model 
are pointed out based on the comparison. Incorrectness of 
terminology and hierarchy of elements are also indicated. 
However, how and why the simulated behavior is 
unnatural cannot be explained because DynaLearn lacks 
the knowledge about the physical meanings of constraints 
in models. Additionally, if a student's model is over-
constrained (i.e., includes inconsistent constraints), its 
behavior cannot be simulated. On the other hand, our 
system can not only explain the behavioral unnaturalness 
based on the Semantics of Constraints, but also simulate 
the behavior of a over-constrained model by constraint-
relaxation. 

Our primary future work is to refine the system and test 
it in classrooms (especially, the functions for assisting 
students in building models and presenting 
simulation/explanation in an easy way to understand). 
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